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Abstract
Estimating and predicting traffic conditions in arterial

networks using probe data has proven to be a substantial

challenge. In the United States, sparse probe data repre-

sents the vast majority of the data available on arterial roads

in most major urban environments. This article proposes

a probabilistic modeling framework for estimating and pre-

dicting arterial travel time distributions using sparsely ob-

served probe vehicles.

We evaluate our model using data from a fleet of 500

taxis in San Francisco, CA, which send GPS data to our

server every minute. The sampling rate does not provide

detailed information about where vehicles encountered de-

lay or the reason for any delay (i.e. signal delay, congestion

delay, etc.). Our model provides an increase in estimation

accuracy of 35% when compared to a baseline approach for

processing probe vehicle data.

1. Introduction
Traffic congestion has a significant impact on economic

activity throughout much of the world. An essential step

towards active congestion control is the creation of accurate,

reliable traffic monitoring systems.

Historically, traffic monitoring systems have been

mostly limited to highways and have relied on public or

private data feeds from a dedicated sensing infrastructure,

which often includes loop detectors, radars, video cameras.

For highway networks covered by such an infrastructure, it

has become common practice to perform both system iden-

tification of highway parameters (free flow speed, traffic jam

density and flow capacity) and estimation of traffic state

(flow, density, length of queues, bulk speed and shockwave

location) at a very fine spatio-temporal scale [23, 4]. These

highway traffic monitoring approaches heavily rely upon

both the ubiquity of data and highway traffic flow models

developed over the last half century [16, 6, 21].

For arterials (the secondary network) and highways not

covered by dedicated sensing infrastructure, traffic monitor-

ing is substantially more difficult: probe vehicle data is the

only significant data source available today with the prospect

Figure 1. San Francisco taxi measurement locations for a single
day, observed at a rate of once per minute.

of global coverage in the future. The features of probe ve-

hicle data today, including the lack of ubiquity and relia-

bility, the variety of data types and specifications, and the

randomness of its spatio-temporal coverage, make it insuffi-

cient for fully characterizing macroscopic traffic model pa-

rameters and doing state estimation with these models for

large transportation networks. Figure 1 shows probe mea-

surements from San Francisco taxis for one day, which il-

lustrates the breadth of coverage when aggregating data over

longer periods of time. However, this data does not pro-

vide enough information to directly infer the macroscopic

state of traffic at a fine spatio-temporal scale. Traffic models

and data assimilation algorithms must be developed to effi-

ciently transform this data into reliable traffic information.

See, e.g., [23, 22, 11, 14] for a discussion on the use of cell

phone data for highway traffic monitoring.

Aside from less abundant sensing compared to exist-

ing highway traffic monitoring systems, the arterial network

presents additional modeling and estimation challenges as

the underlying flow physics which governs them is more
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complex because of traffic lights (often with unknown cy-

cles), intersections, stop signs, parallel queues, and others.

Collecting the detailed parameters of the arterial road net-

work into an accessible electronic database would require

the cooperation of numerous government agencies, making

this information unreliable and tedious to obtain. Moreover,

at the low penetration rate typical for arterial traffic, even

small changes in the road network can greatly affect the es-

timation. This makes the detailed spatio-temporal modeling

and estimation approaches developed for highway traffic im-

practical for arterials—at least until the data volume signifi-

cantly increases [3, 18].

We propose a statistical approach for arterial traffic esti-

mation from probe vehicle data by modeling the evolution of

traffic states as a Coupled Hidden Markov Model (CHMM),

which is a particular form of a probabilistic graphical model.

Our approach starts from well established first principle traf-

fic flow models for arterial traffic [16, 20]. We then show

how these traffic flow models can be leveraged to estimate

historical travel time probability distributions as well as pre-

dict the short-term evolution of travel times.

CHMMs have been used for predicting the evolution of

sensor readings on highways [15]. The approach in [15] re-

lies on the fact that fixed infrastructure sensors (loop detec-

tors) provide exactly one measurement every 30 seconds at a

fixed location. Probe data on arterials is available at random

times and random locations, making this model not applica-

ble for our study. Statistical approaches have been proposed

that rely on either a single measurement per time interval or

aggregated measurements per time interval [10, 8], neither

of which is appropriate in our setting. Another probabilis-

tic graphical model approach based on the statistical physics

Ising model was proposed in [8]. This model relies on mea-

suring a binary quantity stating whether traffic is congested

or uncongested. Transforming probe data into binary con-

gested/uncongested values is a difficult process by itself and

has not been specifically addressed to our knowledge.

Some researchers have examined the case of how to pro-

cess high-frequency probe data (one measurement approxi-

mately every 20 seconds or less) [22]. High-frequency data

allows for reliable calculation of short distance speeds and

travel times. In this paper, we specifically address the pro-

cessing of sparse probe data where this level of granular-

ity is not available. Finally, other approaches based on re-

gression [17], optimization [2], neural networks and pattern

matching [7] have all been proposed. None of these ap-

proaches addresses the issue of processing sparse probe data

on a dense arterial network. Hellinga, et al. [9], address the

case of low frequency sampled probe data. In that paper, the

authors construct a simple probability function with intuitive

properties, but the approach is not based on traffic theory as

is our approach in this paper.

The contribution of our work specifically addresses the

case of noisy, sparse probe data. In particular, we propose

a model and algorithm to do traffic estimation with mea-

surements received at random locations and random times.

We define the travel time distribution of each observation

(time between consecutive measurements) as a function of

(i) the travel time distributions of the links traversed and (ii)

the spatial distribution of vehicle locations on each traversed

link. The key insight is that, on average, vehicles spend more

time traveling through the part of a link just before an inter-

section than they spend on the part of a link just after an

intersection (section 2). Based on traffic modeling assump-

tions, we construct a graphical model (section 3) represent-

ing the travel time distribution of each link at each time in-

terval and their spatio-temporal evolution. Leveraging the

results from section 2, the graphical model represents travel

time distributions on any portion of the links of the network

(partial links) and estimates the probability of an observa-

tion given travel time distribution parameters. We develop

an expectation maximization (EM) algorithm (section 4) for

learning the parameters of our CHMM. We estimate the cur-

rent state of the network using a particle filter, which is used

for predicting the link travel time distributions in the short-

term future. Finally, we present the results of a case study

(section 5) in San Francisco, for which a fleet of 500 taxis

provides sparse location measurements as part of the Mo-

bile Millennium project [12]. The initial results indicate that

travel time distributions can be accurately estimated using

only sparse GPS data.

2. Traffic modeling framework
We present the assumptions and notations of a model

of traffic through a signalized intersection. Given these as-

sumptions, we derive travel time distributions between any

two points of the network based on the spatial distribution of

vehicles along each link of the path. This provides a frame-

work for computing the likelihood of a probe vehicle obser-

vation given the parameters of the network.

2.1. Traffic modeling assumptions
To model traffic dynamics, we use the following set of

model parameters: maximum density ρmax, critical density

ρc, free flow speed v f , cycle time C and red time R. The

demand in traffic is represented by the arrival density on a

link, ρa. These parameters are defined for each link l and

each day d. For simplicity of notations, we omit to write the

dependency on the link l and the day d.

We denote Nl
n the spatial neighbors of link l of order

n, where first order neighbors (Nl
1) are the links sharing an

intersection with link l (including link l). The higher order

spatial neighbors are defined by the following recursive for-

mula:

Nl
n+1 =

⋃

j∈Nl
n

N
j
1 (1)

To formulate our model, we make the following as-

sumptions:

1. Triangular fundamental diagram.

2. Stationarity of traffic: during each estimation interval,

the parameters of the light cycles (red and cycle time)

do not change. The arrival density ρa is constant. The

930



Figure 2. The estimation of the spatial distribution of vehicles on a link as derived from the model of traffic. The space-time plane
is used to represent the density of vehicles (left). Using a maximum likelihood estimation, we derive the parameters of the model.
The probability density at location x (center) and the estimated and empirical cumulative distribution of the vehicle locations (right)
demonstrate that the data fit the model assumptions well. The data used are on one link of the San Francisco network from a single
time interval (5:00pm-5:30pm) aggregated over 20 days.

traffic dynamics are stationary: they evolve periodically

with period C (length of the light cycle). In particular,

there is no consistent increase or decrease in the length

of the queue, or instability.

3. First In First Out (FIFO) model: overtaking on the road

network is neglected.

4. Discrete congestion states: for each day d and each

time interval t, the traffic conditions on link l are rep-

resented by a discrete value, sl
d,t , which indicates the

level of congestion. There are S discrete levels of con-

gestion.

5. Conditional independence of link travel times: condi-

tioned on the state sl
d,t of a link l, the travel time distri-

bution of that link is independent from all other traffic

variables.

6. Conditional independence of state transitions: condi-

tioned on the states of the spatial neighbors of link l of

order n (denoted Nl
n) at time t, the state of link l at time

t + 1 is independent from all other current link states,

all past link states and all past travel time observations.

Assumption 5 implies that link travel times are not cor-

related across links, which is an assumption made for com-

putational tractability. Assumption 6 implies that each link is

correlated with some (small) subset of neighboring links, but

independent of the rest of the network. Neither of these as-

sumptions must hold all of the time in a real traffic network,

although it is our belief that this is a good approximation.

Future studies will examine the extent to which this approx-

imation affects the results and whether these assumptions

can be relaxed while still having a model that is tractable to

solve.

2.2. Path travel time probability distribution
As the location measurements are taken uniformly over

time, more densely populated areas of the link will have

more location measurements. We estimate the probability

distribution PX of vehicle locations within a link using a

statistical model derived from traffic theory and modeling

assumptions 1, 2, and 3. For a vehicle traveling from loca-

tion x1 to location x2 on an arterial link l, we assume that the

partial travel time Yx1,x2
is distributed as αx1,x2

Yl , where Yl is

the random variable of travel time on link l—with realiza-

tions denoted yl—and

αx1,x2
=
∫ x2

x1

PX (x)dx. (2)

Note that a baseline approach would assume that αx1,x2

is the ratio between the distance |x2− x1| and the length of

the link, assuming that the travel time on a link is uniformly

distributed on the link. Our model takes into account the non

spatial uniformity of travel time along a link of the network.

Probability distribution of vehicle locations. On a road

segment, at a location x and a time t, the density takes one of

the following values: (1) arrival density ρa for the vehicles

that are upstream of the queue, (2) maximum density ρmax

for the vehicles stopped at time t and location x and (3) crit-

ical density ρc for the vehicles downstream of the queue—

vehicles that have already stopped on their trajectory on link

l. These different values of the density at location x and time

t are represented in the space-time diagram of trajectories

(Figure 2, left). In a stationary regime, we define the tri-

angular queue (from its triangular shape on the space-time

diagram of trajectories) as the spatio-temporal region where

vehicles stop for the first time on the link. Its length is called

the maximum queue length, denoted lmax. Under congested

conditions, the part of the queue downstream of the triangu-

lar queue, called the remaining queue with length lr, corre-

sponds to vehicles which have to stop more than once be-

fore going through the intersection. In a stationary regime,

we can define the temporal average density at location x, de-

noted d(x). It is constant upstream of the maximum queue

length—equal to ρa. It increases linearly until the beginning

of the remaining queue lr. In the remaining queue, the den-

sity is constant, equal to ρb. The density ρb is computed

as a convex combination of the maximum density ρmax and
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the critical density ρc—the density at which the queue dis-

charges. The weights are given by the proportion of the cycle

experiencing each of the density, thus the expression for ρb,

ρb =
R
C

ρmax +(1− R
C
)ρc.

Remark: The model presented is not restrictive with re-

spect to the presence of a remaining queue, which is only

present under congested conditions. During undersaturated

conditions, we have lr = 0. In the triangular queue the den-

sity increases linearly. The value of the density at the inter-

section is computed as a convex combination of ρmax, ρc and

ρa where the weights represent the fraction of the cycle dur-

ing which each of the density is observed. The average den-

sity at the intersection is ρb =
R
C

ρmax +
τ

C
ρc +(1− R+τ

C
)ρa,

where τ is the clearing time—time during which the light is

green and the queue is dissipating.

The probability distribution of vehicle locations PX is

proportional to the average density. The normalizing con-

stant Z is the average number of vehicles on the link

PX (x) =
1

Z
d(x), (3)

with Z =
∫ L

0 d(u)du.

After normalization the probability distribution PX (x)
is equal to






ρ̃a, x ∈ [0, L− (lr + lmax)]

ρ̃a + ρ̃b
x−(lr+lmax)

lmax
, x ∈ [L− (lr + lmax), L− lr]

ρ̃a + ρ̃b, x ∈ [L− lr, L],

(4)

where ρ̃a =
ρa

Z
, Z = ρaL+ 1

2
lmaxρb + lrρb and

ρ̃b = ρb/Z = 2
1−ρ̃aL

lmax+2lr
. The distribution is fully determined

with the three parameters ρ̃a, lr and lmax.

We estimate the parameters of the distribution of vehi-

cle location on a link PX by maximizing the likelihood of

the set of location observations (denoted (xo)o∈O). This op-

timization problem is written in equation (5).

argmax
ρ̃a,lr ,lmax

∑
o∈O

ln(PX (xo)) s.t.







0≤ ρ̃a ≤
1
L

lr + lmax ≤ L

0≤ lr, 0≤ lmax

(5)

The constraints come from the physics of the problem.

The first constraint can be rewritten as ρa ≤
Z
L

, where Z
L

rep-

resents the average density on the whole link. It illustrates

the fact that the arrival density is inferior to the average den-

sity on the link. The other constraints illustrate that the total

queue cannot extend the length of the link and that the trian-

gular queue and the remaining queue must be non-negative.

Experimental results have shown that the model learns

the parameters with a relatively small amount of data. An

example of the learned and experimental cumulative distri-

butions of vehicle location for a link of the network are rep-

resented in figure 2 (right).

3. Modeling framework
Arterial traffic conditions vary over space and time.

Given assumptions 4, 5, and 6 in section 2.1, we model the

spatio-temporal conditional dependencies of arterial traffic

using a probabilistic graphical model known as a Coupled

Figure 3. Spatio-temporal model of arterial traffic evolution rep-
resented as a coupled hidden Markov model. The circular nodes
represent the (hidden) discrete state of traffic for each link at
each time interval. The square nodes represent travel time ob-
servations from the distribution defined by the traffic state.

Hidden Markov Model (CHMM) [5]. A Hidden Markov

Model (HMM) is a statistical model in which the system be-

ing modeled is assumed to be a Markov process with unob-

served states. CHMMs model systems of multiple interact-

ing processes. In this article, the multiple processes evolv-

ing over time are the discrete states (assumption 4) of each

link in the arterial network. Since we do not observe the

state of each link for all times, these processes are consid-

ered hidden. The travel time distribution on each link is

conditioned on its hidden state (assumption 5) from which

we have sparse observations from probe vehicles traveling

through the arterial network. Assumption 6 gives the cou-

pled structure to the HMM by specifying local dependen-

cies between adjacent links of the road network. Figure 3

illustrates our model representation of link states and probe

vehicle observations. Each circular node in the graph rep-

resents the state of a link in the road network. The state

is a discrete quantity defined based on the application (e.g.

the possible states could be undersaturated/congested or the

number of vehicles in the queue). The forward arrows in-

dicate the local spatial dependency of links from one time

period to the next. Each square node in the graph represents

probe vehicle observations on the link to which it is attached

(i.e. travel time between GPS measurements).

The observations are successive GPS measurements of

vehicle trajectories (approximately one per minute). The is-

sues of filtering the noise of the GPS to estimate the most

likely location of the measurements and inferring the path

taken by the vehicle are not addressed in this article. There

are multiple approaches to solving this problem including

using statistical filtering [13]. In the remainder of this ar-

ticle, we assume that we are given the most likely measure-

ment locations on the road network as well as the most likely

path of the vehicle.

To completely specify the CHMM-based model, we

have to estimate (i) the initial state probabilities for each

link, denoted πl,s, (ii) the discrete transition probability dis-
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tribution functions (assumption 6), denoted Al,t , and (iii) the

distribution of travel time on a link given the state of that

link (assumption 5), denoted gl,s,t .

For each link l and each time interval t, the probability

of link l to be in state s at time t + 1 given the state of its

neighbors at time t is given by the discrete transition proba-

bility distribution function of link l. It is fully characterized

by a matrix of size SNl
n×S, denoted Al,t . The element of line

r and column s, Al,t(r,s), represents the probability of link l

to be in state s at time t +1 given that the neighbors of l are

in state r at time t.

A simplifying assumption for computational tractability

is to assume that for each link l, the state transition matrix

Al,t and the conditional travel time distribution function gl,s,t

do not depend on time. They are denoted respectively by Al

and gl,s in the reminder of this article. To relax this assump-

tion, one can assume that these functions are piecewise con-

stant in time and estimate them for each period of time dur-

ing which the stationarity assumption is satisfied. We also

assume that, given the state of a link, the travel time distri-

bution on that link is independent from all the other random

variables. In general, travel time distributions across links

are not independent (due to light synchronization, platoons,

and other factors). Future work will specifically address the

challenge of using correlated distributions, which have the

potential to capture more complex dynamics in the arterial

road network.

4. Parameter estimation

In this section, we describe how the traffic modeling

assumptions allow identification of the parameters of the

model and the state variables using the path observations.

Given the parameters of the model, we can estimate the most

likely state of the links given observations and their evolu-

tion over time. Similarly, given the state of the links of the

network over a period of time, we can estimate the param-

eters of the model (state transition matrix, and conditional

travel time probability distributions). This well known type

of problem is solved using an Expectation Maximization

(EM) algorithm which iterates between finding the probabil-

ity of each state for each link of the network and each time

interval given some values of the model parameters (E step).

Then, the probabilities of each state for each link and each

time interval are used to update the value of the parameters

by maximizing the log likelihood (M step).

One challenge of our graphical model approach is that

we do not observe link travel times directly since the probe

observations we receive can span several links of the net-

work between two consecutive measurements. This diffi-

culty is addressed by computing the most likely link travel

times that make up the path of the probe vehicle (travel time

allocation), which is described in section 4.1. It is possible

to have a graphical model representation that does not have

this decomposition approach, but it leads to a difficult non-

linear parameter optimization (M-step) problem, for which

the number of variables increase quadratically in the num-

ber of links. This optimization problem would require an

approximation technique to solve, which is why we propose

a more intuitive decomposition scheme called travel time al-

location.

A high-level description of the parameter estimation is

presented in Algorithm 1.

4.1. Travel time allocation
An observation consists of a travel time over a path con-

sisting of multiple (partial) links. In order to use the graphi-

cal model presented in section 3, the total travel time must be

decomposed into a travel time for each (partial) link on the

path. This can be achieved by maximizing the log-likelihood

of the link travel times for each observation given the model

parameters. This optimization problem for a single observa-

tion is

argmax
y

{

∑
l∈P

ln(
S

∑
s=1

zs
l gl,s(yl)) : ∑

l∈P

α
xl

1,x
l
2
yl = ỹ

}

, (6)

where P is the set of links on the path, y := {yl}l∈P is a vec-

tor of the travel times assigned to each link on the path, xl
1

and xl
2 are the start and end location on link l, ỹ is the ob-

served travel time between the GPS measurements, and zs
l

is the probability of link l to be in state s. The values of

xl
1 and xl

2 will be equal to the start and end of the link for

all intermediate links and will only have non-trivial values

for the first and last link of the path (where the actual GPS

observations are). The values of zs
l are obtained from the E-

step of the EM algorithm, except in the first iteration where

they have been initialized with reasonable values (see Algo-

rithm 1). The optimization problem in equation (6) has a

number of variables equal to the number of links of the path

between consecutive GPS measurements, which is always a

relatively small number. This makes the optimization prob-

lem easy to solve using numerical methods.

As a reminder, we use the density model of section 2 to

compute αx1,x2
, the proportion of the full link travel time to

use.

4.2. E step: Particle filtering
On small networks, it is possible to do exact inference

in the CHMM by converting the model to an HMM with

a state of dimension number of links. However, the transi-

tion matrix is a SN ×SN matrix (N is the number of links in

the network), which is intractable for any reasonable traffic

network. Instead, we use an approximation based on parti-

cle filtering. Each particle represents an instantiation of the

time evolution of the network. Each particle has a weight

proportional to the probability of having this instantiation of

the state evolution of the network given the available data.

We simulate a high number of particles that evolve through

the graphical model. These particles are used to estimate the

probabilities of the state of each link and each time interval

and the probabilities of transition between the state of the

neighbors of link l at time t − 1 and the state of link l at

time t. For more information on particle filtering, see, for

example [19].
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4.3. M step: Update of the parameters
For each link and each state, we assume that the travel

time distribution gl,s is parameterized by a set of parameters

pl,s and we note the set of all parameters P = (pl,s)l,s. To up-

date these parameters, we maximize the expected complete

log-likelihood given the expected values of the probabilities

that each link l is in state s at time t and day d (zs
d,t,l) and the

expected values of link l to be in state s given that the neigh-

bors of link l are in state r at time t − 1 and day d (q
s,r
d,t,l).

We also update the transition matrices Al and the initial state

probabilities πl for each link of the network, which corre-

sponds to optimizing on the set of parameters A = (Al)l and

π = (πl,s)l,s. The expected complete log likelihood is

Λ(Y |z,q,P,A,π) =

N

∑
l=1

S

∑
s=1

D

∑
d=1

Td

∑
t=1

zs
d,t,l

(

Id,t,l

∑
i=1

ln(gl,s(yi))

)

+

N

∑
l=1

D

∑
d=1

Td

∑
t=2

S

∑
s=1

SNl
n

∑
r=1

q
s,r
d,t,l ln(Al(r,s))+

N

∑
l=1

D

∑
d=1

S

∑
s=1

zs
d,0,l ln(πl,s),

(7)

where Id,t,l is the set of travel time observations for day d,

time interval t, and link l as provided by the travel time allo-

cation method presented in section 4.1.

The usual optimization problem is modified to take into

account the varying number of observations for each link

and each time interval. The optimization problem is stated

as

max
P,A

Λ(Y |z,q,P,A,π) :































S

∑
s=1

Al(r,s) = 1,∀ l,r

Al(r,s) ∈ [0, 1],∀l,r,s
S

∑
s=1

πl,s = 1,∀ l

πl,s ∈ [0, 1],∀l,s
(8)

The updates of the transition probabilities Al and of the

initial state probabilities πl are straightforward. The update

of the travel time distributions depends on the type of distri-

bution used in the model. Due to the travel time allocation,

the optimization problem on all the parameters P of the net-

work decouples in S×N smaller optimization problems, one

for each state and link of the network. For state s and link l,

the optimization problem is

max
pl,s

D

∑
d=1

Td

∑
t=1

zs
d,t,l

(

Id,t,l

∑
i=1

ln(gl,s(yi))

)

, (9)

where pl,s represents the parameters of the travel time distri-

bution gl,s. Decoupling the optimization problem makes it

highly scalable as each of the optimization subproblems can

be performed in parallel. If the travel time allocation method

is not used, then the resulting optimization problem is cou-

pled across the whole network resulting in a large non-linear

optimization problem that does not scale well.

Algorithm 1 Estimation of the historical distribution of

travel time and state transition probability matrices.

Estimate the link parameters for the density model (sec-

tion 2.2)

Initialize the parameters Pl,s of the distributions, the state

transition probability matrices Al , the initial state proba-

bilities πl,s, and the state probabilities zs
d,t,l

EM-algorithm with travel time allocation:

while The algorithm has not converged do

Travel time allocation (section 4.1)

yl ← Allocated travel times given the parameters Pl,s

and the state probabilities zs
d,t,l

E Step (section 4.2): compute the expected state prob-

abilities zs
d,t,l and transition probabilities q

r,s
d,t,l given

(yl)l , (Pl,s)l,s and (Al)l

zs
d,t,l ← E(zs

d,t,l |yl , Pl,s, Al)

q
r,s
d,t,l ← E(qr,s

d,t,l |yl , Pl,s, Al)

M Step (section 4.3): maximize the expected complete

log-likelihood, given the state probabilities zs
d,t,l and the

transition probabilities q
r,s
d,t,l .

(Pl,s,Al ,πl)← argmaxP,A,π Λ(Y |z,q,P,A,π)
end while

4.4. Real-time estimation and forecast

Estimating and forecasting traffic conditions in real-

time can be achieved after the travel time distributions and

transition probabilities have been learned. We use the graph-

ical model with its learned parameters to perform inference

using data up to the time the estimate or forecast is produced.

This is done by running the particle filter (E-step only) to de-

termine which state of traffic is most likely for each link and

time interval. Forecast is done by propagating the particle

filter forward from the current time interval (with no addi-

tional data).

5. Experiments

We tested our arterial traffic forecasting method using

probe data from a fleet of about 500 taxis in San Francisco

as provided to us by the Cabspotting project [1]. Each taxi

provides a measurement of its location approximately once

every minute (generally between 40 and 100 seconds). In

addition to its location, the taxi also reports whether or not

it is carrying a customer or not. This information allows us

to filter out the points when a taxi is loading or unloading a

passenger. This data is sent to the Mobile Millennium traffic

system, where it is processed and visualized in real-time.

In our case study, we used data from November 25,

2009 through February 27, 2010, focusing on weekdays

from 3pm-8pm in the subnetwork of San Francisco depicted

in figure 4. This subnetwork contains 322 links (where a link

is defined as the road between two signals) and has an aver-
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Figure 4. Real-time traffic estimation for a subnetwork of San
Francisco studied in this article. The color scale represents
the estimated travel time divided by the speed limit travel time.
Green is for values close to 1 (travel time is about the same as
driving at the speed limit) and black indicates values around 5
(travel time is 5 times slower than driving at the speed limit).

age of 600 observations per half hour time interval. We use

30 minutes (half an hour) as the time interval in the graph-

ical model presented in section 3. We assume that the ob-

servation probability distribution functions g (section 3) are

independent Gaussians. In general, the choice of a Gaussian

distribution restricts the flexibility of the model to capture

unique traffic characteristics, but it is also far more tractable

to solve in practice. Other “standard” distributions that one

could consider are gamma or log-normal, which are more

difficult, but possible to use in the framework described in

this article. Finding tractable approximation methods for us-

ing traffic theory inspired travel time distributions will be the

subject of future work.

Our approach requires a training period (section 4) be-

fore it can be used to make predictions in real-time. We used

data from November 25, 2009 through February 19, 2010

as our training period. We only used Tuesdays, Wednes-

days and Thursdays to train our model, which totalled 18

training days (after removing holidays and days with sys-

tem malfunctions that prevented data collection). We then

tested the model by running it over all Tuesdays, Wednes-

days and Thursdays between February 20, 2010 and Febru-

ary 27, 2010, which totalled 3 days.

We first learn the traffic density parameters (section 2)

for each hour of the day from 3pm to 8pm, where each hour

period is assumed to have its own characteristics in terms of

the average density on a link. We then run the EM algorithm

(section 4) over all the training data, with the assumption

that the transition matrix A and the Gaussian distributions

for each link are stationary over the study period. Once the

parameters have been learned through the EM algorithm, we

use a particle filter to compute the most likely state of each

link given real-time data on a test day. Figure 4 shows a

map of the subnetwork of San Francisco with each link col-

ored according to its level of congestion, defined as the mean

travel time divided by a reference free flow travel time. The

Model RMSE (sec) MPE

Graphical (with density) 46 30.1%

Graphical (without density) 50 34.3%

Baseline 63 44.4%

Table 1. Experimental results comparison between the pro-
posed graphical model and the baseline model.

free flow travel time is computed as the travel time experi-

enced when traveling at the speed limit and accounting for

an expected delay (due to traffic signals) under light traffic

conditions.

To quantify the validity of our estimates, we compare

the actual travel time of an observed path to the estimate ob-

tained by summing over the mean travel time for all links of

the path. Table 1 shows the root mean squared error (RMSE)

and mean percentage error (MPE) of our travel time predic-

tions as compared to a baseline approach. The baseline ap-

proach computes the average speed for each observation and

assigns it to each link along its path. Then all of the speeds

on each link are averaged to give a historical average speed

for each link. The real-time version of this approach does

the same thing and then takes a weighted average between

the historical and the real time speed to give a speed estimate

for each link of the network, which can be used to estimate

travel times. The two versions of the graphical model show

the effect of using the density model of section 2.2 to com-

pute partial link travel times instead of simply using a travel

time proportional to the partial link distance.

These results were computed on the data obtained be-

tween February 20 and February 27, 2010. The data was

split into two sets, one for computing the real-time traffic

estimates and one for computing the error metrics. This

was done to ensure an unbiased comparison of the proposed

graphical model and the baseline model. Approximately

70% of the data was used for computing the real-time traffic

estimates with the other 30% used for computing the error

metrics.

6. Conclusion and discussion
In this article, we proposed a new probabilistic mod-

eling framework for estimating arterial traffic conditions

from sparse probe data. Our initial results suggest that this

approach outperforms the baseline approach in predicting

short-distance arterial travel times by 36.9% in terms of the

root mean squared error metric. We believe that the pro-

posed modeling approach provides a fundamental basis for

estimating arterial traffic conditions. The key features that

our model possesses are:

• Each link has a discrete traffic state that cannot be directly

observed.

• Traffic states of nearby links are correlated and evolve

over time in a Markov manner (i.e. the future is inde-

pendent of the past given the present).

• Expectation maximization provides the right framework

for learning the transition and observation model parame-
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ters.

There are numerous ways in which our model can be ex-

tended to take into account a wider variety of traffic features.

These enhancements include:

• Traffic-specific travel time distributions instead of inde-

pendent Gaussians.

• Traffic-specific meanings for the discrete states of each

link instead of just undersaturated/congested.

• Direct calculation of the E-step and M-step in the EM al-

gorithm using the path travel times instead of relying on

the travel time allocation step.

• Relate link travel time distributions to route travel time

distributions as estimating short-distance travel times are

of less interest than longer trips through city network.

Each of the listed items are part of ongoing research

and we expect that these enhancements to the basic model

will result in a much richer model capable of giving precise

route travel time distributions. The ability to reliably esti-

mate route travel time distributions will be a valuable tool

for commuters, fleets, and public agencies.
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