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Abstract.  In the context of machine learning from examples this paper 
deals with the problem of estimating the quality of attributes with and 
without dependencies among them. Kira and Rendell (1992a,b) devel- 
oped an algorithm called RELIEF, which was shown to be very efficient 
in estimating attributes. Original RELIEF can deal with discrete and 
continuous attributes and is limited to only two-class problems. In this 
paper RELIEF is analysed and extended to deal with noisy, incomplete, 
and multi-class data sets. The extensions are verified on various artificial 
and one well known real-world problem. 

I Introduct ion  

This paper deals with the problem of estimating the quality of attributes with 
strong dependencies to other attributes which seems to be the key issue of ma- 
chine learning in general. Namely, for particular problems (e.q. parity problems 
of higher degrees) the discovering of dependencies between attributes may be 
unfeasible due to combinatorial explosion. In such cases efficient heuristic algo- 
rithms are needed to discover the dependencies. 

Information gain was proposed as a measure for estimating the attribute's 
quality by Hunt et al. (1966) and later used by many authors (Quinlan, 1986). 
The idea is to estimate the difference between the prior entropy of classes C and 
posterior entropy, given values V of an attribute: 

Gain = - ~ P(C) I~ P(C) - Z ( -P(V) x Z P(C'V) I~ v c (1) 

Information gain and similar estimates like gini index (Breiman et ak, 1984), 
distance measure (Mantaras, 1989), and j-measure (Smyth & Goodman, I990) 
assume that attributes are independent and therefore are not applicable in do- 
mains with strong dependencies between attributes. 

Kira and Rendell (1992a,b) developed an algorithm called RELIEF, which 
was shown to be very efficient in estimating attributes. The key idea of RELIEF 
is to estimate attributes according to how we]] their values distinguish among 
instances that are near each other. For that purpose RELIEF for a given instance 
searches for its two nearest neighbours: one from the same class (called nearest 
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hit) and the other from different class (called nearest miss). In fact, RELIEF's 
estimate W[A] of attribute A is an approximation of the following difference of 
probabilities: 

W[A] = P(different value of AInearest instance from different class) 

- P(different value of Alnearest instance from same class) (2) 

The rationale is that good attribute should differentiate between instances from 
different classes and should have the same value for instances from the same 
class. 

Original RELIEF can deal with discrete and continuous attributes and is 
limited to only two-class problems. It is not clear how RELIEF could be extended 
to deal with incomplete data and to deal with problems with more than two 
classes. Straightforward extensions do not give satisfactory results. In this paper 
RELIEF is analysed and extended to deal with noisy, incomplete, and multi-class 
data sets. The extensions are verified on various artificial and one well known 
real-world problem. 

In the next section RELIEF is described and extended to k-nearest neigh- 
bouts search. In section 3, we extend relief to deal with missing data and in 
section 4 to deal with multi-class problems. Results of experiments with ex- 
tended versions of RELIEF on artificial data sets and one real world problem 
are discussed in section 5. 

2 Estimating Probabilities with RELIEF 

The original algorithm of RELIEF (Kira & Rendell, 1992a,b) is the following 

set all weights W[A] := 0.0; 
f o r i : =  l t o m d o  

begin  
randomly select an instance R; 
find nearest hit It and nearest miss M; 
for A := 1 to all_attributes do 

W[A] := W[A]- diff(A,a,H)/m + diff(A,R,M)/m; 
end; 

where diff(Attribute,Instaneel,Instance2) calculates the difference between the 
values of Attribute for two instances. For discrete attributes the difference is ei- 
ther 1 (the values are different) or 0 (the values are equal), while for continuous 
attributes the difference is the actual difference normalized to the interval [0, 1]. 
Normalization with m guarantees that all weights are in the interval [-1, 1]. 

Function diff is used also for calculating the distance between instances to 
find the nearest neighbours. The total distance is simply the sum of differences 
over all attributes. 

Obviously, the algorithm tries to approximate the difference (2). Parameter 
m represents the number of instances for approximating probabilities. The larger 
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m implies more reliable approximation. However, m cannot exceed the number 
of available training instances. The obvious choice for relatively small number of 
training instances is to set m to the upper bound and run the outer loop of the 
learning algorithms over all available training instances. In all our experiments 
we used this simplification of the algorithm. 

The selection of the nearest neighbours is of crucial importance in RELIEF. 
The purpose is to find the nearest neighbours with respect to important at- 
tributes. Redundant and noisy attributes may strongly affect the selection of 
nearest neighbours and therefore the estimation of probabilities on noisy data 
becomes unreliable. To increase the reliability of probability approximation RE- 
LIEF can be extended to search for k-nearest hits/misses instead of only one near 
hit/miss. The extended version of the algorithm, called RELIEF-A, averages the 
contribution of k nearest hits/misses. 

To estimate the contribution of more nearest neighbours we generated 3 data 
sets. All attributes in these data sets are binary with equal prior probabilities for 
both values (P(V1) = P(Y2) = 0.5) except for random attributes which have 
various prior probability of values, which are however independent of the class. 
There are two equally probable classes (P(C1) = P(C2) = 0.5) and each data 
set has 200 instances. We compared the intended information gain of attributes 
with the estimates generated by RELIEF-A by calculating the standard linear 
correlation coefficient. The correlation coefficient can show how close are the 
intended quality and the estimated quality of attributes. 

The intended information gain is the one calculated from probabilities that 
were used to generate artificial data sets. Note that due to random generator 
(and in later sections due to added noise and incomplete data) the factual in- 
formation gain may differ from the intended information gain. However, in all 
our experiments the correlation between the intended information gain and the 
factual information gain was greater than 0.95. Besides, as we are interested in 
the "true" probability distribution that was "responsible" for generation of the 
data, we should consider the intended information gain as the target for an ideal 
estimator. 

First data set contained 5 random binary attributes with different prior prob- 
ability of values (P(V1) = 0.5, 0.4, ..., 0.1) and 5 independent informative at- 
tributes. The degrees of information gains were determined with the probability 
of value V1 given class C1 (P(VIIC1) = 0.95, 0.85, ..., 0.55) and given class C2 
(P(Yl lC2) = 1 - P(YllC1)).  

The second data set was obtained from the first data set by replacing each 
informative attribute with 2 binary attributes (altogether 5 + 5 x 2 = 15 at- 
tributes). The values of each pair of new attributes were determined by the 
value of the original attribute using parity relation of second order (EXOR re- 
lation). For example, if original attribute has value V1 then two new attributes 
have equal values, otherwise different values. Therefore, the intended informa- 
tion gain of two new attributes together is equal to the information gain of the 
original attribute. Note that information gain calculated with (1) is zero for all 
new attributes while the intended information gain for the new attribute is half 
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of the information gain of the original attribute. 
The third data set was obtained from the first data set by replacing each 

informative attribute with 3 binary attributes (altogether 20 attributes), the 
values of which were determined by the value of the original attribute using 
parity relation of third order. Therefore, each new attribute in this data set has 
one third of the information gain of the original attribute. Each data set was 
also corrupted with 0%, 10% and 20 % class noise. X% of noise means that class 
was changed for X% of randomly selected instances. 
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Figure 1: Results of experiments with RELIEF-A using the data set with independent 
and informative attributes. 

The results for each data set are presented on figures 1-3. The results clearly 
show that the" higher number of nearest neighbours in RELIEF-A improves the 
estimates of attributes even for noise free data sets. However, the improvement 
is more drastic for data Sets with noise. 

For independent attributes (figure 1) the quality of estimate monothonously 
increases with the number of nearest neighbours. This can be formally explained 
with the following derivation. When the number of nearest neighbours increases, 
equation (2) becomes: 

W[A] = P(different value of Aldifferent class) 

- P(different value of AIsame class) (3) 
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Figure 2: Results of experiments with RELIEF-A using the data set with pairwise in- 
formative attributes. 
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Figure 3: Results of experiments with RELIEF-A using the data set with triplets of 
informative attributes. 
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If we rewrite 

and 

= P(equal value of AIsame class) 

-P(equal  value of AIdifferent class) 

Peqvaz = P(equal value of A) 

P,~m~cl = P(same class) 

Psameclleqval -- P(same Class[equal value of A) 

we obtain using Bayes rule: 

W[A] = P~a,n~r 
Psameel 

Using equalities 

we obtain: 

where 

1 -- Psarnecl 

P.o.,o. = P(C) = 
C 

P~q,,al x Gini'(A) (4) 
W[A] = P . ~ c , ( 1  - P . ~ . )  

f P(V) 2 ) 
Gini'(A) = ~v k ~-P~(V~2 x ~c P(CIV)2 - ~c P(c)2 (5) 

is highly correlated with giniqndex (Breiman et al., 1984) for classes C and 
values V of attribute A. The only difference is that instead of factor 

P(V) ~ 
Z v  p(v)2 

gini-index uses 
P(V) = P(V) 

~ v  P(V) 
Gini index is one of impurity functions that is in turn highly correlated with 

information gain as defined with (1). The denominator of equation (4) is con- 
stant for all attributes and therefore does not influence the correlation factor. 
Factor P~q~al is a kind of normalization factor for multi valued attributes. In our 
experiments all attributes were binary with equal prior probabilities for both 
values, which gives constant P ~  -- 0.5. Therefore, with increasing number 
of nearest neighbours, the estimates of RELIEF-A are highly correlated with 
gini-index and information gain. 
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For dependent attributes the quality increases up to a maximum but later 
decreases as the number of nearest neighbours exceeds the number of instances 
that belong to the same peak in the distribution space for a given class. This 
effect can be seen on figure 3 while for PARITY-2 problem we observed this 
effect for larger number of nearest neighbours. 

It is interesting that, for smaller number of nearest hits/misses used by the 
algorithm, noise more drastically affects results on independent data sets than 
results on data sets with dependent attributes. This may be explained by the 
fact that an incorrect class label implies incorrect attribute values for only one 
half/third of attributes for parity-2/parity-3 problems. Again, using higher num- 
ber of nearest neighbours helps: it drastically reduces this effect. 

3 I n c o m p l e t e  D a t a  S e t s  

To enable RELIEF-A to deal with incomplete data sets, the function 

dill(Attribute, Instance l, Instance2) 

should be extended to missing values of attributes. We compared 3 versions of 
RELIEF: 

R E L I E F - B :  If at least one of two instances has unknown value for a given 
attribute, the diff is set to 1 - 1 

#_va lues_oJ_a t t r ibu te  " 
R E L I E F - C :  Same as RELIEF-B except that during updating the estimates 

W[A] the contributions of such differences (calculated from instances with 
at least one unknown value for the given attribute) are ignored, with ap- 
propriate normalization. The idea is that unknown values should be ignored 
from the estimates and if enough training instances is provided, the resulting 
estimates should converge to correct estimates. 

R E L I E F - D :  Calculate the probability that two given instances have different 
values for the given attribute: 

- if one instance (e.g. I1) has unknown value: 

dill(A, I1, I2) = 1 - P(value(A, I2)]class(I1)) 

- if both instances have unknown value: 

# v a l u e s ( A )  

dill(A, I1, I2) = 1 - ~ (P(Ylclass(I1)) • P(Ylelass(I2))) 
v 

The conditional probabilities are approximated with relative frequencies 
from the trail~ing set. 

To estimate the performance of three algorithms 0%, 10%, 20 % and 30% of 
values of informative attributes were replaced with unknown values. It turned 
out that for noise free data, there was no significant difference between the 
performance of above three algorithms. However, for incomplete and noisy data, 
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RELIEF-D performed significantly better: A typical picture is shown on figure 4 
for the da ta  set with independent informative attr ibutes.  The number  of  nearest 
hi ts /misses was set to 10 and there were 30% of unknown values. For other da ta  
sets and other values of parameters  the pictures of results are similar. 
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Figure 4: Results of different versions of RELIEF on incomplete data set (30% 
of unknown attribute values) with independent attributes. The number of nearest 
hits/misses is 10. 

4 Mult i -Class  Problems  

Kira  and Rendell (1992a,b) claim tha t  RELIEF can be used to es t imate  at-  
t r ibutes of da ta  sets with more than two classes by splitting the problem into 
a series of 2-class problems. This solution seems unsatisfactory. In order to use 
R E L I E F  in practice it should be able to deal with multi  class problems with- 
out any prior changes in knowledge representation that  could affect the final 

outcomes. 
We experimented with two extensions of  RELIEF-D for multi-class problems: 

R E L I E F - E :  Near miss of the given instance I is defined as the nearest neigh- 
bour from different class. This is straightforward generalization of RELIEF.  
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R E L I E F - F :  Instead of finding one near miss M from different class, the algo- 
rithm finds one near miss M(C) for each different class and averages their 
contribution for updating estimates W[A]. The average is weighted with the 
prior probability of each class: 

W[A] := W[A]-di.ff(A, R, H)/m+ ~ JR(C) x dill(A, R, M(C)) ] /m 
C~class(R) 

The idea is that the algorithm should estimate the ability of attributes to 
separate each pair of classes regardless of which two classes are closest to 
each other. 

In order to compare the performance of above two algorithms we generated four 
additional data sets. First two data sets have 3 and 4 equally probable classes, 
respectively, 3 random attributes, and 3 informative attributes for each pair of 

3 •  classes. The data set with 3 classes has 3 + 3 • T = 12 binary attributes, and 
4• 21 attributes. The attributes were the one with 4 classes have 3 + 3 • -'5- = 

made informative by means of the prior probability of one of the attribute's 
values given the class. E.g. for attribute that is informative for separating class 
1 and 3 we have P(VIIC1 ) = 0.95,0.75,0.55, P(VI[C3) = 1 -P(VI[C1) and 
P(VIlC2) = P(VIlC4 ) = 0.5. 

The other two data sets were obtained from the first two by replacing each 
informative attribute with 2 binary attributes in the same way as in the second 
data set described in section 2. Therefore, the third data set has 21 attributes 
and the last one has 39 attributes. 

Results are given in figures 5 and 6. The results show clear advantage of 
RELIEF-F both in noise free and noisy data. 

5 Discuss ion  

RELIEF is efficient heuristic estimator of attributes that is able to deal with data 
sets with dependent and independent attributes. Its extensions incorporated in 
RELIEF-F enable it to deal with noisy and incomplete data sets and, what is 
probably the most important contribution of RELIEF-F, it can efficiently deal 
with multi class problems. 

To verify this conclusions, drawn from experiments with artificial data sets, 
we ran different versions of RELIEF on one well known medical data set. How- 
ever, for real world data sets the intended (true) information gain of attributes 
is unknown. For "primary tumor" data set physicians claim, that attributes are 
independent, and this was also confirmed with the experiments with semi-naive 
Bayesian classifier (Kononenko, 1991). Therefore, for this data set, it is accept- 
able to use information gain calculated with (1) as an estimate of the target 
attribute quality. 

To estimate the performance of different versions of RELIEF, we calculated 
the correlation coefficient between factual information gain of attributes and 
RELIEF's estimates W[A]. Results are given in figure 7. Results on the real 
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Figure 5: Results of different versions of RELIEF in multi-class problems with inde- 
pendent  at t r ibutes  without noise and with 20% class noise. The number of nearest 
hi ts /misses is 10. 
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Figure 6: Results of different versions of RELIEF in multi-class problems with de- 
pendent  at t r ibutes  without noise and with 20% class noise. The number of nearest 
hi ts /misses is 10. 
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Figure 7: Results of different versions of RELIEF on "primary tumor" medical data 
set. Versions of RELIEF-E with the same algorithm for unknown values as RELIEF-B 
and RELIEF-C have all their correlation coefficients less than 0.4. 

world data  set confirm the advantage of RELIEF-F over other versions and also 
support  the conclusions drawn from experiments with artificial data  sets. 

In this paper we did not address the problem of multi valued attributes. 
Information gain (1) and gini-index tend to overestimate multi valued attributes 
and various normalization heuristics are needed to avoid this tendency (e.g. gain 
ratio (Quinlan, 1986) and binarization of attributes (Kononenko et al., 1984)). 
RELIEF with k-nearest hits/misses implicitly uses prior probability that  two 
instances have equal values (P~q~al) (see equation (4)) for such normalization, 
which seems to be appropriate. The major difference between information gain 
and estimates by RELIEF-F in "primary tumor" problem is in estimates of two 
most significant attributes. Information gain overestimates one at tr ibute with 
3 values (by the opinion of physicians specialists). RELIEF-F and normalized 
versions of information gain correctly estimate this attr ibute as less important .  

Inductive learning algorithms typically use variants of greedy search strategy 
to overcome the combinatorial explosion during the search for good hypotheses. 
The major role in the greedy search has a heuristic function that  estimates 
the potential  successors of the current state in the search space. RELIEF-F 
seems to be very promising heuristic function that  may overcome the myopy 
of current inductive learning algorithms. Kira and Rendell used RELIEF as a 
preprocessor to eliminate irrelevant attributes from the data  description before 
learning. RELIEF-F is general, efficient and reliable enough that  can be used 
inside the learning process to guide the search. 
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