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Abstract. Estimating camera position and posture can be applied to
the fields of augmented reality and robot navigation. In these fields, to ob-
tain absolute position and posture of the camera, sensor-based methods
using GPS and magnetic sensors and vision-based methods using input
images from the camera have been investigated. However, sensor-based
methods are difficult to synchronize the camera and sensors accurately,
and usable environments are limited according to selection of sensors.
On the other hand, vision-based methods need to allocate many artifi-
cial markers otherwise an estimation error will accumulate. Thus, it is
difficult to use such methods in large and natural environments. This
paper proposes a vision-based camera position and posture estimation
method for large environments, which does not require sensors and arti-
ficial markers by detecting natural feature points from image sequences
taken beforehand and using them as landmarks.

1 Introduction

The recovery of camera position and posture is required in a number of different
fields such as augmented reality and robot navigation. In these fields, to ob-
tain absolute position and posture of the camera, sensor-based methods using
GPS and magnetic sensors[1–5] and vision-based methods using input images
from the camera[6–13] have been investigated. However, sensor-based methods
are difficult to synchronize the camera and sensors accurately, and usable en-
vironments are limited according to selection of sensors. Vision-based methods
can be classified in two groups: Methods using markers and methods without
markers. Methods using markers need to allocate many artificial markers in the
environment. Thus, it is difficult to use such methods in large and natural en-
vironments. On the other hand, maker-less methods are also proposed. Most of
these methods track natural features and estimate camera position and posture
by concatenating transformations between adjacent frames. Thus, these meth-
ods are inappropriate for long sequences because estimation errors accumulate
and causes drift. Therefore, methods using prior knowledge of the environment
are recently proposed[12, 13]. Lepetit et al.[12] have proposed a method using
the 3-D model of the environment. It is robust to large camera displacements,
extreme aspect changes and partial occlusions, but their method is limited to
an environment that can be modeled manually, so it is difficult to use in an out-
door environment. Gordon et al.[13] have proposed a method which constructs



a sparse metric model of the environment, and performs model-based camera
tracking. It does not require camera pre-calibration nor prior knowledge of scene
geometry, but it is difficult to use the method in large environments because the
error will accumulate when reconstructing the 3-D model.

In this research, we propose a camera position and posture estimation method
for large environments, which is based on detecting natural feature points from
image sequence taken beforehand and using them as landmarks, and thus does
not require sensors and artificial markers. Our method is composed of two stages.
In the first offline stage, we reconstruct the environment from omni-directional
image sequences. Then, a feature landmark database is created, and natural fea-
ture points extracted from the image sequences are registered as landmarks. The
second stage is a sequential process, and camera position and posture which do
not include significant cumulative errors are estimated by determining the corre-
spondence between the input image and the landmarks. In Section 2, we describe
the first stage of our method, which specifies the construction of the feature land-
mark database. Section 3 describes the position and posture estimation method
using the feature landmark database created in Section 2. Section 4 shows the
experiment result, and conclusion is shown in Section 5.

2 Constructing Feature Landmark Database

This section describes the first stage of our method, which specifies the construc-
tion of the feature landmark database. In our method, natural feature points
detected from omni-directional image sequences are used as landmarks. We first
take an omni-directional image sequence by walking through the environment
with an omni-directional camera. Secondly, we obtain 3-D coordinates of land-
marks and camera position and posture of the omni-directional camera from the
image sequence. Lastly, the landmark database is created semi-automatically us-
ing the 3-D coordinates of the natural features, the omni-directional images, and
its camera path. In the following sections, the elements of the feature landmark
database are listed, and the way for constructing landmark database is detailed.

2.1 Landmark Information Acquisition by 3-D Reconstruction of
Environment

Feature landmark database consists of a number of landmarks as shown in Fig-
ure 1. These landmarks are used to be matched to natural feature points from
an input image in the second stage in order to estimate the camera position
and posture of an input image. Each landmark retains the 3-D coordinate of
itself(1), and several information for different camera positions(2). Information
for different camera positions consists of four items: (A)camera position and
posture of the omni-directional camera, (B)multi-scale image template of the
landmark, (C)normal vector of the image template, and (D)base scale of the
image template.

To obtain the landmark information listed above (Figure 1), 3-D reconstruc-
tion of the environment is required. First, we reconstruct the environment from
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Fig. 1. Elements of feature landmark database.

omni-directional image sequence and obtain (1)3-D coordinate of the landmark
and (A)camera position and posture of the omni-directional camera. Next, we
generate (C)normal vector of the image template, (D)base scale of the image
template, and (B)multi-scale image template of the landmark.

3-D Reconstruction of the Environment from Omni-directional Image
Sequence Our extrinsic camera parameter estimation is based on structure-
from-motion[14]. In this method, first, markers and natural features in the image
sequences captured by an omni-directional multi-camera system are automati-
cally tracked and then the reprojection errors are minimized throughout the
sequences. Thus, we can obtain extrinsic camera parameter of the camera sys-
tem and 3-D coordinates of natural features in absolute coordinate system based
on the markers without accumulative estimation errors, even in a large and com-
plex environment. Note that, in our method, intrinsic camera parameters of the
camera system are assumed to be known.

Creating Landmarks Landmark database is automatically created using the
result of 3-D reconstruction. The elements of landmarks are created by the fol-
lowing procedures.

(1) 3-D coordinate of landmark
We use natural features detected by Harris operator[15] from the omni-
directional image as feature landmarks. The 3-D coordinate of the landmark
is estimated by the 3-D reconstruction of the environment, and is obtained
by the world coordinate system. The X and Y axes of the world coordinate
system are aligned to the ground and Z axis is vertical to the ground.

(2) Information for each camera position
Landmarks are used to determine the correspondence between feature points
in an input image and 3-D coordinates of the landmarks. In this research,
information from several different camera positions is obtained and used for
a robust matching of the landmarks, considering the aspect changes of image
patterns depending on the shooting position.
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(A) Camera position and posture of omni-directional camera: Cam-
era position and posture are retained by the world coordinate system,
and are used to select landmarks from the database to match with the
input image. We use the extrinsic camera parameter estimated in Section
2.1.

(B) Multi-scale image template of landmark: Image template is created
by projecting the omni-directional image to a plane which is vertical to
the line through the landmark’s 3-D coordinate and the projection center
of the camera, as shown in Figure 2. The lens distortion is removed from
the image template. First, the normal vector V and the base scale S
shown in Figure 2 are precalculated. Then, to create an image template of
a base scale, a square plane which implements the following assumptions
is configured.
– Landmark is allocated on the center of the plane
– The plane is vertical to the normal vector V
– The plane size is S × S in the world coordinate system
– The plane’s X axis is parallel to the X-Y axis of the world coordinate

system
Next, the previously defined plane is divided into an N × N grid where
N × N is the resolution of image templates. Each center of the grid is
projected to the omni-directional images by its 3-D coordinate, and the
color value of the projected pixel is set as the template’s pixel color value.
In the same way, double and quadruple scale image templates are created
for each camera position. We define single, double, and quadruple scale
image templates as a set of multi-scale image templates.

(C) Normal vector of image template: As shown in Figure 2, the normal
vector of the image template is defined as the normal vector of the plane
which is vertical to the line through the landmark’s 3-D coordinate and
the omni-directional camera’s position. It is used to select an image
template for matching from several image templates taken by different
camera positions. Normal vector of the image template is simply acquired
as a normalized vector from the landmark’s 3-D coordinate to the omni-
directional camera’s position.

(D) Base scale of image template: As shown in Figure 2, the scale of the
image template is the size of the plane used to create the image template.
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Fig. 3. Data Flow of Camera Position and Posture Estimation Process.

The scale size is retained in the world coordinate system, and the base
scale is determined so that the resolution of the omni-directional image
and the image template becomes nearly equal.

3 Camera Position and Posture Estimation Using
Database

3.1 An Overview of Proposing Method

This section describes a camera position and posture estimation method based
on the feature landmark database. The initial camera position and posture are
estimated in the first frame. Then, using the previous camera position and pos-
ture, landmarks are selected from the landmark database(step 1). Detecting
natural features from the input image and matching them with the landmark
image templates, the correspondence between landmark and input image is es-
tablished(step 2). Lastly, camera position and posture are estimated from the
correspondences between landmarks and input image(step 3). In this paper, we
assume that initial camera position and posture are given. The following sections
describe these steps. Figure 3 shows the data flow of the estimation process.

3.2 Selecting Landmark from Landmark Database

To find a correspondence with the input image, several landmarks are selected
from numerous landmarks in the landmark database. Furthermore, to handle
partial occlusions and aspect changes, an image template with the nearest ap-
pearance to the input image is chosen from a number of image templates stored
in the database. Considering the appearance, it is ideal if the image template
and input image are taken in the same position. However, the camera position
and posture of the input image are not yet estimated, so we use the camera po-
sition and posture of the previous frame as a replacement. Landmarks satisfying
the following requirements are selected to make correspondence with the input
image.

(requirement 1) Landmark has to be in the image when projecting its 3-D
coordinate using the previous camera position and posture: We project the
landmark’s 3-D coordinate on the input image by using previous camera
position and posture. Only the landmarks projected on the input image are
selected.



(requirement 2) Distance between the camera position when the landmark
was taken and the camera position when the input image was taken should
be under a given threshold: We actually calculate the distance between the
camera position when the landmark was taken and the camera position of
the previous frame, and select landmarks under the threshold.

(requirement 3) Angle between the normal vector of the image template and
the vector from landmark to camera position when the input image was
taken should be under a given threshold and is the minimum for all the image
templates of the landmark: We select the image template if angle θ between
the normal vector of the image template and the vector from landmark to
previous camera position is the minimum for all the image templates of the
same landmark. If the angle θ of the selected image template is over the
threshold, that landmark is not selected.

(requirement 4) Landmark must not be adjacent to already selected land-
marks: First, the input image is divided into a grid. The landmarks on the
input image are then projected to the image plane by using the previous
camera position and posture, and only one landmark per each grid are se-
lected.

Landmarks that implement the requirement 1 are selected first. Then, the se-
lected landmarks are narrowed down to a fixed number of landmarks by the
ascending order of the distance mentioned in the requirement 2. From the list
of landmarks, landmarks with smaller angles in the requirement 3 are picked
up one by one, and the selecting process is repeated until a fixed number of
landmarks that implement the requirement 4 are chosen.

3.3 Determining Correspondence between Landmark and Input
Image Feature

In this step, the correspondence between selected landmarks and features in
an input image are computed. First, natural features are detected from the
input image using interest operator, and are then corresponded with the selected
landmarks using template matching.

Detecting Natural Feature from Input Image To find the correspondence
between landmarks and input image, natural feature points are detected from
the input image by Harris operator[15]. In this step, a landmark is projected to
the input image, using previous camera position and posture. On the assumption
that the corresponding point for the landmark exists near the projected point,
natural feature points are detected within a fixed window surrounding the pro-
jected point. The detected feature points are listed as correspondence candidates
of the landmark.

Matching Between Landmark Image Template and Input Image In this
step, each landmark is compared with its correspondence candidates. First, an
image pattern is created for each natural feature point listed as a correspondence
candidate. Next, the landmark image template is compared with each image



pattern by normalized cross correlation. Then, the feature point with the most
correlative image pattern is selected, and its neighboring pixels are also compared
with the landmark as correspondence candidates. Lastly, the most correlative
feature point is corresponded with the landmark.

3.4 Camera Position and Posture Estimation Based on Established
Correspondences

Camera position and posture are estimated from the list of 2-D and 3-D cor-
respondences acquired from the matching between landmarks and input image.
First, outliers are eliminated by RANSAC[16]. Next, camera position and posture
are estimated using only the correspondences that are supposed to be correct.
Finally, camera position and posture with the minimum reprojection error are
computed by using non-linear least square minimization method.

4 Experiments

To verify the validity of the proposed method, we actually have created a land-
mark database of an outdoor environment and have carried out experiments of
estimating camera position and posture from an outdoor image sequence.

4.1 Experiments in an Outdoor Environment

First, an outdoor image sequence is captured by an omni-directional multi-
camera system(Point Grey Research Ladybug) as shown in Figure 4 for con-
structing a landmark database. In this experiment, intrinsic parameters of the
camera system was calibrated by Ikeda’s method in advance[17]. Captured im-
age sequence consists of 1,250 frames long with 6 images per each frame(totally
7,500 images). Then, landmark database is created by estimating camera path
and 3-D coordinates of natural features[14]. For every landmark, multi-scale im-
age template with three different scales of 15 × 15 pixels each, is created per
each camera position. The number of landmarks created in this experiment is
about 12,400, and the number of image templates created per each landmark is 8
on average. Figure 5 shows a part of estimated camera path and 3-D coordinates
of natural feature points in constructing the landmark database.

Next, we have captured a 1,000 frames long monocular video image se-
quence(720 × 480 pixels, progressive scan, 15fps) with a video camera(SONY
DSR-PD-150) and camera position and posture are sequentially estimated using
the landmark constructed earlier. In this experiment, initial position and posture
of the camera is manually specified in the first frame of the input sequence. The
maximum number of landmarks selected from the database to correspond with
input image is 100 per frame, with the window size for detecting natural features
from input image is 120 × 60 pixels, the number of RANSAC iterations is 500.
As a result, processing time for a frame was about 4 seconds with a PC(CPU
Pentium4 3GHz, Memory 1.5GB).



Fig. 4. Omni-directional camera system
Ladybug and images taken by ladybug.

Fig. 5. Estimated camera path and 3-D
coordinates of natural feature points.

Figure 6 shows the landmarks used for camera position and posture esti-
mation. In this figure, squares indicate feature landmarks rejected by similarity
measure, crosses are also rejected by RANSAC, and circles are inliers of feature
landmarks. The inliers are used for camera position and posture estimation. Fig-
ure 7 shows the result of match move; matching virtual 3-D objects to the camera
movements using the estimated camera position and posture. It can be observed
that the CG person drawn in geometrically correct positions throughout the
sequence(http://yokoya.naist.jp/pub/movie/oe/outdoor.mpg).

4.2 Quantitative Evaluation

We have evaluated the estimation accuracy by comparing the estimated camera
position and posture with the ground truth. The ground truth is created by
measuring 3-D position of feature points using a 3-D laser measure named ”Total
Station” and manually specifying their correspondence with each input image,
and solving PnP(Perspective n-Point) problem from the correspondence. The
ground truth is created for every 10 frames, except for the following frames:
frames which could not obtain enough measured points because the scene is
interspaced with natural objects, and frames in which the reprojection error of
the obtained ground truth is over 1.5 pixels.

As a result, camera position estimation error was 220mm on average, and
estimation error of the optical axis was approximately 0.37 degrees. Figure 8
shows the result of estimated camera parameter and the ground truth. Camera
path is estimated from 1,000 frames long image sequence, and the X and Y axes
of the figure corresponds to the X and Y axes of the world coordinate system.
It shows that the estimated camera path is generally smooth and the estimation
error does not accumulate during the whole sequence. However, there were some
frames with larger estimation errors than other frames. In these frames, land-
marks used for camera position and posture estimation are tended to be aligned
lopsidedly in the input image, or only the landmarks far from the camera po-
sition are used. Therefore, it is necessary to investigate a method for selecting
landmarks from the landmark database to raise the accuracy of our method.
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Fig. 6. Landmarks used for camera position and posture estimation.

(a)1st frame (b)200th frame (c)400th frame

Fig. 7. Match move based on estimated camera position and posture.

(http : //yokoya.naist.jp/pub/movie/oe/outdoor.mpg)
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Fig. 8. Estimated camera path and the ground truth.

5 Conclusion

In this paper, we have proposed a camera position and posture estimation
method for large environments by detecting natural feature points from image
sequence taken beforehand and using them as landmarks. The proposed method
provides image-based localization. We create a feature landmark database by
reconstructing the environment from image sequences in advance. Camera posi-
tion and posture are estimated by determining the correspondence between the
input image and the landmarks. In experiments, we have successfully demon-
strated camera position and posture estimation from an image sequence of an
outdoor environment, and have confirmed that the estimation result does not
include cumulative errors. As a future work, camera position and posture estima-
tion needs to be performed in real-time for use in augmented reality applications
and robot navigations. It is also desirable that the camera’s initial position and
posture are estimated automatically.
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