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Abstract

Background: Runs of homozygosity are long, uninterrupted stretches of homozygous genotypes that enable
reliable estimation of levels of inbreeding (i.e., autozygosity) based on high-throughput, chip-based single
nucleotide polymorphism (SNP) genotypes. While the theoretical definition of runs of homozygosity is
straightforward, their empirical identification depends on the type of SNP chip used to obtain the data and on a
number of factors, including the number of heterozygous calls allowed to account for genotyping errors. We
analyzed how SNP chip density and genotyping errors affect estimates of autozygosity based on runs of
homozygosity in three cattle populations, using genotype data from an SNP chip with 777 972 SNPs and a 50 k
chip.

Results: Data from the 50 k chip led to overestimation of the number of runs of homozygosity that are shorter
than 4 Mb, since the analysis could not identify heterozygous SNPs that were present on the denser chip.
Conversely, data from the denser chip led to underestimation of the number of runs of homozygosity that were
longer than 8 Mb, unless the presence of a small number of heterozygous SNP genotypes was allowed within a
run of homozygosity.

Conclusions: We have shown that SNP chip density and genotyping errors introduce patterns of bias in the
estimation of autozygosity based on runs of homozygosity. SNP chips with 50 000 to 60 000 markers are frequently
available for livestock species and their information leads to a conservative prediction of autozygosity from runs of
homozygosity longer than 4 Mb. Not allowing heterozygous SNP genotypes to be present in a homozygosity run,
as has been advocated for human populations, is not adequate for livestock populations because they have much
higher levels of autozygosity and therefore longer runs of homozygosity. When allowing a small number of
heterozygous calls, current software does not differentiate between situations where these calls are adjacent and
therefore indicative of an actual break of the run versus those where they are scattered across the length of the
homozygous segment. Simple graphical tests that are used in this paper are a current, yet tedious solution.

Background
Runs of homozygosity (ROH) are continuous stretches of

homozygous genotypes without heterozygosity in the dip-

loid state. Although ROH can arise by different mecha-

nisms [1], the primary cause is believed to be inbreeding

[2]. Long ROH are most likely the result of recent inbreed-

ing, where recombination events do not shorten identical

haplotypes inherited from the common ancestor. Short

ROH, in contrast, suggest more ancient inbreeding. The

ability of ROH to reveal information about ancient and re-

cent genetic events makes them useful tools to analyze

population history [3], inbreeding levels [4] and effects of

inbreeding on complex traits and congenital disorders [5].

While ROH from high-throughput genotyping analyses

have been studied extensively in humans, such analyses are

rare in cattle and other livestock species [6-10]. The lack of

standards for ROH definition and identification may intro-

duce bias in ROH-based estimates of autozygosity. Howri-

gan et al. [11] found that the numbers and sizes of ROH
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that are identified in genotyping data can strongly depend

on certain parameters and thresholds imposed during se-

quence analysis. In addition, pruning single nucleotide

polymorphisms (SNPs) that show low minor allele fre-

quency (MAF), that deviate from Hardy-Weinberg equi-

librium (HWE), or that show high linkage disequilibrium

(LD), can affect the results [12,13].

The density of the SNP chip used to generate the data

for ROH identification is another factor that strongly af-

fects autozygosity estimates. Purfield et al. [6] compared

estimates obtained using the two SNP chips most fre-

quently used in cattle: the Illumina BovineSNP50 Geno-

typing BeadChip with 54 001 SNPs (50 k) and the

Illumina BovineHD Genotyping BeadChip with 777 972

SNPs (HD). They concluded that the 50 k chip is appro-

priate only for identifying ROH longer than 5 Mb. In-

deed, analyses based on lower-density chips can fail to

detect heterozygous SNP genotypes that are present in

observed ROH.

The frequency of SNP genotyping errors is another

factor that can affect ROH-based estimates of autozygos-

ity. Since this frequency usually varies between 0.2% and

1.0% [11,14], it may affect identification of very long

ROH that contain numerous SNPs. In fact, any genotyp-

ing error, whether homozygote to heterozygote or vice

versa, can affect the determination of ROH. A potential

solution is to allow a certain number of SNPs to be het-

erozygous [1], but whether this compromises the reli-

ability of ROH analyses has not been systematically

analyzed.

The aim of this study was to analyze the identification

of ROH of different length categories and the estimation

of genomic inbreeding coefficients based on ROH in

three cattle breeds (Brown Swiss, Pinzgauer, Tyrol Grey).

Our study focused on the effects of chip density (777

972 versus 54 001 SNPs) and genotyping errors. Results

demonstrate, both graphically and statistically, that dens-

ity of SNP chips affects ROH detection and subsequent

estimation of inbreeding levels. The optimal number of

heterozygous SNPs allowed during ROH analysis was

found to depend on chip density and ROH length.

Methods
Genotype data and quality control

The semen samples of the animals included in this study

used for DNA extraction and genotyping, were obtained

from AI centers through their routine practice in the

framework of breeding programs. Therefore, no ethical

approval was required for sampling of biological mater-

ial. DNA samples were obtained from 277 bulls of three

breeds: Brown Swiss, 46; Pinzgauer, 118; and Tyrol Grey,

113. Mean pedigree-based inbreeding coefficients (and

ranges) were as follows: Brown Swiss, 0.033 (0.009-

0.096); Pinzgauer, 0.019 (0–0.088); and Tyrol Grey, 0.022

(0–0.169). The mean complete generation equivalent

(see e.g., [15] was highest for Brown Swiss (7.32 genera-

tions) and lowest for Pinzgauer (5.32 generations). DNA

samples were genotyped using the BovineHD Bead Chip

(Illumina Inc., San Diego, CA), which contains 777 972

SNPs; this data set is referred to hereafter as the high-

density (HD) panel. For comparison, we extracted and

retained SNPs from this panel that were common to

both the HD panel and the bovine SNP50 Beadchip v1

(Illumina Inc., San Diego, CA), which contains 54 001

SNPs and which will be referred to in the remainder as

the 50 k panel.

Data extraction and quality control were performed

separately for each breed. We excluded all SNPs that

had not been assigned to a chromosome or that had

been assigned to chromosomes X or Y or to the mito-

chondrial genome. We also excluded SNPs for which

more than 10% of genotypes were missing and SNPs

with an Illumina GenCall score ≤ 0.7 or an Illumina

GenTrain score ≤ 0.4. Two Tyrol Grey bulls were ex-

cluded from further analysis because more than 5% of

their genotypes were missing. In doing this, our object-

ive was to exclude poorly performing loci and minimize

risk of genotyping errors. After quality control, the num-

bers of SNPs in the HD and 50 k panels were as follows

for each breed: Brown Swiss, 615 618 and 38 710; Pinz-

gauer, 606 120 and 38 198; and Tyrol Grey, 684 172 and

42 997.

Although it is customary in genome-wide association

studies and ROH analyses to exclude SNPs with low

MAF or high LD with neighboring SNPs or that deviate

from HWE, we did not apply such exclusion criteria in

our study. Instead we relied on Illumina quality scores

(GenCall, GenTrain) to reduce genotyping problems.

We also defined the minimum ROH length as 1 Mb to

exclude short, common ROH arising from LD [3,6].

ROH calling options

ROH were identified in every individual using the SNP

& Variation Suite (v7.6.8 Win64; Golden Helix, Boze-

man, MT, USA www.goldenhelix.com). This algorithm is

designed to find stretches of consecutive homozygous

SNPs; it works continuously across an entire chromo-

some, examining every possible run that matches the

user-specified parameters. We chose this software in-

stead of the PLINK ROH algorithm [16], which uses a

sliding window that may introduce artificial runs and fail

to identify segments longer than the window.

ROH exceeding the allowed number of heterozygotes

or missing SNPs were checked automatically to deter-

mine whether they should be removed based on their

length, SNP density, and user-specified parameters.

ROH were called if 15 or more consecutive homozygous

SNPs [17] were present at a density of at least 1 SNP
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every 100 kb, with gaps of no more than 1000 kb be-

tween them. These density and gap thresholds were ap-

plied to SNPs in both the HD and 50 k panels to ensure

comparability of the results.

Five categories of ROH length (in Mb) were defined:

[1,2], (2, 4], (4, 8], (8, 16], and >16. The number of he-

terozygous SNPs allowed was set to different values for

different length categories. First, we called ROH without

allowing any heterozygous calls, and we obtained the

average numbers of SNPs in each length category

(Table 1). We then assumed a genotype error rate of

0.25%, recalculated the numbers of heterozygote calls

allowed, and rounded the number of heterozygous SNPs

allowed to the nearest whole number. This approach led

to the following numbers of heterozygous SNPs allowed

for each length category (in Mb) in the HD panel: [1,2],

one heterozygeous SNP; (2, 4], two heterozygous SNPs;

(4, 8], four heterozygous SNPs; (8, 16], eight heterozy-

gous SNPs; and >16, 16 heterozygous SNPs (Table 2,

class C). In the case of the 50 k panel, we allowed one

heterozygous SNP for length category >16, and no

heterozygous SNPs for the other categories (Table 2,

class A).

Like the number of heterozygous SNPs, we set the

number of missing SNPs allowed to different values for

different length categories. First, we determined ROH

allowing any number of missing SNPs and then used the

results to set limits. This approach led to the following

limits for missing SNPs for each ROH length category

(in Mb) in the HD and 50 k panels, respectively: [1,2],

four or no missing SNPs; (2, 4], eight or no missing

SNPs; (4, 8], 16 or one missing SNP; (8, 16], 32 or two

missing SNPs; and > 16, 64 or four missing SNPs.

Calculating inbreeding coefficients from runs of

homozygosity (FROH)

Statistically FROH is defined as the length of the auto-

somal genome present in ROH, divided by the overall

length of the autosomal genome covered by the SNPs

[18]. For each bull, we calculated FROH>1 Mb, FROH>2 Mb,

FROH>4 Mb, FROH>8 Mb and FROH>16 Mb based on ROH of

different minimum lengths (> 1, > 2, > 4, > 8 or >

16 Mb). FROH was calculated for different minimum

ROH lengths because lengths of autozygous segments in

a genome are predicted to show an exponential distribu-

tion, with a mean length equal to 1/2 g Morgan, where g

is the number of generations since the common ancestor

(e.g. [11]). If the genome of an individual contains seg-

ments as short as 1 Mb, we can conclude that the indi-

vidual’s autozygosity originated from common ancestors

up to 50 generations in the past. Based on the FROH

values across all ROH lengths, detected with both 50 k

and HD panel, correlations with pedigree inbreeding

coefficients were calculated in order to investigate their

relationships.

Identifying significant differences in autozygosity

estimates based on the number of heterozygous calls

allowed

Mean values of FROH were calculated within classes (sce-

narios) in which different numbers of heterozygous SNPs

were allowed in each ROH length category. Eight classes (A

to H) were defined, two (A and B) for the 50 k panel and

six (C-H) for the HD panel (Table 2). Numbers of heterozy-

gous SNPs allowed within a class were based on the average

numbers of SNPs in a length category and an assumed

genotyping error rate of 0.25% for classes A and C. The

other classes were formed by successively halving the

allowed number of heterozygotes and only considering

longer segments (see Table 2).

Mean FROH values obtained when allowing different

numbers of heterozygous SNPs were compared within the

same length category using paired t-tests. In addition, FROH

values were compared between the 50 k and HD panels.

Table 1 Summary statistics for the numbers of SNPs in

ROH of different length categories

Panel Statistic ROH length category (in Mb)

[1,2] (2, 4] (4, 8] (8, 16] >16

50 k panel mean 21.69 45.13 90.95 178.77 399.39

std 5.68 12.9 23.31 43.17 156.13

min 15.00 21.00 44.00 92.00 210.00

max 49.00 98.00 195.00 354.00 1360.00

HD panel mean 291.29 694.25 1432.46 2856.02 6385.9

std 138.56 207.76 361.29 633.38 2377.02

min 15.00 31.00 90.00 1834.00 3617.00

max 808.00 1353.00 2668.00 4825.00 20325.00

Summary statistics were calculated from ROH identified when no

heterozygous calls are allowed.

Table 2 Definition of classes according to the maximum

number of heterozygous SNPs allowed (values in

columns) within ROH length categories

Panel Class ROH length category (in Mb)

[1, 2] (2, 4] (4 8] (8, 16] >16

50 k A 0 0 0 0 1

B . . . . 0

HD C 1 2 4 8 16

D 0 1 2 4 8

E . 0 1 2 4

F . . 0 1 2

G . . . 0 1

H . . . . 0

Dots indicate that the value of 0 (no heterozygous allowed) for the given

length category was reached in a previous class of the same panel and

information is not repeated.
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The SAS 9.3 [19] procedure TTEST with the PAIRED

statement was used to generate p values. The step-down

Bonferroni method of Holm [20] using the MULTTEST

procedure and the HOLM statement was used to adjust

the p values of the 186 comparisons.

Results and discussion
Impact of SNP chip density on ROH identification

Across all three cattle breeds, we identified 19 392 ROH

segments using the 50 k panel and 14 148 ROH seg-

ments using the HD panel (Table 3). For all three breeds,

analysis with the 50 k panel identified more ROH >

1 Mb than the HD panel. The two panels gave similar

numbers of ROH > 4 Mb. As ROH length increased, the

HD panel yielded a higher number of ROH than the

50 k panel (Figure 1). The 50 k panel revealed an abun-

dance of small segments and overestimated the numbers

of segments 1–4 Mb long, suggesting that it is not sensi-

tive enough for the precise determination of small

segments.

The 50 k panel did, however, prove suitable for detect-

ing segments longer than 4 Mb. This finding is consist-

ent with that of Purfield et al. [6], who concluded that

the 50 k panel recognizes only segments longer than

5 Mb as well as the HD panel does.

The 50 k and HD panels gave noticeably different dis-

tributions and mean values of ROH length within each

length category (Figure 2). Differences were greatest for

the [1,2] length category, and then gradually disappeared

as ROH length increased. These findings provide further

evidence that data from the 50 k panel lead to imprecise

determination of short ROH and overestimation of

FROH.

Impact of genotyping errors on autozygosity estimates

To our knowledge, a simulation study by Howrigan et al.

[11] is the only source of recommendations on the num-

ber of heterozygous calls allowed in ROH. They sug-

gested allowing no heterozygous calls. However, since

genotyping errors in SNP chip data do occur, it seems

more reasonable to allow some heterozygous calls, par-

ticularly for ROH > 8 Mb on dense SNP chips. These

long segments are much more frequent in cattle popula-

tions than in human populations, even for population

isolates (e.g. [21]). We determined the numbers of SNPs

in ROH of specific lengths and assumed a 0.25% rate of

genotyping errors in order to define the number of het-

erozygous genotypes allowed separately for each ROH

length category. Then, we determined mean FROH values

for the classes defined in Table 2 for different allowed

numbers of heterozygous calls. Paired t-tests were con-

ducted within the eight classes (A-H) within the same

length category and within each cattle breed (Table 4).

The 50 k and HD panel data gave significantly different

mean FROH>1 Mb values in Pinzgauer and Tyrol Grey cat-

tle, and significantly different mean FROH>4 Mb and

FROH>8 Mb values in the Brown Swiss and Pinzgauer

breeds. For all three breeds, mean FROH >16 Mb based on

the 50 k panel differed significantly depending on

whether one (class A) or no (class B) heterozygous calls

were allowed. These differences had important effects

on estimates of inbreeding levels. For each breed, in-

breeding levels based on FROH >16 Mb based on the HD

panel differed by approximately 1.7-fold, depending on

whether 16 or no heterozygous calls were allowed

(Table 4). In fact, inbreeding coefficients derived from

ROH > 16 Mb with no allowance for heterozygous calls

were lower than inbreeding coefficients estimated from

pedigrees. These findings suggest that for such long

Table 3 Summary statistics per breed for the numbers of

ROH of different minimum lengths

Breed ROH length (Mb) Panel Mean std min max

Brown Swiss >1 50 k
HD

94.76 14.55 66.00 136.00

82.02 15.48 60.00 150.00

>2 50 k
HD

47.98 11.66 27.00 81.00

46.59 9.88 31.00 81.00

>4 50 k
HD

24.85 6.64 11.00 42.00

25.93 6.63 13.00 40.00

>8 50 k
HD

11.50 4.54 3.00 25.00

12.48 4.66 2.00 23.00

>16 50 k
HD

3.96 1.89 0.00 8.00

4.33 2.01 0.00 9.00

Pinzgauer >1 50 k
HD

59.96 9.91 33.00 84.00

43.26 9.97 19.00 95.00

>2 50 k
HD

19.44 6.01 5.00 34.00

19.08 6.66 5.00 46.00

>4 50 k
HD

8.85 3.93 2.00 20.00

9.47 4.48 1.00 22.00

>8 50 k
HD

4.09 2.55 0.00 11.00

4.41 2.67 0.00 12.00

>16 50 k
HD

1.36 1.37 0.00 6.00

1.36 1.39 0.00 6.00

Tyrol Grey >1 50 k
HD

70.86 9.51 52.00 102.00

44.94 12.14 24.00 100.00

>2 50 k
HD

21.08 7.94 4.00 55.00

18.72 7.24 6.00 50.00

>4 50 k
HD

9.99 5.19 1.00 33.00

9.60 5.00 1.00 31.00

>8 50 k
HD

4.43 3.34 0.00 20.00

4.65 3.29 0.00 21.00

>16 50 k
HD

1.64 1.90 0.00 12.00

1.70 1.87 0.00 12.00
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Figure 1 Overlay of ROH identified on chromosome 1 in Brown Swiss animals. ROH were identified using 50 k and HD panel data and then
overlaid; each row represents one animal, and different colors were used to indicate whether ROH segments were identified using both the 50 k
and HD panel (black), only the 50 k panel (red), or only the HD panel (blue).

Figure 2 Overlay of box plots and kernel density plots. Overlay of box plots and kernel density plots that show the distribution of the total
ROH length among all Brown Swiss bulls (orange), Pinzgauer bulls (blue) and Tyrol Grey bulls (green) for five ROH length categories; box plots
(black) are shown inside the density plots, and horizontal red lines indicate mean values; the left half of each density and box plot was obtained
from the 50 k panel data, while the right half was obtained from the HD panel data.
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Table 4 Comparison of FROH values obtained by allowing different numbers of heterozygous SNPs

Breed Source Class FROH>1 FROH>2 FROH>4 FROH>8 FROH>16

Brown Swiss 50 k panel A 0.154b 0.129ab 0.103a 0.073ab 0.039dfhi

B . . . . 0.036bceg

HD panel C 0.151b 0.132b 0.109b 0.079c 0.042i

D 0.147a 0.128a 0.105a 0.076b 0.040gh

E . 0.129ab 0.105a 0.075b 0.038ef

F . . 0.105a 0.071a 0.035cd

G . . . 0.068a 0.033b

H . . . . 0.028a

Pinzgauer 50 k panel A 0.069c 0.048ab 0.037a 0.026bc 0.014f

B . . . . 0.013ed

HD panel C 0.062b 0.049b 0.039b 0.027d 0.014fe

D 0.060a 0.048ab 0.038ab 0.026dc 0.013fe

E . 0.048a 0.037a 0.026bc 0.012d

F . . 0.036a 0.025ab 0.012c

G . . . 0.024a 0.011b

H . . . . 0.008a

Tyrol Grey 50 k panel A 0.080c 0.054a 0.042a 0.029abc 0.017df

B . . . . 0.015ce

HD panel C 0.066b 0.052a 0.042a 0.030c 0.017f

D 0.063a 0.051a 0.041a 0.029b 0.016d

E . 0.051a 0.040a 0.029b 0.016ed

F . . 0.040a 0.028ab 0.015c

G . . . 0.026a 0.013b

H . . . . 0.010a

Definition of Class is according to the number of heterozygous SNPs allowed within ROH length categories (see Table 2).

FROH values were obtained by allowing different numbers of heterozygous SNPs in each ROH length category; different letters indicate statistical significance

within the same column and breed (P < 0.05, paired t-test); P values were corrected for multiple tests using the step-down Bonferroni method of Holm [18].

Figure 3 Visualization of SNP data of chromosome 20 in Brown Swiss animals. Light pink and light green colors represent homozygous
and heterozygous SNPs, respectively; ROH are represented by white blocks, while missing SNPs are indicated in black; red lines within ROH
indicate the presence of heterozygous SNPs; each row represents one animal.
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ROH, which can have more than 5000 to 6000 SNPs,

some heterozygous calls must be allowed due to the pos-

sibility of genotyping errors.

At the same time, the number of allowable heterozygous

calls should be limited. On the one hand, SNP data from

chromosome 20 in the 46 Brown Swiss cattle (Figure 3)

shows clearly that single, potentially miscalled heterozygous

SNPs would interrupt ROH segments if such SNPs were

not allowed. On the other hand, the figure also shows that

allowing certain minimum numbers of heterozygous SNPs

leads to inaccurate ROH calling at the ends of ROH. Such

inaccurate calling is also likely to be a problem in individual

ROH, since we sometimes observed multiple heterozygous

SNPs close together within a ROH, not only when using

the SNP & Variation software suite but also when using

other programs (PLINK; [16]; cgaTOH; [22]; data not

shown). In any event, ROH identification software should

be improved so that instances of multiple heterozygous

SNPs very close to one another should automatically lead

the program to define separate ROH. Until such an

improvement is made, we recommend careful visual ana-

lysis of ROH segment structure in order to exclude spuri-

ous ROH.

Inbreeding coefficients estimated from ROH and ROH

distribution

The HD panel gave the following mean FROH values

across all ROH lengths: Brown Swiss, 0.151; Pinzgauer,

0.062; and Tyrol Grey, 0.066. Short ROH, i.e. 1 to 2 Mb

long, covered an average of 36.7 Mb of the 2.3 Gb of the

autosomal cattle genome covered with SNPs (Figure 2),

with the highest short-ROH coverage observed in Brown

Swiss and the lowest in Pinzgauer, the total genome

length covered by all ROH > 1 Mb was 24.5% for one

Brown Swiss bull and 23.0% for one Tyrol Grey bull.

ROH > 16 Mb covered an average of 66.1 Mb of gen-

ome, although this number varied widely from animal to

animal and between breeds. The highest long ROH

coverage was observed in Brown Swiss and the lowest in

Pinzgauer cattle. Some animals lacked such long ROH,

Figure 4 ROH patterns on chromosome 6. ROH on chromosome 6 from Brown Swiss, Pinzgauer and Tyrol Grey bulls identified using HD
panel data; each row represents one animal.
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whereas others showed a few that covered more than

300 Mb. The greatest genome coverage by long ROH

was observed in a Tyrol Grey bull, in which 12 long

ROH segments covered 368.6 Mb, corresponding to an

average segment length of ≈30 Mb. The length of an

autozygous segment indicates its age; since haplotypes

are broken up by meiotic recombination, a short autozy-

gous region is likely to have an ancient origin, while a

long one probably arose recently [2,4]. These findings

suggest that the Brown Swiss breed experienced both re-

cent and ancient inbreeding events to a higher degree

than the two other breeds.

Correlations of FROH values across all ROH lengths

with pedigree inbreeding coefficients were similar to

those previously reported by Ferenčaković et al. [8]. Cor-

relations for the 50 k panel were 0.62, 0.65 and 0.77 for

Brown Swiss, Pinzgauer and Tyrol Grey, respectively,

and corresponding values were 0.61, 0.62 and 0.75 for

the HD panel. Differences in correlations between panels

within breeds were not statistically significant. Variation

of these values is most likely due to the fact that

pedigree-based inbreeding coefficients do not account

for variation in meiosis, inheritance of segments of chro-

mosomes and LD.

The genomic distribution of ROH based on the HD

panel data shows that 99.98% of SNPs occurred within

an ROH of at least one individual. However, the fre-

quency with which different SNPs occurred within ROH

was not uniform across the genome, revealing genomic

regions with abundant ROH, called ROH hotspots,

which are also often detected in human populations

[23,24]. Several ROH hotspots were common to all three

breeds. For example, two hotspots were identified on

chromosome 6 in all three breeds: one at 5.3-6.3 Mb

and another at 38.4-39.5 Mb (Figure 4). Why these hot-

spots occur, and how they compare among cattle breeds

and with other animal species, are questions currently

under investigation.

Conclusions
ROH identification in cattle is usually performed with

the Illumina BovineSNP50 Genotyping BeadChip (50 k

panel) or the Illumina BovineHD Genotyping BeadChip

(HD panel). Here, we report that data from the 50 k

panel do not represent the true state of autozygosity well

for short ROH segments, while it is as reliable as the

HD panel data for ROH > 4 Mb. When shorter seg-

ments are included with the 50 k panel, FROH is system-

atically overestimated. The bias due to potential

genotyping errors depends on the allowance of heterozy-

gous genotypes in a ROH calling software. While not

allowing for heterozygous calls often just splits a very

long ROH in two shorter ones that are still recognized

and therefore the level of autozygosity of an individual is

virtually unaffected, there are many cases where the

shorter part of the split does not reach the minimum

size of a ROH and the level of autozygosity of an indi-

vidual is underestimated. Allowing many heterozygous

calls in an ROH adds many short segments that are

most likely not autozygous to the terminal regions of

ROH. Our aim was to provide guidelines to identify

ROH from high-throughput SNP genotype data. First,

quality control should be performed by removing SNPs

based on strict limits on genotype quality scores pro-

vided to reduce genotyping errors. Second, the number

of heterozygous SNPs allowed should be determined

separately for each ROH length of interest and for each

SNP density, as suggested here. Third, if multiple he-

terozygous SNPs are allowed within the same ROH,

adjacent heterozygous SNPs should be treated differently

from heterozygous SNPs that are further apart. Because

no current ROH identification software takes care of ad-

jacent heterozygous SNPs, careful visual inspection of

ROH segments should be applied to exclude spurious

ROH called by the software.
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