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ABSTRACT
Cache behavior modeling is an important part of modern op-
timizing compilers. In this paper we present a method to es-
timate the number of cache misses, at compile time, using a
machine independent model based on stack algorithms. Our
algorithm computes the stack histograms symbolically, us-
ing data dependence distance vectors and is totally accurate
when dependence distances are uniformly generated. The
stack histogram models accurately fully associative caches
with LRU replacement policy, and provides a very good ap-
proximation for set-associative caches and programs with
non-constant dependence distances.

The stack histogram is an accurate, machine-independent
metric of locality. Compilers using this metric can evaluate
optimizations with respect to memory behavior. We illus-
trate this use of the stack histogram by comparing three lo-
cality enhancing transformations: tiling, data shackling and
the product-space transformation. Additionally, the stack
histogram model can be used to compute optimal parame-
ters for data locality transformations, such as the tile size
for loop tiling.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Compil-
ers,Optimization; C.4 [Computer System Organization]:
Performance of Systems—Modeling Techniques

General Terms
Algorithms, Performance, Measurement

Keywords
stack algorithms, compiler algorithms, cache modeling

1. INTRODUCTION
The Memory Wall problem of current architectures has

been well documented. Processor speeds increase much faster
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than memory speed, applications access larger and larger
data sets. As a result, programming paradigms are shift-
ing. A number of hardware and software techniques have
been developed to reduce the increasing impact of memory
latency. Examples of hardware techniques are caching (in-
structions and data), out-of-order execution, multithreaded
execution, prefetching, processors in memory (PIM) and
speculation. Of these techniques, by far the most common is
caching. On the software side, there is a plethora of compiler
optimizations targeted toward hiding or eliminating memory
latencies. Insertion of prefetch instructions [22], instruction
scheduling and reordering [12], and loop parallelization for
SMT [17] are some of the latency hiding transformations.
Loop transformations that enhance data locality, such as
tiling [7, 33, 34, 16], and fusion [18], or code transformations
such as data shackling [14] and the product-space transfor-
mation [1] are techniques to increase data reuse.

These compiler transformations rely, sometimes implicitely,
on models of memory behavior to predict performance in
order to select which optimizations are applied and the pa-
rameters for the transformations. In this paper, we intro-
duce a method to model the memory behavior of programs
and present three applications of the method: evaluation of
compiler transformations, automatic tile size selection, and
cache miss estimation.

Our method is capable of handling with total accuracy
80% of the loops in the SPECfp95 benchmarks. When com-
pared with two of the most recent published methods of
statically estimating cache misses (Ghosh et al. [11] and
Chatterjee et al. [6]) our method stands out as practical.
For example, Chatterjee’s model, while theoretically able to
handle a larger class of codes than ours, in practice is lim-
ited by its running time. One advantage over [11] is that
our method is machine independent - we compute the stack
histogram once and then use it to compute the cache misses
for several cache sizes. This property facilitates the use of
our method for static and dynamic decisions.

The rest of the paper is organized as follows: in Section 2
we present our compile-time algorithm to compute stack his-
tograms. Section 3 shows how the stack histogram can be
used to estimate the effectiveness of data locality enhancing
optimizations. In the same section we compare the number
of cache misses predicted at compile-time using our tech-
nique against cache misses measurements taken using the
hardware counters on the MIPS R10000 processor for a sub-
set of the SPECfp95 benchmarks. We present related work
in Section 4 and conclude in Section 5.



2. COMPILE-TIME STACK HISTOGRAM
COMPUTATION

The memory model is based on the stack histogram ob-
tained from the stack processing algorithm [19], which con-
sumes a trace of memory references in a program, and builds
a stack and its histogram S(∆) as follows: (1) if the refer-
ence is the first access to that trace element, set ∆ = ∞,
increment S(∞) and push the reference on the stack; (2) if a
trace element has been previously referenced, the reference
will be already on the stack, let ∆ be the distance from the
top of the stack to the position at which the reference is
found, increment S(∆), and move the reference to the top
of the stack, all the references between top and ∆ being
pushed down one position. The references below ∆ are not
affected. The references can be to memory locations, cache
lines or memory pages.

The result of the stack processing algorithm is the his-
togram S(∆) which is used to calculate the number of cache
misses, for any cache size, as follows:

H(C) =
C
∑

∆=0

S(∆) and M(C) =
∞
∑

∆=C+1

S(∆) (1)

Consider a physical memory (or cache) of size C. The sum
of references at stack distances less than C, H(C) in Eq. (1),
is the number of in-core references (cache hits), whereas the
sum of references at stack distances greater than C, M(C)
in Eq. (1), represents out-of-core accesses (cache misses).

Computing the stack histogram at run-time is time con-
suming. Even with very efficient algorithms [2], to obtain
the histogram for a program, one has to run that program,
therefore the machine has to be available. However, the
stack histogram can often be computed at compile-time us-
ing data dependence information. Considering that compile-
time information is restricted (loop bounds may be unknown,
array memory layouts are approximated, etc.), we make sev-
eral assumptions, which are discussed next.

The compiler needs to determine the memory trace gen-
erated by a loop in order to compute the stack histogram
of that loop. This implies that the value of all subscript ex-
pressions are known at compile-time (symbolically), which
would be impossible in the presence of certain classes of
subscript expressions, such as subscripted subscripts (i.e.,
subscripts involving array elements). For a compiler to de-
termine the actual memory locations accessed by array ref-
erences involving subscripted subscripts would require the
compiler to know the values of the arrays used in the sub-
script expressions. And, although the compiler can usu-
ally propagate the value of arrays when they are computed
in the program [15], array element values are often func-
tions of the input data and therefore cannot be statically
known. Furthermore, most dependence tests assume affine
subscript expressions. Therefore, our method is restricted
to affine functions of the loop indices. The majority of the
subscripts are of this type, for example, more than 80% of
subscripts in the Perfect Club benchmarks and SPECfp95
benchmarks are affine [25]. Another common form is ar-
ray elements as subscript expressions, and occurs mostly in
sparse matrix operations. Methods that approximate cache
misses for these types of indices have presented in [4].

To summarize, in order to obtain totally accurate stack
histograms, we assume that the analyzed loops satisfy the
following conditions: (i) all subscript expressions are affine

expressions of the loop indices, (ii) there are no conditional
instructions in the body of the loop, (iii) the loop limits
are constants or loop invariants, and (iv) all dependences
between array references are uniform [10]. Many of the
compile-time cache models in the literature are similarly re-
stricted. Our method can be used to model programs that
do not satisfy all of these conditions with some loss of accu-
racy – the memory trace will be conservatively computed,
thus not guaranteed to be exact [5].

The stack histogram can be used to predict the number of
cache misses at different granularities in a program, i.e. loop
nests, routines, or entire programs. However, the compile-
time algorithm presented in this work focuses on generating
stack histograms for separate loop nests. We consider that
each loop nest starts with a cold cache, i.e., none of the array
elements accessed in the loop are present in the cache at the
first iteration. Further research needs to be done to enable
the estimation for sequences of loop nests. The current im-
plementation of the algorithm is limited by the power of the
symbolic manipulator used to compute dependence spans
and referenced sets.

The compile-time stack algorithm can estimate the num-
ber of misses for fully associative caches with the LRU re-
placement policy. In Section 3.2 we show how the number
of misses for an LRU set-associative cache can be approxi-
mated from the LRU fully associative histogram using sta-
tistical methods. We obtained very good estimates (within
10%) when compared to actual measured misses for two way
set-associative caches [4]. However, for programs with larger
data set sizes than the benchmarks we studied, the accuracy
could be significantly lower.

2.1 Notation
Before describing our algorithm we present a few defini-

tions. Each occurrence of an array element in any expression
in the body of a loop will be called an array reference. For
example, the sequence of statements:

A(I)=B(I)+A(I-1)

C(I)=A(I)+C(K(I))

contains seven array references: A(I−1), B(I), A(I), K(I),
C(K(I)), A(I), and C(I). Each dynamic execution of an
array reference is called an instance of the array reference.
Within loops, instances are identified by the values of the
loop indices. For example, in the loop:

DO I=1,N

DO J=1,M

X(I,J)=X(I-1,J)+1

D(I)=D(I)+X(I,J)

there are N ×M instances of each one of the five array ref-
erences, one for every possible value of the two loop indices.
We will denote array references using italic lower case let-
ters, and instances by italic letters extended with subscripts
containing the value of loop indices. For example, the ar-
ray reference D(I) that occurs on the left hand side of the
second statement is referred to as d. The first instance of d
will be named d〈1,1〉 and the last instance d〈N,M〉.

Given two, not necessary distinct array references a and
b surrounded by m loops, we say there is a loop-carried de-
pendence from a to b if there are two instances a〈i1,i2,...,im〉
and b〈j1,j2,...,jm〉, with iteration~i = 〈i1, i2, . . . , im〉 executing

before iteration ~j = 〈j1, j2, . . . , jm〉, that refer to the same
array element. We say that reference b depends on a and



also that instance b~j = b〈j1,j2,...,jm〉 depends on instance
a~i = a〈i1,i2,...,im〉. Also, we say that instance b~j is the target
of the dependence and that a~i is its source. We call the vec-

tor ~d = ~j−~i = 〈j1−i1, j2−i2, . . . , jm−im〉, a distance vector
of the dependence from a to b. We say that a cross-iteration
dependence from reference a to reference b is uniform if given

a distance vector of the dependence, D = ~d, and any two
iteration points ~p = 〈p1, p2, . . . , pm〉 and ~q = 〈q1, q2, . . . , qm〉

with ~d = ~q − ~p, the instance b~q depends on the instance a~p
and the distance vector ~d is constant (i.e., each element of ~d
is invariant with respect to the loop indices). In this paper
we use the term dependence as a placeholder for all types of
dependences: input, flow, anti, and output.

2.2 Stack Histogram Computation
To generate the stack histogram at compile-time, we need

to compute the stack distance for each reference and then
accumulate these to compute the number of references that
occur for each stack distance. To simplify the discussion, we
will first assume that our memory trace will contain memory
locations rather than cache lines or pages. This restriction
will be removed later in Section 2.5.

Our compiler algorithm proceeds by computing the num-
ber of distinct array elements accessed from the source to
the target of each dependence between array reference in-
stances. If an array reference instance is the target of only
one dependence, the stack distance will clearly be the num-
ber of distinct references accessed from the source to the
target of the dependence. The reason is that the depen-
dence will relate two consecutive references to the same lo-
cation. If the array element instance is the target of more
than one dependences the stack distance will be the mini-
mum number of references associated with all the incoming
data dependences. The reason is that the minimum depen-
dence distance will correspond to consecutive accesses to the
same memory location. The number of accesses at a stack
distance is computed by counting the number of array refer-
ence instances that generate that particular stack distance.

2.3 An Example
Before describing the algorithm formally, we present a

simple example to illustrate how the algorithm works. Con-
sider the code fragment in Figure 1(a). In this loop there
is one loop carried dependence, δ, from A(I) to A(I − 2),
with distance vector D = 〈2〉. As just mentioned, we need
to compute AS(δ), the number of distinct array references
between the source and the target of this dependence at it-

eration ~k. The instance at iteration k with 5 ≤ k ≤ N , of
the A(I − 2) array reference will be the target of this de-
pendence. And each one of these instances will generate a
reference at a stack distance equal to AS(δ). The other two
instances (those iterations 1 and 2) of reference to A(I − 2),
which do not have an incoming dependence will generate
references at distance ∞. The names a, a′, and b, will be
used to represent array references A(I − 2), A(I), and B(I),
respectively.

After identifying the dependence, our algorithm proceeds
as follows:

Step 1: Partition the iteration space. In our example the
iteration space is partitioned into two elementary com-
ponents. In the first elementary component (iterations
1 and 2), the instances of a have no incoming depen-

dences, while in the second elementary component (it-
erations 3 to N − 2) the dependence is present.

Step 2 : Compute AS(δ) for each dependence in each ele-
mentary component. In our example there is only one
dependence and we only need to consider the second
elementary component because there are no incoming
dependences into the first elementary component.

Step 2.1: Determine the dependence span, DS(δ, k),
the set of iterations spanned by the dependence
δ in iteration k. In this example, DS(δ, k) =
{k − 2, k − 1, k} for array reference instance ak,
with k = 5, 6, . . . , N . Note that the dependence
span is computed symbolically and it represents,
in a single formula, all instances of the array ref-
erence targeted by the dependence.

Step 2.2: Identify the array elements accessed in the
DS(δ, k) iterations. The algorithm computes the
referenced set AR which, by definition, is the
set of array elements accessed by all iterations
in a dependence span. AR is therefore a func-
tion of the dependence and of the array reference
instance. As shown in Figure 1(b), the first ar-
ray reference A(I − 2) accesses memory locations
AR(ak, δ) = {A(k − 2), A(k − 3)}, A(I) accesses
locations AR(a′k, δ) = {A(k − 2), A(k − 1)}, and
the locations accessed by B(I) are AR(bk, δ) =
{B(k − 1)}. Again, the AR sets are computed
symbolically to represent, in a single formula, the
memory locations accessed by all instances of an
array reference. The number of array elements
accessed during all iterations is the cardinality
of the union of all ARs. In our case, AS(δ) =
|AR(ak, δ) ∪AR(a′k, δ) ∪AR(bk, δ)| =
|{A(k − 1), A(k − 2), A(k − 3), B(k − 1)}| = 4.
Notice that although the ARs are function of the
iteration k, AS does not depend on the iteration
because it is constant for all iterations of each
elementary component of the iteration space.

Step 3: Compute the histogram. For each array reference
we consider the incoming dependences in each elemen-
tary component of the iteration space. Thus, A(I)
does not have any incoming dependence in any par-
tition, therefore it contributes N − 2 to ∞, because
it is the first reference to that array element in every
iteration. B(I) contributes N −2 to∞. The reference
A(I − 2) is not the target of any dependences in the
first elementary component, whose size is 2 iterations,
therefore it contributes 2 to ∞. It has δ as incom-
ing dependence in the second elementary component,
thus, it contributes N − 4 to distance 4, because there
are four accesses to different array elements between
the dependent accesses.

2.4 Algorithm Description
In this section we describe the compile-time stack his-

togram computation algorithm formally. The expressions
used are all symbolic, thus the following algorithms rely on
the compiler’s implementation of computer algebra opera-
tions.



do i = 3, N

A(i) = A(i-2) + B(i)

enddo

(a) Fortran Code

instances corresponding to array reference A(I)

instances corresponding to array reference A(I−2)

instances corresponding to array reference B(I)

A(k−5)  B(k−3)  A(k−3)     A(k−4)  B(k−2)  A(k−2)     A(k−3)  B(k−1)  A(k−1)     A(k−2)  B(k)  A(k)

iteration k−2iteration k−3 iteration k−1 iteration k

(b) Iteration space, array references and instances

4 ← N − 4
∞ ← 2N − 2

(c) Stack histogram computation

Figure 1: Symbolic stack histogram example

2.4.1 Iteration Space Partitioning
The first step of the algorithm is to partition the iteration

space in such way that, within each partition, all instances
of each array reference have exactly the same incoming de-
pendences. This is accomplished by separating iterations
at either the beginning or the end of the set of iterations
of some or all the loops in a nest. The example above il-
lustrates such a partitioning. Based on the distance vector
D(δ) = 〈2〉 it was determined that δ does not reach the ar-
ray reference instances accessed in the first 2 iterations of
the loop. In general, consider the iteration space of a loop
nest consisting of m loops:

DO I1 = L1, U1
DO I2 = L2, U2

. . .
DO Im = Lm, Um

END DO

END DO

END DO

Without loss of generality, and to simplify the discussion,
we will assume that the step of all loop indices is 1. This
iteration space is a set of tuples of the form 〈i1, i2, . . . , im〉,
where ik is the index value of the kth nested loop. We
represent this set as:

R =
m
⊙

k=1

(Ik ← [Lk, Uk]) = (I1 ← [L1, U1])¯ (I2 ← [L2, U2])

¯ · · · ¯ (Im ← [Lm, Um]) ,

where Lk and Uk are constants or affine expressions of con-
stants and loop indices, Ij , with j < k, and the operator
¯ represents the cross product of all iterations. For exam-
ple, (i← [1, 2])¯(j ← [1, 2]) represents the set {〈1, 1〉, 〈1, 2〉,
〈2, 1〉, 〈2, 2〉}. When Lk = Uk = ik we denote the term as
(Ik ← [ik]). If any of the loops have Uk < Lk, we assume
that the iteration space expression for that loop is the empty

set.
A distance vector D(δ) = 〈d1, d2, . . . , dm〉, from array ref-

erence a to array reference b, partitions the iteration space R
into two subsets. One subset is iteration space represented
by

Q =

m
⊙

k=1

(

Ik ←
[

Lk + d+k , Uk − d−k
])

,

where d+k =

{

dk if dk > 0

0 otherwise
,

and d−k =

{

|dk| if dk < 0

0 otherwise
.

In other words, Q is computed by “peeling off” for all k ≤ m
the first dk iterations or the last dk iterations of the kth
loop, depending on the sign of dk. By peeling off these iter-
ations we can guarantee that all instances a〈i1,i2,...,im〉, such
that 〈i1, i2, . . . , im〉 ∈ Q, will be actual targets of the depen-
dence δ. The other subset, RMQ, will generate instances
a〈i1,i2,...,im〉 that will not be target of the dependence. It
has the following form:

RMQ = R−Q =
m
⋃

x=1

(

x−1
⊙

k=1

(

Ik ←
[

Lk + d+k , Uk − d−k
])

)

¯ P ¯

(

m
⊙

k=x+1

(Ik ← [Lk, Uk])

)

,

where P =

{

(Ix ← [Lx, Lx + dx]) if dx > 0

(Ix ← [Ux − |dx|, Ux]) otherwise
.

For x = 1 the term
x−1
⊙

k=1

(

Ik ←
[

Lk + d+k , Uk − d−k
])

will

be absent from the expression and for x = m the term
m
⊙

k=x+1

(Ik ← [Lk, Uk]) will be absent. The partitioning al-

gorithm, presented in Figure 2, operates on a set of itera-
tion spaces. The set, PartIS, initially contains the whole
iteration space. The algorithm proceeds by iterating over
all distance vectors, and use the sets Q and RMQ gener-
ated by the the distance vector to refine the set PartIS by
partitioning each component of PartIS into two subsets.

All components of set PartIS will be of the form
m
⊙

k=1

(

Ik ←
[

Lk + d1k, Uk − d2k
])

with all d1ks and d2ks constants.

The intersection can therefore be computed as:

m
⊙

k=1

(

Ik ←
[

Lk + d1k, Uk − d2k
])

∩
m
⊙

k=1

(

Ik ←
[

Lk + d3k, Uk − d4k
])

=
m
⊙

k=1

(

Ik ←
[

Lk + max(d1k, d
3
k), Uk −min(d2k, d

4
k)
])

The number of partitions is in general O(2N ) where N is
the number of loop-carried dependences in the loop, but
in practice it is usually much smaller because dependences
often generate the same partitions.

2.4.2 Dependence Spans
Next, we need to compute the dependence spans which

are the set of iteration points between the source iteration



PartIS =

{

m
⊙

k=1

(Ik ← [Lk, Uk])

}

foreach direction vector D(δ) = 〈d1, d2, . . . , dm〉
let x be the index of the loop carrying the dependence

P =

{

(Ix ← [Lx, Lx + dx]) if dx > 0

(Ix ← [Ux − |dx|, Ux]) otherwise

R =
m
⊙

k=1

(

Ik ←
[

Lk + d+k , Uk − d−k
])

RMQ =
m
⋃

x=1

(

x−1
⊙

k=1

(

Ik ←
[

Lk + d+k , Uk − d−k
])

)

¯ P ¯

(

m
⊙

k=x+1

(Ik ← [Lk, Uk])

)

foreach s ∈ PartIS
PartIS = PartIS − s
PartIS = PartIS ∪ {s ∩R} ∪ {s ∩RMQ}

end foreach

end foreach

Figure 2: Iteration space partitioning algorithm

and the target iteration of each dependence distance vector.
In other words, the dependence span of a distance vector

D(δ) = ~d = 〈d1, d2, . . . , dm〉 is the set of iterations that

start at ~i = 〈i1, i2, . . . , im〉 and end at ~i + ~d = 〈i1 + d1, i2 +
d2, . . . , im + dn〉, as long as both are in the iteration space.
Geometrically, the dependence span can be conceived as a
hull in the iteration space that encloses all these iteration
points. Under the assumption that d1 > 0 it is easy to see
that the dependence span is the union of three sets, T, U ,

and V , such that DS(δ,~i + ~d) = T ∪ U ∪ V . The first set,
T , represents all “beginning” iterations, when one or more
of the outermost loop indices are set at their initial value:

T =

m+1
⋃

x=2

(

x−1
⊙

k=1

(Ik ← [ik])

)

¯ (Ix ← [ix + 1, Ux])

¯

(

m
⊙

k=x+1

(Ik ← [Lk, Uk])

)

The term
(
⊙m

k=x+1 (Ik ← [Lk, Uk])
)

will be absent when
x ≥ m and the term (Ix ← [ix + 1, Ux]) will be absent in the
previous expression when x = m.

The second set, U , is the middle part of the iteration
space:

U = (I1 ← [i1 + 1, i1 + d1 − 1])¯

(

m
⊙

k=2

(Ik ← [Lk, Uk])

)

and the third set, V , is the tail, where at least one of the
outermost loops has reached its upper limit.

V =

m+1
⋃

x=2

(

x−1
⊙

k=1

(Ik ← [ik + dk])

)

¯

(Ix ← [Lx, ix + dx − 1])¯

(

m
⊙

k=x+1

(Ik ← [Lk, Uk])

)

.

2.4.3 Referenced Sets Computation
A referenced set AR(a~k, δ) (defined in Section 2.3) is com-

puted by substituting in the subscript expression of a the
ranges of the iteration variables taken from the dependence
span. In geometrical terms, a referenced set is the projection

of the dependence span on the array space using the sub-
script expression. For example, the array reference A(2I +
1, J) for the iteration space (I ← [1, 20])

⊙

(J ← [2, 10]) cor-
responds to the set of elements represented by A(3:21,2:10).
Identifying the set of arrays accessed by a reference within a
simple iteration space (i.e., a rectangular iteration space in-
volving no union operations) when the subscript expressions
involve a single loop index is straightforward. It is harder to
compute an accurate result when several loop indices appear
in the same subscript expression because interval arithmetic
becomes non-trivial. The problem of mapping a static array
reference to a set of array elements within an iteration space
is outside the scope of this paper. We have used the interval
arithmetic described in [5]. The reader is referred to [23]
and [24] for a detailed discussion on this topic.

Whenever there are inaccuracies in computing the refer-
enced sets, we mark the sets accordingly. The measure of ac-
curacy propagates further in the cost model, such that, when
the prediction expressions are evaluated, together with the
performance estimation we provide a “confidence” measure
for the prediction.

If a dependence spans more than one static reference to
the same array, the referenced set contributed by that array
is computed by taking the union over the referenced sets of
individual references. The number of distinct array elements
spanned by the dependence is the sum of the cardinalities
of the union of the referenced sets for all arrays spanned by
the dependence:

AS(δ) =
∑

A

∣

∣

∣

∣

∣

⋃

r∈A

AR(r, δ)

∣

∣

∣

∣

∣

, for all arrays A.

2.4.4 Stack Histogram
Once the referenced sets are computed for each depen-

dence span in each partition, all data required to compute
the stack histogram are available. The stack histogram is
composed of two sets of values, the stack distances and the
number of accesses at that particular stack distance.

Each array reference contribution to a stack distance is
either determined by its incoming dependences, or∞ if there
are no incoming dependences (the reference corresponds to
a cold miss). The number of accesses contributed by each



foreach partition p ∈ PartIS
foreach static array reference r in the loop body

let ∆ =



















minδ(AS(δ)) if ∃δ such that

target(δ) = r and

δ is valid in p

∞ otherwise,
S(∆)+ = |p|

end foreach

end foreach

Figure 3: Stack histogram computation algorithm

array reference is determined by the number of dynamic
executions of the reference. The algorithm to compute the
stack histogram is shown in Figure 3. It essentially walks all
the array references in the loop nest and finds the minimum
AS on all the incoming dependences.

Once the stack histogram is computed symbolically it can
be used for different applications as shown in Section 3.

2.5 Spatial Locality
In the previous discussion we considered the cache lines

to be of only one array element. In order to compute the
stack histogram for real cache line sizes, we need to deter-
mine the number of distinct cache lines that are spanned
by a dependence. Since we already computed the number
of distinct array elements spanned by a dependence (the
references set AS), we just have to translate that number
into cache lines. In other words, we need to determine the
cache lines layout for the referenced sets. When information
such as stride distances or data alignment is not statically
known, the resulting stack distance must be approximated.
Because the mapping of array elements to cache lines is not
known at compile time, the resulting stack histogram is an
approximation.

As an example, consider a two dimensional array A, with
MMAX×NMAX elements, and a dependence that spans a
M×N referenced set. Also assume that the array is mapped
in column major order, as in Fortran.

We compute LDA =

⌈

MMAX

LS

⌉

, the number of cache

lines that cover one column of the matrix, where LS is the
size of the cache line expressed in number of array elements.
The number of cache lines covering a referenced set with
dimensions M and N is given by the equation:

DL =
N
∑

i=1

⌈

(i× LDA)%LS + M + offset

LS

⌉

(2)

where offset = 0 if the first element of the array maps at
the beginning of a cache line.

The stack histogram is computed using the same algo-
rithm presented in Section 2.4.4, except that the number of
distinct cache lines accessed is computed. In other words,
the referenced set size AS is returned in terms of cache lines.
The expressions denoting both stack distances and array ref-
erences contain symbolic variables to denote the cache line
size. These symbolic variables are treated like all the other
hardware parameters used in the performance expressions.

2.6 Associativity

It has been previously shown [28, 13] that set-associative
miss ratios can be estimated from the fully-associative miss-
ratio. The compile-time stack distances algorithm estimates
the number of misses for fully-associative LRU caches. The
number of misses for an LRU set-associative cache are de-
duced as follows: let pi(s) be the probability that a reference
is made to the ith most recently referenced cache line in one
of the s sets, and let qi be the probability that a reference
is made to the ith most recently referenced cache line in
any set. Consequently, qi = pi(1). The miss ratio for an
n-way set-associative cache with s sets is 1 −

∑n

i=1 pi(s),
while the miss ratio for a fully-associative cache with n lines
is 1 −

∑n

i=1 qi. Bayes rule can be used to express the set-
associative stack distance as follows:

pn(s) =
∞
∑

i=1

Prob (∆ = n with s sets | ∆ = i with 1 set )·qi,

where ∆ is the stack distance. Assuming that two cache lines
map to the same set with probability 1/s and the mapping is
independent from where other cache lines map, a reference
to set-associative stack distance n occurs if exactly n − 1
more recently referenced lines map to the reference’s set.
For a fully-associative cache, a stack distance of i implies
i − 1 most recently used lines. Thus, we can express pn(s)
as:

pn(s) ≈
∞
∑

i=1

(

i− 1

n− 1

)

[

1

s

]n−1 [
s− 1

s

]i−n

· qi, for n ≤ i.

This approximation has been proved to be quite accurate
in [13].

3. APPLICATIONS
Once the stack histogram is computed symbolically, there

are a number of applications, both within a compiler frame-
work and outside of it. Inside the compiler the stack his-
togram can be used to guide optimizations – the user can
retrieve the performance symbolic expressions and use com-
puter algebra to compare the performance estimates of dif-
ferent code sections or versions. Outside the compiler frame-
work, performance tools can use compile-time generated stack
histograms to visualize performance and do scalability anal-
ysis by evaluating the symbolic expressions with different
parameters.

In this section we present three applications of our compile-
time algorithm for stack distances computation: machine
independent evaluation of compiler optimizations with re-
spect to data locality, tile size selection for loop tiling, and
compile-time estimation of cache misses.

3.1 Machine Independent Evaluation of Com-
piler Transformations

To analyze the effectiveness of the stack histogram to cap-
ture data locality, we define a metric based on stack dis-
tances, and we select three compiler transformations that
enhance locality: tiling, data shackling and the product-
space transformation, and evaluate them using this metric.

Tiling [7, 33, 34], also known as blocking, is a transforma-
tion that increases the nesting degree of a loop, such that
the working set of the innermost loop fits in the memory
hierarchy level for which the transformation is applied. As
an example, consider matrix multiplication C = A × B. In
each iteration of the innermost classic three nested loops
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Figure 4: Cache misses as a function of the cache size and matrix size

implementation there are accesses to one row (or column)
of C and A, and to the entire matrix B. If the matrices are
large enough, data cannot be reused across iterations. We
study two versions of tiling for matrix multiplication, 2-tiled
– only the two outermost loops are tiled, and 3-tiled – all
three loops are blocked. In Figure 4(a) we show the number
of cache misses determined using Equation (1) as a function
of the cache size for the three versions of matrix multiplica-
tion presented above. In this figure, the higher the number
of references closer to the origin, the smaller the distance at
which data is reused, therefore the better the locality and
the lesser the number of cache misses.

Data shackling [14] optimizes locality by fixing a traver-
sal order through the data structures of the program, and
scheduling computations to be performed when a data item
is touched. We evaluate the effect of data shackling on
Cholesky factorization using the formula in Eq. (1) on a
stack histogram collected at run-time. In Figure 4(b) we
plot the estimated number of cache misses as a function of
the matrix size and the cache size. We vary the size of the
factored matrix from 500×500 to 1100×1100. The number
of misses estimated for the shackled version is lower than the
number of misses for the original code (the shackled curves
are under the non-shackled ones). Although the number of
misses increases with the matrix size, the shape of the his-
togram remains the same, showing once more that the stack
histogram has little variance with respect to data size and
indeed captures the access pattern in the code.

The product-space transformation [1] is a combination of
loop fusion, distribution, and tiling, targeted to enhance the
locality of imperfectly nested loops, such as Cholesky fac-
torization, Jacobi relaxation and successive over-relaxation
(SOR). These kernels are important in solving systems of
partial differential equations. We show how this transfor-
mation affects our locality metric and the execution time of
the kernels in Table 1.

Plotting the stack histogram (or the corresponding cache
miss ratio) for a code segment gives a very intuitive view of
the locality of that code segment – large numbers of refer-
ences at small distances denote good locality. To abstract
this view, we define a metric based on the area under the
curve (see Figure 4), as follows:

1 Definition (Average locality) Given a stack histogram
S, with stack distances ∆ = 1, . . . ,MAX, and references
S(∆), the average locality is:

AvgLoc =

MAX
∑

∆=1

(∆× S(∆))

MAX
∑

∆=1

S(∆)

(3)

In Table 1 we show the average locality computed for sev-
eral kernels with different cache line sizes, before and after
the transformations are applied. For each benchmark, two
rows of data are presented, one for the original code and
the second for the transformed code. The 32 bytes and 128
bytes cache line sizes correspond to 4 and 16 array elements
per cache line, and are among the most commonly used val-
ues for cache line sizes in L1 and L2 caches, respectively.
For each benchmark, the locality optimized benchmark has
lower average locality, as expected.

3.2 Tile Size Selection
The performance of the tiled code critically depends on

the selection of the tile size [32, 35]. In [35] the authors
present an analytical model for estimating the parameters
for tiling the matrix multiplication kernel. The equations
for the optimal NB parameter (the tile size) that they de-
rived manually can be automatically obtained from the stack
histogram computed using our algorithm. The tile size is se-



Input data Average Locality Execution
Transformation Benchmark size Temporal Spatial Spatial time

(block size) (CLS=32) (CLS=128) (sec)

Matrix Mult 100 2619.890 221.146 46.971 0.265
Tiling 2-tiled MM 100(25) 886.451 93.087 30.014 0.254

3-tiled MM 100(25) 367.794 30.219 6.026 0.241

Data Shackling Cholesky (kij) 750 42474.783 2818.807 281.354 473.225
750(64) 1678.441 108.808 11.267 86.667

Cholesky (ijk) 750 56550.634 2997.046 527.547 91.030
750(40) 2280.934 152.073 49.426 86.381

Product-Space Jacobi 780 795652.422 42504.399 3481.207 2.904e-6
780(20) 2163.203 144.745 15.073 1.904e-6

Table 1: Temporal and spatial average locality

lected such that it satisfies:

∆i ≤ C, ∀ı, i 6=∞,

i.e., all the stack distances must be less than the cache size.

3.3 Cache Miss Estimation
Using the stack histogram computed at compile-time, and

the Equation (1), we can estimate the number of cache
misses for a loop. In this section, we compare the num-
ber of misses computed using our compile-time algorithm
with misses measured using hardware counters on the MIPS
R10000 processor. The number of misses is an approxima-
tion because the stack models a fully associative cache while
the R10000 has a 2-way set-associative cache, and we also
consider one loop at a time in our analysis.

We have implemented our compile-time analysis stack pro-
cessing instrumentation in the Polaris source-to-source com-
piler [3]. The compile-time algorithm computes the stack
distances and the number of references at each distance as
symbolic expressions. Then it generates code, such that the
symbolic expressions can be evaluated for the input data size
of the benchmark. The number of cache misses is estimated
by plugging in the cache parameters in a post-processing
step.

In Table 2 we compare the compile-time estimated cache
misses with cache misses for the two data cache of the MIPS
R10000 processor, measured using hardware counters. The
cache characteristics are: 32KB, 32 byte line size and two
way associative for the L1 data cache and 1MB, 128 byte
line size, two way associative for the L2 unified data and
instruction cache. The benchmarks in the table are a subset
of the SPECfp95 benchmarks. For each benchmark, we esti-
mated the number of cache misses for each loop nest that we
can handle with our compile-time algorithm, and multiplied
the estimation by the number of times the loop is executed.

4. RELATED WORK
There are many approaches targeted toward estimating

the cache behavior of programs within a compiler frame-
work. However, many factors, such as limited compiler infor-
mation, algorithms complexity and hardware unpredictabil-
ity, have made the problem so challenging that none of the
proposed solutions is a complete solution.

Porterfield [26] presents one of the first static models of
memory performance based on data dependences. For a
loop, the Overflow Iteration, O(i), is used to represent the

maximum number of iterations that incurs no capacity misses.
The overflow iteration provides a measure of how much data
is accessed between the end points of a dependence. Fer-
rante et al. [9], use the same concept to estimate the num-
ber of cache misses at compile-time, computing the number
of distinct cache lines accessed in a loop. They give exact
formulas for the number of distinct array elements accessed
when subscripts are functions of one or two loop variables,
and provides an upper bound for a more general subscript
functions. Ferrante’s et al. approach appears to be less
costly than Porterfield’s, since the authors use the GCD test
and Banerjee’s inequalities instead of data dependence dis-
tance vectors. We can not readily compare the accuracy of
our algorithm versus theirs because the experimental results
presented in their paper are restricted to matrix multiplica-
tion, which both our algorithm and theirs predict with total
accuracy.

Fahringer [8] presents an algorithm that estimates the
number of cache misses for sequential and data parallel For-
tran programs. The algorithm is based on the analysis of
all array references in loop nests, classifying them with re-
spect to data reuse and computing a cost function for the
array classes that describes the cache behavior of the pro-
gram. The author shows how to extend the cost function to
procedures and entire programs, although no experimental
results for entire programs are presented. There are two dif-
ferences that make our algorithm more practical. First, it is
not easy to see how Fahringer’s algorithm can be extended
to estimate inter-nest misses. And second, his algorithm
needs the cache size as a parameter, while ours can estimate
the number of cache misses for all the cache sizes based on
the stack histogram. Again, it is very hard to see how ef-
fective is his algorithm compared to ours, because the only
experiment presented in the paper is Jacobi relaxation, for
which both algorithms are accurate.

McKinley[20, 21] uses a simple cost model for caches to
drive optimizations for data locality and parallelism. In this
model, references with group-spatial and group-temporal lo-
cality are grouped in equivalence classes using simple heuris-
tics. The cost of a loop is given in terms of cache lines ac-
cessed by placing the loop as the innermost loop in the nest.
Although the model is very approximate, it works quite well
in practice, since in most cases it finds the correct relative
ordering of the loops in the nest.

Ghosh, Martonosi and Malik [11] have introduced the
Cache Miss Equations (CMEs) as a mathematical frame-



Benchmark Loops Cache Size = 32 KB Cache Size = 1 MB
estimated total compiler runtime compiler runtime

101.tomcatv 11 12 1031915250 1032772500 259715250 258208500
102.swim 24 24 1556623620 1547988763 404380548 391517395
103.su2cor 56 82 922260478 914107603 231318140 255751083
104.hydro2d 124 158 2108084122 2078098304 821557292 824698056

Table 2: Cache misses predicted at compile-time vs. measured using hardware counters on an MIPS R10000

processor. The two cache sizes correspond to the first and second level caches of the processor.

work that precisely represents cache misses in a loop nest.
They estimate the number of cache misses in a code seg-
ment by counting the number of solutions of a system of
linear Diophantine equations extracted from reuse vectors,
where each solution corresponds to a potential cache miss.
For each reuse vector, two kinds of equations are generated:
compulsory equations, that represent cold misses, and re-
placement equations, which represent the interferences with
other references. The number of cache misses is computed
by traversing the iteration space and solving the system of
equations at each iteration point. Although solving these
linear systems is an NP-hard problem, the authors claim
that mathematical techniques for manipulating the equa-
tions allow them to compute relatively easily the number
of possible solutions without solving the equations. Our
algorithm differs from theirs because in one single pass we
can compute the stack histogram which can be subsequently
used to estimate the number of cache misses for any cache
size, thus avoiding the repeated execution of the expensive
part of the algorithm. Vera et al. [30, 31] propose a solution
based on sampling techniques to speed-up solving CMEs.
Statistical sampling allows them to approximate the abso-
lute miss ratio for each reference by analyzing only a small
subset of the iteration space. Results are given with a con-
fidence interval, parameterizable by the user. In [31] they
expand this method to handle entire programs. However,
they still do the analysis at loop level, and rely on inlining
and code sinking to transform the entire program into one
loop.

Chatterjee et al. [6] use Presburger formulas to express
various kinds of misses as well as the state of the cache
at the beginning and at the end of a loop. While exact,
their method is exponential in the number of formulas to
be solved, and thus, in the paper they present results only
for matrix multiplication. For a matrix multiplication loop
they require 108 cache miss formulas, which takes more than
241 seconds to solve. By comparison, our method takes
about 3 seconds to generate the stack histogram for matrix
multiplication.

5. CONCLUSIONS
In this paper we have presented our experience with stack

processing algorithms. We have used the result of the algo-
rithm, the stack histogram, to predict the cache behavior of
scientific codes and to evaluate compiler optimizations for
locality. The main advantage of using the stack histogram
to analyze memory behavior is the cache size independence.
The stack histogram is computed in one pass through the
trace, and the program behavior can be analyzed for differ-
ent memory or cache sizes working only with the histogram.
The stack histogram can be computed at compile-time by

analyzing the memory access pattern of the application. We
have presented an algorithm that computes the stack his-
togram at compile-time based on data dependence distance
vectors. While the algorithm has some limitations – it cur-
rently works at loop nest level for fully associative caches,
we have shown that it can predict cache misses for a large
number of loops in the SPECfp95 benchmark suite, with
reasonable accuracy [5, 4].

We have integrated this work within the Delphi Project
[27], where it is used to predict performance at compile time,
as a tool for performance tuning and scalability analysis.
The compile-time stack algorithm has also been used by
Solihin et al. [29] to help schedule the code in an Intelligent
Memory architecture.
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