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Abstract

Carbon Flux Phenology (CFP) can affect the interannual variation in Net Ecosystem Exchange (NEE) of carbon between
terrestrial ecosystems and the atmosphere. In this study, we proposed a methodology to estimate CFP metrics with satellite-
derived Land Surface Phenology (LSP) metrics and climate drivers for 4 biomes (i.e., deciduous broadleaf forest, evergreen
needleleaf forest, grasslands and croplands), using 159 site-years of NEE and climate data from 32 AmeriFlux sites and
MODIS vegetation index time-series data. LSP metrics combined with optimal climate drivers can explain the variability in
Start of Carbon Uptake (SCU) by more than 70% and End of Carbon Uptake (ECU) by more than 60%. The Root Mean Square
Error (RMSE) of the estimations was within 8.5 days for both SCU and ECU. The estimation performance for this
methodology was primarily dependent on the optimal combination of the LSP retrieval methods, the explanatory climate
drivers, the biome types, and the specific CFP metric. This methodology has a potential for allowing extrapolation of CFP
metrics for biomes with a distinct and detectable seasonal cycle over large areas, based on synoptic multi-temporal optical
satellite data and climate data.
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Introduction

Vegetation phenology plays an important role in adjusting the

annual Net Ecosystem Exchange (NEE) (see Acronym S1 in

supporting information for a list of acronyms and definitions used

in this paper) of carbon between terrestrial ecosystems and the

atmosphere [1–5]. The interannual variation in ecosystem

productivity caused by vegetation phenology shifts was widely

investigated by field studies [6–9] and ecosystem models [10–14].

An earlier start or/and a later end of vegetation growing season

can extend the period of photosynthesis, and thus increased

primary productivity is expected. Indeed, some previous studies

have shown a positive effect of Growing Season Length (GSL) on

net productivity (e.g., 5.9 g CNm22
Nd21 in a deciduous forest [15]

and around 4 g CNm22
Nd21 in a subtropical forest stand [16]).

Moreover, the length of Carbon Uptake Period (CUP) has much

predictive power about the spatial variation of annual NEE. For

example, the length of CUP can explain 80% of the spatial

variance in annual NEE for deciduous forests across a latitudinal

and continental gradient [17].

There are currently numerous data sources available for

estimating the timing of recurrent vegetation phenology transi-

tions, such as the ground-, satellite- and eddy covariance flux-

based data sources [18]. Land Surface Phenology (LSP) is defined

as the study of the timing of recurring seasonal pattern of variation

in vegetated land surfaces observed from synoptic sensors [19,20].

Satellite-based LSP is characterized by the Start (SOS) and End

(EOS) of growing Season, which are closely related to vegetation

growth or photosynthesis. Carbon Flux Phenology (CFP) is defined

as the detrended zero-crossing timing of NEE from a source to a

sink in spring and vice versa in autumn [3,4,18,19]. CFP is

characterized by the Start (SCU) and End (ECU) of Carbon

Uptake, which are closely related to the difference between growth

and respiration. LSP allows the determination of GSL or the

duration of canopy coverage from the difference between EOS

and SOS, while CFP allows the determination of CUP from the

difference between ECU and SCU. The CUP is controlled by

GSL, but is not identical because growth will typically commence

and terminate some time before and after the NEE changes sign in

spring and autumn, respectively [19,21]. White & Nemani [13]

found that there was a strong relationship between NEE and CUP,

but a very weak relationship between NEE and GSL for deciduous

forests. Thus, CUP is a potentially useful indicator of annual

carbon sequestration [3]. However, the application of CUP is

hindered by the limited number of flux towers and the distribution

and footprint of these flux towers [3,19,21]. Although more than

500 tower sites from approximately 30 regional networks across 5

continents are currently operating on a long-term basis, these

globally distributed eddy flux sites sample only a small subset of the

Earth’s biomes, disturbance regimes, and land management
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systems. Thus, estimation of CUP over large areas remains

challenging [19,21,22].

Some limited attempts have been made to estimate CFP dates

beyond the footprints of flux towers [18,19,21,22]. Using over 30

site-years of data from 12 eddy flux sites, Baldocchi et al. [22]

found that 64% of variance in SCU can be explained by the date

when soil temperature matched the mean annual air temperature.

Remote sensing provides spatially comprehensive measures of

ecosystem activity and therefore is a potentially powerful tool to

allow extrapolation of CUP over large areas. To test the

capabilities of remote observations in estimating CUP, Churkina

et al. [21] related the GSL from remotely sensed data to the CUP

from eddy flux tower measurements and found a strong

relationship between them. However, a comparison of multiple

phenology data sources indicated that no single source of

phenological data was able to accurately describe annual patterns

of flux phenology [18]. Therefore, Gonsamo et al. [19] combined

LSP dates with the mean monthly surface temperature derived

from remote sensing observations to predict CUP. Their results

indicated that remote sensing-derived multiple surface variables

can explain CUP variability by more than 70% in spring and

autumn. However, this CUP determination approach is just based

on four selected temperate and boreal deciduous forest CO2 flux

tower sites. A more comprehensive analysis, based on multi-year

data from eddy flux sites across large areas for various biome types,

is still expected. Moreover, improved estimation of LSP dates

combined with optimal climate drivers may further enhance the

CUP estimation performance.

Using data from a large number of AmeriFlux sites, this study

aims to estimate CFP metrics with satellite-derived LSP metrics

and climate drivers for different biomes, including deciduous

broadleaf forest, evergreen needleleaf forest, grasslands and

croplands. We first evaluated different LSP retrieval methods

and Vegetation Index (VI) products based on the observed CFP

dates and selected the best performing method and VI product to

retrieve LSP dates as the explanatory variables in estimating both

SCU and ECU. Then, we carried out a sensitive analysis to search

the optimal explanatory climate drivers for the estimation of SCU

and ECU. Finally, the estimated LSP dates and the selected

optimal explanatory climate drivers were combined to estimate

CFP dates, and a comprehensive discussion was given to highlight

the limitations and potentials of the proposed methodology.

Data and methods

Data and pre-processing
Site carbon flux and meteorological data. The daily NEE

(g CNm22
Nd21), air temperature (uC) and precipitation (mm) data

used in this study were derived from the post-processed Level 4

product (available at: http://daac.ornl.gov/FLUXNET/fluxnet.

shtml) of the AmeriFlux sites (Figure 1, Dataset S1). The covered

period for the product was generally from 1995 to 2007 but

depending on the specific site. For example, the acquired NEE and

meteorological data were from 1998 to 2007 for the Niwot Ridge

site, while they were from 1995 to 1999 for the Walker Branch site

in the United States. The same years for having both NEE and

Moderate Resolution Imaging Spectroradiometer (MODIS) VI

data were used for analysis. Therefore, our analysis only focused

on the period of 2000–2007 since the overlay time period for both

data sets only covered from February 2000 (Start date for MODIS

VI data) to December 2007 (End date for available NEE data). For

each biome type, we first excluded the sites with more than 60

days deviations from the average SCU and ECU. We regarded

each year for each flux tower site as one site-year and excluded the

site-years whose daily NEE values were missing for the carbon

source-sink or sink-source transition period. Moreover, only the

biomes with at least 10 site-years were included for analysis in

order to get robust estimations for CFP dates. Therefore, we got

32 eddy flux sites, which covered 4 biome types according to the

International Geosphere-Biosphere Program (IGBP) classification

system (Figure 1). There were totally 73 site-years involved in the

spring carbon source-sink transition period and 86 site-years

involved in the autumn carbon sink-source transition period.

Remotely sensed data. The Terra’s MODIS 250 m 16-day

composited VI products (MOD13Q1, V005) for the 32 flux tower

sites were used in this analysis (available at: http://daac.ornl.gov/

MODIS/). The first VI product was the standard Normalized

Difference Vegetation Index (NDVI), and the second was the

Enhance Vegetation Index (EVI). The VI time series for the pixel

located at the center of the flux tower was used to retrieve land

surface phenological metrics. The covered period for the VI data

was the same as the NEE data for a given flux site. Much noise

existed in the VI time series because of cloud contamination,

atmospheric variability and sun-sensor-surface viewing geometries

[23,24]. A filtering process was needed before using VI to retrieve

phenological metrics [25]. We used the Savitzky-Golay filter

method to remove the noise in the VI time series [26].

Methods
Retrieving CFP dates from NEE data. The SCU and ECU

were retrieved based on the method proposed by Baldocchi et al.

[22]. The original method is based on visual interpretation of the

daily NEE time series. We developed this method to retrieve SCU

and ECU automatically through fitting a regression equation

between the daily NEE and the Julian Day of Year (DOY), using

subsets of NEE data from spring source-sink and autumn sink-

source transition periods, respectively (Figure 2). Specifically, SCU

and ECU were automatically retrieved by the following three

steps: (1) the original daily NEE was smoothed with a moving

average of a 15-day width; (2) based on the smoothed daily NEE, a

10-day width window with the first 5 elements greater than zero

and the last 5 elements less than zero was selected in the spring/

summer period to predict SCU, and another 10-day width

window with the first 5 elements less than zero and the last 5

elements greater than zero was selected in the autumn/winter

period to predict ECU; and (3) the smoothed daily NEE in the two

selected windows was linearly regressed to predict SCU and ECU

at the zero intersection.

Retrieving LSP dates from remotely sensed data. A

number of methods have been developed to retrieve land surface

phenology metrics using satellite VI time series [27–29]. These

methods can be classified into 3 types: the threshold method (i.e., a

global absolute threshold value or a local relative threshold value

defined as a fraction of the annual amplitude) [30–33], the

autoregressive moving average method [27,34] and the function

fitting method [28,35–39]. Almost all the methods mentioned

above have been proven to be consistent with their given

references (e.g., ground observed phenology events, model

simulated vegetation phenology or eddy covariance flux tower-

derived phenological metrics), but it was very difficult to give the

ordinal rank of SOS methods because they varied geographically

[27]. Therefore, this study first investigated these 3 types of

satellite methods (including 6 specific retrieval methods) based on

the first MODIS VI product (i.e., NDVI), and selected the one

with the best performance to retrieve LSP dates. Then, a

comparison between the two MODIS VI products (i.e., NDVI

and EVI) was carried out based on the best-performing LSP

retrieval method, and the more suitable VI product was selected to

Estimating Carbon Flux Phenology

PLOS ONE | www.plosone.org 2 December 2013 | Volume 8 | Issue 12 | e84990



retrieve LSP dates as the explanatory variables in estimating CFP

dates. The detailed descriptions about these 6 retrieval methods

and the evaluation process were given in Text S1.

Identifying the explanatory climate drivers. The LSP

dates derived from the more suitable VI product with the best

satellite retrieval method, the cumulative daily air temperature

(above 0uC) and total precipitation were used to identify the

explanatory climate drivers. Previous studies indicated that SCU

usually occurs 0–20 days later than SOS while ECU usually occurs

0–60 days earlier than EOS [4,19,21]. Therefore, we restricted the

impact period of climate drivers on SCU/ECU in the range from

60 days before SOS/EOS to 20 days after SOS/EOS. To identify

the optimal impact period for each climate driver, different impact

periods were tested according to the distance (in days) from SOS/

EOS, 10-day after SOS/EOS and 20-day after SOS/EOS with a

step of 10 days (Figure 3). Therefore, we got 18 candidate impact

periods for each climate driver (i.e., cumulative daily air

temperature (above 0uC) or total precipitation). The coefficient

of determination (R2) between observed SCU/ECU and each

climate driver with different candidate impact periods was used to

select the best explanatory climate drivers. Only the climate driver

in a given impact period with the highest R2 in its group (i.e., 18

candidate cumulative temperature or total precipitation data for

each biome type and each phenological metric) and with a

statistical significance at the 0.05 level will be selected to estimate

SCU/ECU.

Estimating CFP dates. Using the least-squares linear

regression model, the CFP dates (i.e., SCU and ECU) can be

estimated with the LSP dates (i.e., SOS and EOS) and the selected

explanatory climate drivers. The estimating performance of the

linear regression models was evaluated with coefficient of

determination (R2), Root Mean Square Error (RMSE) and the

leave-one-out cross-validation approach [19,40]. Significance test

for these linear regression models was conducted by F-test with the

standard 0.05 cutoff indicating statistical significance (i.e.,

P,0.05).

Results

The relationship between CFP and LSP dates
Our evaluation about the different LSP retrieval methods and

MODIS VI products indicated that the NDVI-derived LSP dates

with the local mean midpoint threshold method were more

consistent with the observed CFP dates (see details in Text S2).

Table 1 showed the relationship between CFP and LSP dates.

SOS explained the SCU variance by 43.1%–78.4% for different

biomes. The RMSE between SCU and SOS ranged from 2.7 to

7.6 days, which was far smaller than the temporal resolution of the

satellite data (,16 days). This indicated that the SCU can be

estimated with SOS to the accuracy that was comparable to the

16-day composited temporal resolution of satellite sensor. Com-

paring with the SCU, lower performance was found for estimating

ECU based on EOS, with relatively lower explanatory variances

and higher RMSE for different biomes. However, this RMSE was

still comparable with the 16-day composited temporal sampling

resolution of satellite data.

Different biomes showed distinctive CFP dates as estimated

based on the LSP dates (Table 1). For example, evergreen

needleleaf forest had the highest explanatory variance (78.4%) in

estimating SCU based on SOS while grasslands had the lowest

(43.1%). On the contrary, evergreen needleleaf forest showed the

poorest performance in estimating ECU based on EOS while

grasslands showed the best performance (67.1%). In general, the

performance in estimating CFP dates for a single biome was better

than multiple biomes.

Figure 1. Distribution of eddy flux towers and their corresponding biome types.
doi:10.1371/journal.pone.0084990.g001
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The relationship between CFP dates and climate drivers
Figure 4 showed the coefficient of determination (R2) between

CFP dates and climate drivers during different impact periods. For

SCU explanatory variances by the cumulative daily air temper-

ature (above 0uC) (Figure 4A), evergreen needleleaf forest

demonstrated better performance than other 3 biomes with

consistently the highest R2 values (ranging from 88.6% to 95.7%

among the 18 tested impact periods). Considering its high

explained variances, we selected the cumulative daily air

temperature above 0uC during 20 days before NDVI-derived

SOS as one of the explanatory variables in estimating SCU.

Similarly, the total precipitation during the period of 30-day

before SOS and 10-day after SOS was also selected for evergreen

needleleaf forest in estimating SCU (Figure 4B). All the total

precipitation variables during different impact periods were not

significant at the 0.05 level for both deciduous broadleaf forest and

croplands (Figure 4B). Therefore, no precipitation variables were

selected for these two biomes to estimate SCU. In summary, the

optimal impact periods for different climate drivers (i.e., cumula-

tive air temperature and total precipitation) and different CFP

metrics (i.e., SCU and ECU) were marked with stars in Figure 4.

Only the climate drivers being significant during their impact

periods were selected as the explanatory variables to estimate CFP

dates.

The sensitivity of CFP metrics to climate drivers varied among

different biomes (Figure 4). For SCU, evergreen needleleaf forest

showed higher sensitivities to both cumulative temperature (above

0uC) and total precipitation, while deciduous broadleaf forest and

cropland were only sensitive to cumulative temperature (Figure 4

A, B). Grassland had a higher sensitivity to total precipitation

during the period of 20-day before SOS and 10-day after SOS but

a lower sensitivity to cumulative temperature for the 6 selected

grassland sites. For ECU, herbaceous biomes (i.e., grasslands and

croplands) showed a higher sensitivity to cumulative temperature

than woody biomes (e.g., deciduous broadleaf and evergreen

needleleaf forest) (Figure 4 C). Deciduous broadleaf forest showed

higher explained variances by total precipitation variables in

different impact periods for ECU, while evergreen needleleaf

forest demonstrated lower explained variances (Figure 4 D).

Figure 2. A schematic demonstration of the retrieval method for carbon flux phenology dates. A) The original and smoothed 15-day
mean Net Ecosystem Exchange (NEE) of carbon, and B) the two selected transition periods for spring source-sink and autumn sink-source for
identifying linear regressions between NEE and the Julian Day of Year (DOY). Start/End of Carbon Uptake (SCU/ECU) is estimated at the zero
intersection.
doi:10.1371/journal.pone.0084990.g002
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Estimation of CFP dates with LSP dates and climate
drivers
Figure 5 showed the relationships between observed and

estimated CFP dates based on the linear regression (Figure 5 A,

C, E, G) and the leave-one-out cross-validation (Figure 5 B, D, F,

H) approaches in terms of the best performing explanatory

variables. All of the estimation performances were statistically

significant (P,0.05). The explained variance for SCU ranged from

71% to 97%, and the RMSE for SCU ranged from 2.6 to 5.2 days

(Figure 5 A, C, E, G). Comparing with SCU, the ECU estimation

showed a relatively lower performance, with a relatively lower R2

(60%–84%) and a higher RMSE (5.3–8.5 days) (Figure 5 A, C, E,

G).

The CFP estimation performance varied among different

biomes. The estimation RMSE for both SCU and ECU was less

than 9 days for deciduous broadleaf forest (Figure 5 A, B).

Evergreen needleleaf forest had a lower RMSE for SCU but a

higher RMSE for ECU (Figure 5 C, D). Grasslands had the

highest R2 but also the highest RMSE for ECU (Figure 5 E, F),

while croplands had the lowest RMSE for both SCU and ECU

(Figure 5 G, H).

Discussion

The optimal explanatory variables in estimating CFP
dates
The temporal and spatial variation in CFP metrics (i.e., SCU

and ECU) is controlled by many factors, including the biome type,

canopy structures, species compositions, soil type, forest age and

meteorological factors (e.g., temperature, precipitation, etc.)

[3,18,19,41]. Wu et al. [3] demonstrated that the interannual

variation in NEE and phenological indicators at a study site could

be mainly resulted from the meteorological factors, while

differences of canopy structures and species compositions had no

significant impacts. On the contrary, when the spatial variation

was considered, the primary controlling factors may be site-specific

differences in canopy structures, soil prosperities and biome types.

Therefore, they suggested a separated analysis for spatial and

temporal variation in the response of annual NEE to CUP and its

transitions. In fact, the most challenging aspect in estimating CFP

dates is to identify the optimal explanatory variables whether or

not the temporal and spatial variation in CFP metrics is separately

considered.

The satellite-derived phenological metrics reflect an integrated

signal of a group of species (individuals) in a pixel because remote

sensing can capture the spectral characteristics of green leaf and

vegetation canopy structures at moderate to coarse spatial

resolutions [19,42,43]. Our results showed high explained SCU/

ECU variances with SOS/EOS (Table 1), which have been also

found by Gonsamo et al. [19]. This suggested that satellite-derived

LSP dates can effectively reflect the spatial and temporal variations

in CFP dates and should be selected as one of the primary

explanatory variables in estimating CFP dates, especially for the

large-scale (e.g., regional or continental) studies. However, we

should also note that large discrepancies exist in different LSP

retrieval methods in terms of the CFP estimating performances

(Text S2). Because of the different SOS/EOS definitions (Text

S1), the satellite-derived LSP metrics with different methods do

Figure 3. A schematic representation of the different impact
periods for climate drivers. The different impact periods of climate
drivers on carbon flux phenology dates were determined in terms of
the distance (in days) from satellite-derived Start/End of Season (SOS/
EOS), 10-day after SOS/EOS and 20-day after SOS/EOS with a step of 10
days. There were totally 18 candidate impact periods for each climate
driver. Negative values indicate the days before SOS/EOS and positive
values indicates the days after SOS/EOS.
doi:10.1371/journal.pone.0084990.g003

Table 1. The coefficient of determination (R2), Root Mean Square Error (RMSE) and Bias between Net Ecosystem Exchange (NEE)-
derived carbon flux phenology dates and Normalized Difference Vegetation Index (NDVI)-derived land surface phenology dates
based on the best performing retrieval method (i.e., the local mean midpoint threshold method) for different biomes.

Biome type SOS vs. SCU{ EOS vs. ECU{

Samples R2 (%) RMSE Bias Samples R2 (%) RMSE Bias

Deciduous broadleaf forest 24 74.3* 7.5 210.5 20 51.4* 6.3 4.6

Evergreen needleleaf forest 16 78.4* 7.6 15.8 30 43.5* 13.1 35.6

Grasslands 16 43.1* 6.5 3.3 14 67.1* 10.3 9.4

Croplands 17 68.8* 2.7 20.2 22 65.0* 5.6 14.7

All biomes 73 49.6* 17.1 0.7 86 43.5* 14.6 18.8

{SOS = Start of Season derived from satellite data, SCU= Start of Carbon Uptake derived from carbon flux data, EOS = End of Season derived from satellite data,
ECU= End of Carbon Uptake derived from carbon flux data.
*Statistically significant at the 0.05 level.
doi:10.1371/journal.pone.0084990.t001
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not actually measure the same phenological traits [44]. Our results

demonstrated that the SCU/ECU is much closer to and

more consistent with the time when satellite-derived vegetation

index reaches its midpoint in a growing season for the 4 tested

biomes.

Meteorological factors are important candidate explanatory

variables in estimating CFP dates. Previous results [18,19] and our

results (Table 1, Figure 5) all indicated that combining optimal

climate drivers with LSP dates can obviously improve the

estimation robustness when the established regression models are

applied in a wide spatial and temporal range. Our results also

demonstrated the differences in the optimal impact periods of

climate drivers on SCU/ECU for different biomes (Figure 4).

Therefore, the key question is how to select the optimal

explanatory climate drivers for different biomes. Gonsamo et al.

[19] conducted a sensitivity analysis to search the optimal impact

period based on human calendar month (e.g., the mean air

temperature in April and May for SCU). Rather than applying the

human calendar month, we used the distance (in days) from the

LSP dates to identify the optimal impact periods. This is because

the LSP dates retrieved with the best performing method are close

to the CFP dates and vary simultaneously with CFP dates when

across regions and/or biomes, while the unified human calendar

month cannot reflect the variations in vegetation phenology across

large heterogeneous areas and thus may fail to describe the actual

impact period of climate drivers on SCU/ECU.

The difference in CFP estimation performance among
different biomes
Large discrepancies existed in the CFP estimation performance

for different biomes. The CFP dates are relatively easy to be

estimated for deciduous broadleaf forest because of its distinct

seasonal variation in canopy structure and carbon flux which can

be effectively captured by remote sensing and eddy covariance

system. Our estimated CFP dates based on both LSP dates and

climate drivers for deciduous broadleaf forest was comparable

with that based on observed carbon flux and meteorology data

(5.20 vs. 5.12 for SCU, 5.30 vs. 6.65 for ECU in RMSE) and

slightly better than that solely based on satellite data (5.20 vs. 6.98

for SCU, 5.30 vs. 8.88 for ECU in RMSE) from Gonsamo et al.

[19].

Theoretically, it is difficult to define CFP metrics for conifers

because NEE may be negative throughout the year. The transition

from net positive to net negative NEE is more flexible in

coniferous than in deciduous forest because the seasonality of

coniferous forest is not related to changes in canopy structure [45].

However, in high latitude snow-dominated coniferous forests, the

annual cycle from near-total snow cover to a mature canopy

provides a distinct and detectable VI and NEE cycle [27]. The flux

sites for evergreen needleleaf forest in this study are distributed

above 45uN and are fully covered by snow in winter. The satellite-

derived LSP dates are closely related to the timing of spring

snowmelt and winter snow, which substantially reflects the change

in air temperature. Therefore, the CFP dates estimation perfor-

mance with LSP dates and climate drivers for evergreen needleleaf

forest in this study was relatively high, especially in estimating

SCU. It should be noted that the high estimation performance for

evergreen needleleaf forest may be only suitable for snow-

dominated ecosystems and cannot be extrapolated to other

coniferous forests, such as temperate and subtropical evergreen

needleleaf forest.

Out results also demonstrated a high estimation performance

for CFP dates of herbaceous biomes (i.e., grassland, crop). The

high estimation performance may result from the primary control

of satellite-derived LSP dates on estimating CFP dates (Table 1).

For example, the phenological development for the 6 selected

grassland sites was mainly precipitation-driven (Figure 4 A, B) and

their leaf-out and NEE transition was usually occurred in a short

period. Moreover, herbaceous biomes do not have understory

plants that could confound the spectral signal. Therefore, LSP

dates showed a significant variance explanatory rate in estimating

CFP dates for herbaceous biomes.

The difference in estimation performance between SCU
and ECU
The SCU estimation performance was generally better than

ECU (Figure 5). The explained variance by LSP dates (Table 1)

and climate drivers (Figure 4) for ECU was generally lower than

that for SCU, implying that the satellite-derived EOS and climate

drivers had relatively weak relationships with ECU. During the

greenup phase, increasing greenness is closely related to chloro-

phyll, leaf area and changes in canopy structure, which scale

rather well with photosynthesis and respiration [46,47]. However,

during the leaf senescence phase, changes in leaf color, environ-

mental stress (e.g., drought stress), and meteorological conditions

(e.g., cooler air temperature) may complicate the relationships

between canopy structure-based phenology metrics and carbon

fluxes, and in general make the detection of senescence events

more difficult [41,48]. In fact, the factors controlling senescence

and dormancy are not well-documented in all biomes [41]. A

mechanistic understanding of the drivers controlling senescence

and dormancy is urgently needed.

Potentials of the optimization method in estimating CFP
metrics
The optimization method proposed in this study can be used to

extrapolate regional CFP metrics through extending the footprints

of flux towers. As for a given biome over large heterogeneous

areas, a synoptic train of thought is first to classify the biome to

smaller ecoregions, or use existing ecoregion maps (e.g., the

terrestrial ecoregions compiled by the World Wildlife Fund

(WWF) (available at: http://worldwildlife.org/biome-categories/

terrestrial-ecoregions)), since vegetation phenology may differ

significantly even within the same biome. Then for each

ecoregion, time-series satellite data, climate data and NEE data

for the involved eddy flux sites can be used to build an optimized

empirical model to predict CFP metrics beyond the footprints of

flux towers.

Figure 4. The relationships between carbon flux phenology dates and climate drivers in different impact periods. A) The coefficient of
determination (R2) between Net Ecosystem Exchange (NEE)-derived Start of Carbon Uptake (SCU) and the cumulative daily air temperature (above
0uC) for different periods around Normalized Difference Vegetation Index (NDVI)-derived Start of Season (SOS). B) The R

2 between NEE-derived SCU
and the total precipitation for different periods around NDVI-derived SOS. C) The R

2 between NEE-derived End of Carbon Uptake (ECU) and the
cumulative daily air temperature (above 0uC) for different periods around NDVI-derived End of Season (EOS). D) The R2 between NEE-derived ECU and
the total precipitation for different periods around NDVI-derived EOS. Red colored line: Deciduous broadleaf forest; green: evergreen needleleaf
forest; blue: grassland; orange: cropland. Stars indicate the locations with the highest R2 for each biome and with a statistical significance at the 0.05
level. Solid circles indicate statistically significant R2 at the 0.05 level, and hollow circles indicate statistically non-significant R2.
doi:10.1371/journal.pone.0084990.g004
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Figure 5. Relationships between observed and estimated carbon flux phenology dates for different biomes. A) and B) Deciduous
broadleaf forest, C) and D) Evergreen needleleaf forest, E) and F) Grasslands, and G) and H) Croplands. The left panel (i.e., A, C, E and G) indicates the
relationships between observed Start/End of Carbon Uptake (SCU/ECU) in Julian Day of Year (DOY) and estimated with the best performing
explanatory variables given in Figure 4, and the right panel (i.e., B, D, F and H) indicates the relationships between observed SCU/ECU and estimated
with the best performing explanatory variables based on the leave-one-out cross-validation approach.
doi:10.1371/journal.pone.0084990.g005
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Conclusions

This study provided a methodology to estimate CFP metrics

with satellite-derived LSP metrics and climate drivers for different

biomes through a synthesis of AmeriFlux observations. LSP

metrics combined with optimal climate drivers can explain SCU

variability by more than 70% (ranging from 71% to 97% for

different biomes) and ECU variability by more than 60% (ranging

from 60% to 84% for different biomes). The RMSE of the

estimations ranged from 2.6 to 5.2 days for SCU and from 5.3 to

8.5 days for ECU. The results of our study highlighted the relative

strengths and weaknesses of LSP metrics derived from different

methods and climate drivers in different impact periods in

estimating a specific CFP metric for different biomes. The

estimation performance for the methodology was primarily

dependent on the optimal combination of the LSP retrieval

methods, the explanatory climate drivers, the biome types, and the

specific CFP metric. Although the proposed methodology showed

high performance in estimating CFP metrics for biomes with a

distinct and detectable VI and NEE cycle, a better mechanistic

understanding of the drivers controlling vegetation phenology is

urgently needed in order to improve the estimation performance,

especially for senescence and dormancy phenology.
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