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Summary. Data analysis for randomized trials including multi-treatment arms is often com-
plicated by subjects who do not comply with their treatment assignment. We discuss here
methods of estimating treatment efficacy for randomized trials involving multi-treatment arms
subject to non-compliance. One treatment effect of interest in the presence of non-compliance
is the complier average causal effect (CACE) (Angrist et al. 1996), which is defined as the treat-
ment effect for subjects who would comply regardless of the assigned treatment. Following the
idea of principal stratification (Frangakis & Rubin 2002), we define principal compliance (Little
et al. 2009) in trials with three treatment arms, extend CACE and define causal estimands of
interest in this setting. In addition, we discuss structural assumptions needed for estimation
of causal effects and the identifiability problem inherent in this setting from both a Bayesian
and a classical statistical perspective. We propose a likelihood-based framework that models
potential outcomes in this setting and a Bayes procedure for statistical inference. We compare
our method with a method of moment approach proposed by Cheng & Small (2006) using a
hypothetical data set, and further illustrate our approach with an application to a behavioral
intervention study (Janevic et al. 2003).

Keywords: Causal Inference, Complier Average Causal Effect, Multi-arm Trials, Non-compliance,
Principal Compliance, Principal Stratification

1. Introduction

1.1. Non-compliance in Trials Involving Multi-Treatment Arms
Data analysis for randomized controlled trials (RCT) is often complicated by subjects who
do not comply with their treatment assignment. Non-compliance in two-arm trials has
been extensively studied (Angrist et al. 1996, Imbens & Rubin 1997a,b, Little & Yau 1998,
Peng et al. 2004, Robins 2000). However there has been limited research on how to address
non-compliance for trials involving two or more active treatments.

For two-arm randomized intervention trials, Angrist et al. (1996) proposed the complier
average causal effect (CACE) as a valid estimand for treatment efficacy, and discussed
instrumental variable (IV) methods of estimation. The basic idea is to classify participants
as one of compliers(c), defiers(d), never-takers(n), and always-takers(a) according to their
potential compliance status upon exposure to an active treatment and a control treatment.
The CACE is defined as the average treatment effect for the subpopulation of compliers.
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2 Long et al.

More recently, Frangakis & Rubin (2002) introduced the idea of principal stratification to
adjust treatment comparisons for post-treatment variables, including treatment compliance.
Any treatment effect defined within one principal stratum or combined principal strata is
a valid causal estimand. However, methods for two-arm trials are not directly applicable
to trials involving more than two treatments, since the usual identifying assumptions for
two-arm trials are not sufficient to point identify the CACE and other causal estimands
(Cheng & Small 2006).

Given this lack of identifiability, some have sought upper and lower bounds of the iden-
tification region of the parameters (Joffe 2001, Manski 2003, Shafer 1982, Walley 1991).
Cheng & Small (2006) proposed bounds on causal effects in three-arm trials subject to non-
compliance, using method of moment estimates. To account for sampling uncertainty, they
followed Horowitz & Manski (2000) and Beran (1988) and constructed confidence intervals
to cover the identification regions of the parameters of interest with fixed probability. This
method seems to be restricted to outcomes with finite support, since useful bounds are not
available for unbounded outcomes. In addition, it is not trivial to extend their method to
more complicated designs, for example, a four-arm trial.

In a seminal paper, Rubin (1978) elucidated the role of randomization in the search
for effective treatments and proposed a general Bayesian framework for estimating causal
effects. It made clear the role of mechanisms for sampling trial subjects, assigning treat-
ments, and modeling missing data. Imbens & Rubin (1997a) applied this framework to the
problem of non-compliance in randomized trials, specifically two-arm randomized trials.
Their approach clarified the role played by the treatment assignment mechanism and more
importantly the complications that arise from the selective receipt of treatment due to pos-
sible non-compliance. For trials involving two treatment arms subject to non-compliance,
Imbens & Rubin (1997a) also discussed situations where relaxing assumptions such as ex-
clusion restriction (ER) and monotonicity (Angrist et al. 1996) leads to causal estimands
that are not fully identified. They showed that the issues of identification are quite differ-
ent from the Bayesian and the classical statistical perspectives, in that with proper prior
distributions, posterior distributions are always proper even when the parameters of inter-
est are only partially-identifiable in a classical statistical sense. Imbens & Rubin (1997a)
also discussed what could be learned in this case using the proposed Bayesian framework.
When trials involving multiple treatment arms are subject to non-compliance, we encounter
similar yet more complex identifiability problems.

1.2. A Motivating Example
The article is motivated by the Women Take Pride (WTP) study (Janevic et al. 2003).
The WTP study involved women aged 60 years and older with diagnosed cardiac disease,
who were treated with daily heart medication. This study was conducted to evaluate
behavioral intervention programs that were aimed at enhancing the women’s ability to
manage their disease. In addition to a usual care control treatment, two formats of an
behavioral intervention were compared in this study: a Group format, where 6-8 women
meet for 2-2.5 hours in a group setting; and a Self-directed format where the participant
studies at home following an initial orientation session. Both formats consisted of six weekly
units. The same material was presented in the two versions of interventions and only their
formats differed. The WTP study utilized a Doubly Randomized Preference Trial (DRPT)
design (Long et al. 2008), where some participants are randomized to a treatment in a
random arm and some are allowed to choose their treatments in a choice arm. The design
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is discussed in details by Long et al. (2008). The random arm is a typical three-arm
randomized trial and is the primary motivation for our work. The women in the random
arm were randomized to three groups: control, the Group treatment and the Self-Directed
treatment. The WTP study was subject to non-compliance. In this paper, compliance was
defined as whether a woman completed at least one unit of materials and it was shown that
the compliance rates were 76% for both treatments in the Random arm and 100% for the
control. Previous analysis has followed the intent-to-treat paradigm, and investigators have
been interested in estimating the treatment efficacy after accounting for non-compliance.

In this paper, we propose a Bayesian approach in the spirit of Rubin (1978) and Imbens
& Rubin (1997a) to estimate causal effects in trials with more than one active treatment that
are subject to non-compliance such as the random arm in the WTP study. Roy et al. (2008)
recently introduced another useful approach to adjust for noncompliance in trials with two
active treatments, where a Bayes procedure was also used for inference. They proposed to
directly model marginal distributions of the compliance status under each treatment based
on observed data, and the marginal models are then used through a parametric form to con-
struct a model for principal compliance (Little et al. 2009) after incorporating a parameter
that captures the association between the marginal distributions and is implicitly assumed
be independent of covariates. There are several key differences between our approach and
theirs. First, our approach models the principal compliance directly and treat the principal
compliance as missing data in the analysis, which avoids the implicit assumption that the
association parameter is independent of covariates. While conceptually the approach in Roy
et al. (2008) can be extended to trials with more treatment arms, it becomes considerably
more complicated and requires more implicit assumptions when one needs to model a distri-
bution of principal compliance indirectly through incorporating association parameters that
are independent of covariates with multiple models that are postulated for marginal dis-
tributions of compliance within each treatment arm. Also, Roy et al. (2008) limited their
discussion to binary outcomes, whereas our approach is developed for general outcomes,
continuous or discrete.

In this paper, we focus on a comparison with the method proposed in Cheng & Small
(2006) and an attempt to clarify the differences between a Bayesian approach and a classical
statistical approach (or a frequentist’s approach) in the setting of our interest. The rest of
the paper is organized as follows. In Section 2, we introduce principal stratification of a
population of interest based on principal compliance status (Little et al. 2009), and define
causal estimands of interest; we further discuss structural assumptions and issues related to
the identifiability of causal estimands of interest and contrast our Bayesian approach with
classical statistical approaches. In Section 3, we propose a likelihood-based framework that
models potential outcomes in a trial, and discuss a Bayes inference approach which uses a
data augmentation algorithm (DA) (Tanner & Wong 1987) to simulate the posterior distri-
butions of causal parameters, and we compare our approach with the method of moment
approach proposed in Cheng & Small (2006) using a hypothetical data set. In Section 4,
we illustrate our approach using a behavioral intervention study (Janevic et al. 2003). We
make some concluding remarks in Section 5.
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4 Long et al.

2. The Problem

2.1. Principal Compliance and Stratification
For simplicity and illustration purposes, we present our framework using a randomized trial
involving two active treatment arms (1 and 2) and one control arm (0), and we will briefly
discuss extensions to trials with multi-treatment arms. Let R denote the random treatment
assignment (R = 0, 1, 2), and T (r) denote the treatment actually received when assigned
treatment R = r. In full generality, there are 27 principal strata (Frangakis & Rubin
2002) defined by the set of 33 possible combinations (T (0), T (1), T (2)); all individuals in
the population are assumed to belong to one of these strata. All that is observed about
the principal strata is the value of T (r) corresponding to the treatment r actually assigned,
for each individual in the sample. We thus have a major identifiability problem. We make
some assumptions to reduce the scale of this problem. We first assume

Assumption 1. Subjects have no access to an active treatment if not assigned to that
treatment.

This is a type of monotonicity assumption in the sense of Angrist et al. (1996), and implies
that (1) subjects assigned to control always take the control; and (2) subjects assigned one
of the active treatments either take that treatment, or if they fail to comply, take the control
treatment. Hence we know T (0) = 0, T (1) = 1 or 0, and T (2) = 2 or 0. This reduces the
number of principal compliance strata from 27 to 4, based on subjects’ potential compliance
status under both active treatments. Following Little et al (2008), we define a principal
compliance variable C for these strata, with values C = 3 for always-compliers who comply
with both treatments (T (0) = 0, T (1) = 1, T (2) = 2), C = 2 for 2-only-compliers those
who comply when assigned to treatment 2 but do not comply when assigned to treatment
1 (T (0) = 0, T (1) = 0, T (2) = 2), C = 1 for 1-only-compliers who comply when assigned
to treatment 1 but do not comply when assigned to treatment 2 (T (0) = 0, T (1) = 1,
T (2) = 0), and C = 0 for noncompliers who do not comply with either active treatment
(Tr = 0 for r = 0, 1, 2). Principal compliance is unobserved in practice, and differs from
observed compliance under the assigned treatment. For example, observed compliers in
treatment 1 arm are a mixture of always-compliers (C = 3) and 1-only-compliers (C = 1).
Let ρc = Prob(C = c) denote the proportion of the population in principal compliance
stratum c.

Consider a study with n subjects. For each subject i, let Yi(R,T) denote the potential
responses under randomization R and treatment receipt T , where R and T are the ran-
domization assignment and treatment received for all subjects. We also let µc,r,t denote the
expected value of Y in principal compliance stratum c when treatment R = r is assigned
and treatment T = t is received (Table 1).

2.2. Structural Assumptions and Causal Estimands
In addition to Assumption 1, we consider several other structural assumptions.

Assumption 2. Stable Unit Treatment Value Assumption (SUTVA) (Rubin 1978). The
treatment receipt T (r) and the outcome Y for subject i are not affected by the treatment
assignments for other subjects.

Given SUTVA, Yi(R,T) can be written as Yi(Ri, Ti).
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Assumption 3. Exclusion Restriction (ER) (Angrist et al. 1996). The effect of treat-
ment assignment R on the outcome Y is entirely through the effect of treatment receipt T
on Y .

Given SUTVA and ER assumption, we have Yi(r, t) = Yi(r′, t), and




µ0,0,0 = µ0,1,0 = µ0,2,0

µ2,0,0 = µ2,1,0

µ1,0,0 = µ1,2,0

Hence, we can write µc,t instead of µc,r,t and Yi(Ti) instead of Yi(Ri, Ti) , and Table 1
reduces to Table 2.

Following Angrist et al. (1996), we consider a comparison of mean outcomes to be causal
if it compares means in the same population or subpopulation. Direct comparison of mean
outcomes for observed compliers in treatment arm 1 and in treatment arm 2 is not causal
without assumptions, because the observed compliers in each treatment arm are a mixture
of two different principal compliance strata and hence are not from the same subpopulation.
On the other hand, CACEs compare mean outcomes under two different treatments within
a same principal compliance stratum, and hence are causal. In the setting of one treatment
arm and 1 control arm, the CACE is uniquely defined as the difference in means between
active treatment and control in the population of principal compliers. In our setting, a
number of interesting CACEs can be defined. Three of particular interest are: 1) CACE12 =
µ3,1−µ3,2, the CACE for comparing treatment 1 to treatment 2 for always-compliers(C=3);
2) CACE1 = (ρ3µ3,1 + ρ1µ1,1)/(ρ3 + ρ1) − (ρ3µ3,0 + ρ1µ1,0)/(ρ3 + ρ1), the CACE for
comparing treatment 1 to control for always-compliers (C=3) and 1-only-compliers (C=1);
3) CACE2 = (ρ3µ3,2 + ρ2µ2,2)/(ρ3 + ρ2) − (ρ3µ3,0 + ρ2µ2,0)/(ρ3 + ρ2), the CACE for
comparing treatment 2 to control for always-compliers(C=3) and 2-only-compliers(C=2).
CACE1 and CACE2 are equivalent to those defined in (Angrist et al. 1996) for comparing
treatment 1 vs control and treatment 2 vs control, respectively. CACE12, however, is a
new causal estimand. A simple approach to the three-arm problem is to estimate CACE1

and CACE2 using previously developed methods for comparing an active treatment to
the control, and then compare CACE1 and CACE2. However, that comparison is not
causal without assumptions, because CACE1 and CACE2 refer to different subpopulations.
Methods for estimating CACE12 are more complex, but arguably CACE12 is the appropriate
causal estimand, since a causal comparison of efficacy is only possible on the subpopulation
of individuals who comply with both treatments. We note that Cheng & Small (2006)
provided some discussion of the use of CACE12. Other causal treatment effects can also be
defined, for example, µ3,2 − µ3,0, µ3,1 − µ3,0 µ1,1 − µ1,0 and µ2,2 − µ2,0, but we view these
as of secondary interest.

The relevance of a causal treatment effect in principal stratum C = c increases with the
proportion of the whole population that belongs to this principal stratum, that is, ρc. In
particular when ρc is close to 0, the causal effect relates to a small part of the population
and may not be considered of much interest. In some circumstances, we may be able to
conjecture that a particular ρc is close to zero and therefore negligible, for example, if
treatment 1 has less significant side effects than treatment 2 and the side effects are the
sole reason for non-compliance, then the following assumption may be valid,

Assumption 4. ρ2 = 0, that is, subjects who would comply with treatment 2 would
always comply with treatment 1.
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6 Long et al.

This assumption is also a type of monotonicity assumption in the sense of Angrist et al.
(1996). We will see that when one or more principal stratum proportions are close to 0,
estimation of valid causal effects is simplified and more informative results may be obtained.
Hence, in practice it is important to identify situations where particular population propor-
tions may be assumed negligible. In the WTP study, it is unclear whether Assumption 4
holds, therefore we will conduct a sensitivity analysis for the WTP study with or without
Assumption 4.

2.3. Identifiability of Causal Estimands
We first define the point-identifiability or lack thereof in a classical statistical sense, that is,
parameter(s) are not point identifiable if Fθ1 = Fθ2 where Fθ is the probability distribution
of the observables indexed by θ and θ1 and θ2 are two different values of θ. It has been
long recognized in many settings classical statistical methods may have difficulties dealing
with non-identifiable or partially-identifiable parameters (Balke & Pearl 1997, Cheng &
Small 2006, Manski 2003, Neath & Samaniego 1997). In particular, Cheng & Small (2006)
studied a similar design as ours, and they showed that the treatment effects within basic
principal strata are only partially identified under certain assumptions, which means that
given an unlimited number of observations, one could only place the parameter of interest
in a set-valued identification region, where the values within this set (region) can not be
distinguished based on the observables and the set is a strict subset of the parameter space.
Specifically in the setting of our interest, under Assumption 1-3, there are 8 marginal
means that are of interest (Table 2), and none of which is point identifiable; hence, all
causal treatment effects discussed in Section 2.2 are only partially identifiable. For example,
multiple values of CACE12 may lead to the same maximized observed data likelihood (Long
2005) or solve the same set of estimating functions, equation (1)-(4) in Cheng and Small
(2006), and usually these values form a set-valued interval. Under Assumption 1-4, µ22 and
µ20 are no longer applicable, hence the number of marginal means in Table 2 is reduced to
six. It can also be shown that in this case µ32−µ30 becomes point-identifiable and the rest
of causal estimands of interest remain not point identifiable.

Following Shafer (1982), Walley (1991), and Horowitz & Manski (2000), Cheng & Small
(2006) argued that when a causal parameter of interest is partially identifiable, the identifi-
cation region can be used as a way to conduct inference; and they also provided confidence
intervals that cover the entire identification region with fixed probability. Alternatively,
Imbens & Manski (2004) developed methods to construct confidence intervals that asymp-
totically cover the true value of the parameter with fixed probability, and showed that the
confidence intervals for the identification region are wider than the confidence intervals for
the true value of the parameter. Hence, the confidence intervals for the identification region,
when used as the confidence intervals for the true value of the parameter, are likely to be
conservative compared to the nominal level of coverage. However, Imbens & Manski (2004)
did so in a considerably simpler setting and it is not trivial to extend their methods to the
setting of our interest (Cheng & Small 2006).

In the above settings with non-identifiable or partially identifiable parameters, often
times identifiability is a less serious issue with a Bayesian framework, one can still make
interpretable inference using a Bayesian approach (Gustafson 2005, Imbens & Rubin 1997a,
Lindley 1971, Neath & Samaniego 1997). In general, if the posterior distributions are
proper, the usual Bayesian framework is valid and its credible intervals still bear their usual
interpretation. Trials with multiple treatment arms are one of these settings. Hence, in
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this setting a Bayesian approach has the potential to provide narrower confidence intervals
and achieve more power, which makes a Bayesian approach more attractive. Even in the
presence of potential improper posteriors, it is still possible to obtain meaningful results
using a Bayesian approach (Gelfand & Sahu 1999).

We note another important difference between classical statistical methods such as a
maximum likelihood (ML) approach and a Bayesian approach in multiple-parameter set-
tings. When there are multiple parameters, the ML estimate(s) of one parameter are
the value(s) that maximize the observed data likelihood jointly with ML estimates of the
other parameters; whereas the marginal posterior distribution of one parameter is obtained
by integrating out the other parameters. In other words, if we assume L(θ1, θ2|data) is
the observed data likelihood with θ1 denoting the parameter of interest and θ2 denot-
ing the other parameters, then the ML estimate of θ1 maximizes the profile likelihood
L(θ1, θ̂2(θ1)|data) and the marginal posterior distribution of θ1 with a prior p(θ1, θ2) is pro-
portional to

∫
L(θ1, θ2|data)p(θ1, θ2)dθ2. Hence, the mode (or a region of modes) of the

posterior distribution of one parameter (say, θ1) does not necessarily correspond to its ML
estimate (or a region of ML estimates), even if flat priors are used. Its 95% Bayesian credible
interval can be quite different from its 95% ML confidence interval. While this is unlikely to
happen when all parameters are point identifiable, this can happen when some parameters
are only partially identifiable, When parameters are partially identifiable, there is usually a
ridge or a plateau in the observed data likelihood surface (joint likelihood), which, however,
may disappear after marginalizing the likelihood with respect to a subset of the parame-
ters. In other words, in the presence of non-identifiability a simple step of marginalizing
in a Bayesian analysis may have more profound impact on the statistical inference than it
initially appears. We suspect that this marginalization step also helps produce narrower
confidence intervals compared to those from a classical statistical approach. On the other
hand, it is not obvious how to marginalize in a sensible way within the classical statistical
framework.

3. A Bayesian Framework

In this section, we present a Bayesian framework for estimating causal parameters of interest
such as CACE12, for randomized trials involving two active treatment arms and one control
arm. Throughout this section, we make Assumption 1-3. We first introduce some additional
notation.

3.1. Notation
Following previous notation, for subject i, let Ri denote the random treatment assignment
(2/1/0), Ci denote the true principal compliance stratum, where it takes a value of 0 for
non-compliers, 1 for 1-only-compliers, 2 for 2-only-compliers, 3 for always-compliers, Ti

denote the treatment actually received which is uniquely determined by Ci and Ri, that is,
Ti(Ci, Ri). Let Yi denote the observed outcome for subject i, and (Yi(2), Yi(1), Yi(0)) denote
the potential outcome when the actual treatment received is 2, 1 and 0, respectively. We
also let Xi denote a set of covariates that may be associated with the potential outcomes
or the principal compliance status.

In a real trial, for each subject i (i = 1, . . . , n), we only get to observe the treatment
assignment (Ri), and the treatment receipt given that particular treatment assignment Ti,
one potential outcome (Yi = Y (Ti)) and Xi. When subject i is not assigned to specific
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8 Long et al.

active treatment, then its compliance status to that treatment is not observed. Hence we
do not observe the principal compliance status Ci, in other words, C is a latent classification
variable and is always missing in our setting. We note that Ci is observable in some other
settings, for example, in a two arm trial (Little et al. 2009). However, since Ti is uniquely
determined by Ri and Ci, the observed values of Ri and Ti may limit the feasible values of
Ci, and we denote this set of feasible values by Cobs,i. For example, subjects with R = 1
and T = 1 can only belong to either C = 1 or C = 3 principal strata but not to C = 2 or
C = 0 principal strata, and then Cobs,i = {1, 3}. Also, if subject i does not actually receive
a treatment, then its potential outcome given that treatment is not observed. We note that
i may be suppressed in our notation wherever it does not lead to confusion.

We define the complete data as (Yi, Ci, Ri, Ti, Xi) with i = 1, . . . , n, which under As-
sumption 2 (SUTVA) constitute an independent and identically distributed sample. Then
the observed data can be represented as (Yi, Cobs,i, Ri, Ti, Xi). Our objective is to re-
late the distribution of first the complete data (Yi, Ci, Ri, Ti, Xi) and then the observed
data (Yi, Cobs,i, Ri, Ti, Xi) to the distribution of the potential outcomes (Yi(2), Yi(1), Yi(0)).
Thus, using the observed data, we can estimate the parameters associated with the distribu-
tion of the potential outcomes (Yi(2), Yi(1), Yi(0)), which should bear causal interpretations.

3.2. Likelihood of the Data
For subject i, the distribution function of the complete data is

f(Yi, Ci, Ri, Ti|Xi) = f(Yi, Ci, Ti|Ri, Xi)f(Ri|Xi)

Since f(Ri|Xi) is the treatment assignment model and is known due to the design, we can
ignore the treatment assignment model and just focus on the f(Yi, Ci, Ti|Ri, Xi) in the
statistical inference. Furthermore, we have

f(Yi, Ci, Ti|Ri, Xi) = f(Yi|Ci, Ti, Ri, Xi)f(Ti|Ci, Ri, Xi)f(Ci|Ri, Xi)

Since Ti is uniquely determined by Ci and Ri, f(Ti(Ci, Ri)|Ci, Ri, Xi) = 1. Due to the ER
assumption and the random treatment assignment, f(Yi|Ci, Ti, Ri, Xi) = f(Yi|Ci, Ti(Ci, Ri), Xi) =
f(Y (Ti) = Yi|Ci, Xi), which indicates that f(Yi|Ci, Ri, Xi) is determined by a model for the
potential outcome Y (Ti). Let α denote the set of parameters associated with the potential
outcome model, that is, f(Y (Ti) = Yi|Ci, Xi, α). Also due to the random treatment assign-
ment, we have f(Ci|Ri, Xi) = f(Ci|Xi, β), where β denotes the set of parameters associated
with the model for the principal compliance C. Assume that α and β are distinct, and let
θ = (α, β). Given the exchangeability and independence among subjects, the complete data
likelihood can be written as

n∏

i

f(Y (Ti) = Yi|Ci, Xi, α)f(Ci|Xi, β) (1)

where the first part models the potential outcomes Y (t) and the second part models the
principal compliance C. The observed data likelihood can be written as

L(α, β) =
n∏

i

Li(α, β|Yi, Ti, Cobs,i, Xi) (2)
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We now examine the observed data likelihood due to subject i, Li. Based on our previous
discussion for Cobs,i, it is straightforward to show that for subject i, the observed data
(Yi, Ti, Cobs,i, Xi) follows a mixture distribution and the observed data likelihood is

Li(α, β|Yi, Ti, Cobs,i, Xi) =
∑

c∈Cobs,i

f(Y (Ti) = Yi|Ci, Xi, α)f(c|Cobs,i, Xi, β)

Hence, the observed data likelihood (2) is a product of different mixture distributions and
only depends on the conditional distributions of potential outcomes Y (t), f(Y (t)|C, X,α)
(t = 1, 2, 3), rather than the joint conditional distribution of (Y (2), Y (1), Y (0)). We shall
see that the causal estimands of interest are only related to the parameters associated with
these marginal distributions.

Let fct(Y |X, αct) denote f(Y (t) = Y |C = c, X, αct), that is, the conditional distribution
of the potential outcome Y (t) for subjects in principal compliance stratum C = c, where
αct denotes a set of parameters associated with this distribution and α is then the collection
of all αct that can be estimated from the data. Under Assumption 1-3, we know from Table
2 that α = (α30, α31, α32, α22, α20, α11, α10, α00) and the rest of αct’s are not applicable.
The conditional distributions in (2) can be replaced by fct(Yi|Xi, αct). In addition, for each
subject i, let ρi,c = f(Ci = c|Xi, β) and fi,ct = fct(Yi|xi, αct), and denote by S(r, t) the set of
subjects with R = r and T = t. Under Assumption 1-3, Table 3 summarizes the structure
of the observed data likelihood. The row totals are proportional to the contribution of
subject i to the observed data likelihood, which accounts for all feasible values in Cobs,i

given the observed T and R and hence are from different mixture distributions. Given the
observed data for subject i, each cell value represents the probability of the observed data
(Yi, Xi, Ti, Ri) when Ci is known. A value of 0 in a cell indicates that the corresponding
value of Ci is not feasible based on the combination of observed Ri and Ti values. For
example, when R = 1 and T = 1, the probability of C = 2 or C = 0 is 0. Then, the
observed data likelihood (2) can be rewritten as follows

L(β, α) =
∏

i∈S(1,1)

ρi,3fi,31 + ρi,1fi,11

ρi,3 + ρi,1
×

∏

i∈S(1,0)

ρi,2fi,21 + ρi,0fi,01

ρi,2 + ρi,0

×
∏

i∈S(2,2)

ρi,3fi,32 + ρi,2fi,22

ρi,3 + ρi,2
×

∏

i∈S(2,0)

ρi,1fi,12 + ρi,0fi,02

ρi,1 + ρi,0

×
∏

i∈S(0,0)

ρi,3fi,30 + ρi,2fi,20 + ρi,1fi,10 + ρi,0fi,00

ρi,3 + ρi,2 + ρi,1 + ρi,0
(3)

Let p(θ) denote the prior distribution of θ = (α, β), and then the posterior distribution of
θ given the observed data is

f(θ|R, T, Y, Cobs,i, X) ∝ p(θ)×
∏

i∈S(1,1)

ρi,3fi,31 + ρi,1fi,11

ρi,3 + ρi,1
×

∏

i∈S(1,0)

ρi,2fi,21 + ρi,0fi,01

ρi,2 + ρi,0

×
∏

i∈S(2,2)

ρi,3fi,32 + ρi,2fi,22

ρi,3 + ρi,2
×

∏

i∈S(2,0)

ρi,1fi,12 + ρi,0fi,02

ρi,1 + ρi,0

×
∏

i∈S(0,0)

ρi,3fi,30 + ρi,2fi,20 + ρi,1fi,10 + ρi,0fi,00

ρi,3 + ρi,2 + ρi,1 + ρi,0
(4)
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10 Long et al.

It is obvious that the posterior distributions in (4) are proper. If we make Assumption 4
in addition to Assumption 1-3, then the observed data likelihood can be further simplified.
Specifically, we can remove the column for Ci = 2 in Table 3 and the distribution of the
observed data for a subject i is no longer a mixture distribution when R = 1 and T = 0,
or when R = 2 and T = 2. In other words, we can change Table 3 and hence the observed
data likelihood (2) and (3) accordingly when more or less assumptions are made.

It is straightforward to show that the marginal means defined in Table 2 and hence causal
estimands of interest discussed in Section 2.2 can be expressed in terms of the parameters
αct’s. For example, µ32 =

∫ ∫
Y f32(Y |X, α32)dν(X)dY and µ31 =

∫ ∫
Y f31(Y |X, α31)dν(X)dY ,

and hence

CACE12 =
∫ ∫

Y f32(Y |X, α32)dν(X)dY −
∫ ∫

Y f31(Y |X, α31)dν(X)dY

where ν(X) is a probability measure on X. Hence we need to make inference about αct’s.

3.3. Estimation and Inference
Generally speaking, the posterior distribution of θ in (4) is mathematically not complicated,
but its computation is complicated due to the fact that it involves mixture distributions. If
C were observed, then the observed data likelihood would no longer involve mixture distri-
butions and could be easily simulated. This leads us to employ a data augmentation (DA)
algorithm (Tanner & Wong 1987) to simulate the posterior distributions in (4), which treats
C as missing data when approximating the posterior distributions. This data augmentation
algorithm is iterative and alternates between two steps, the I-step and the P-step, where I
stands for imputation and P stands for drawing from the posterior distribution. The data
augmentation algorithm can be outlined as follows:

(a) I-step: For each subject i, impute Ci for the “complete data” (Ci, Ri, Ti, Yi, Xi) using
a draw. Specifically, given (Cobs,i, Ri, Ti, Yi, Xi) and θ drawn from current approxi-
mation to its posterior distribution, Ci is drawn from a multinomial distribution with
sample size equal to 1 based on the conditional probabilities, f(C|Cobs,i, Ri, Ti, Yi, Xi).
These conditional probabilities can be computed from Table 3 using the ratio of each
cell probability to its row total.

(b) P-step: Given the imputed “complete data” (Ci, Ri, Ti, Yi, Xi), the posterior distri-
bution becomes

f(θ|Ci, Ri, Ti, Yi, Xi) ∝ p(θ)
∏

t=0,1,2

∏

c=(0,1,2,3)





∏

Ci=c,Tobs,i=t

ρi,cfi,ct



 (5)

If we assume that α are independent of β, then we have

f(β|Ci, Ri, Ti, Yi, Xi) ∝ p(β)
∏

c=(0,1,2,3)

{ ∏

Ci=c

ρi,c

}
, (6)

and

f(αct|Ci, Ri, Ti, Yi, Xi) ∝ p(αct)
∏

Ci=c,Ti=t

fi,ct (7)

for all feasible values of c and t with c = 0, 1, 2, 3 and t = 0, 1, 2, 3.
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Non-compliance in Multi-Arm Trials 11

To complete this algorithm, one needs to specify the priors of θ and we propose to choose
p(θ) as general as possible such as flat priors, while they are still proper and conjugate to
the likelihood in the P-step when possible. The P-step can then be implemented using a
Gibbs sampler. The examples of these priors in some special cases can be found in the next
two sections. To draw the posterior distributions, one needs to iterate between I step and
P-step until the algorithm converges.

In case of no covariates adjustment, ρi,c = ρc, and β in the likelihood (3) and (4) can be
replaced with ρ = (ρ1, ρ2, ρ3, ρ4). Then p(θ) is the prior distribution of θ = (α, ρ). While
the I-step in the DA algorithm does not change, the posterior distributions (5)-(7) in the
P-step simplify to the following:

f(θ|Ci, Ri, Ti, Yi, Xi) ∝ p(θ)
∏

t=0,1,2

∏

c=(0,1,2,3)





∏

Ci=c,Tobs,i=t

ρcfi,ct





and

f(ρ|Ci, Ri, Ti, Yi, Xi) ∝ p(ρ)
∏

c=0,1,2,3

ρNc
c ,

where Nc is the number of the subjects in principal stratum C = c.
The proposed approach relies on the structural assumptions and the specification of pri-

ors. One can incorporate prior experience or preliminary results to determine the selection
of the assumptions and the choice of priors whenever these information is available. When
no prior information is available, we propose to conduct additional sensitivity analysis to
examine the influence of assumptions and priors. First, one can conduct inference under
different combinations of assumptions, and examine how the causal estimands of interest
vary. For example, one can consider the inclusion or exclusion of Assumption 4 and its
variants for other principal compliance stratum such as ρ1 = 0 or ρ0 = 0. In this case,
the comparison should be focused on the causal estimands that remain applicable under
these assumptions, such as CACE12. Second, one can conduct inference under different
specification of priors. One could stay with conjugate priors in the P-step and compare the
results using different parameter values for these conjugate priors including the flat priors.

It is straightforward to extend the proposed framework to the estimation of causal
estimands, in particular, CACE12, for trials with multi-treatment arms. One can introduce
more principal compliance strata and marginal means to Table 2 and 3, and define causal
estimands of interest similar to those in Section 2.2. The observed data likelihood similar
to (2) and (3) can then be constructed following the discussion in this section; hence a
Bayesian inference approach can also be conducted.

3.4. A Hypothetical Example
We now compare our approach with a method of moment approach in Cheng & Small
(2006) using a hypothetical example that was analyzed in Cheng & Small (2006). We shall
see that the results suggest that our proposed method can obtain meaningful inference even
when the treatment effects are only partially identifiable in a classical statistical sense. The
data structure was detailed in Table 2 in Cheng & Small (2006). Suppose that we have a
three-arm trial with a sample size of n = 400 in each arm, the control treatment denoted
by 0 and two active treatments denoted by A and B, with a binary outcome, Y , and Y
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equals to 1 for a successful outcome and 0 for a failure. All of those assigned to the control
arm actually take control, among which 45% have successful outcomes (Y = 1). For those
assigned to treatment A, 95% of the subjects actually take treatment 1 among which 95%
have successful outcomes, and 5% actually take control, among which 20% have successful
outcomes. For those assigned to treatment B, 80% of the subjects actually take treatment
B among which 70% have successful outcomes, and 20% actually take the control among
which 25% have successful outcomes. To make the notation consistent, we use 1 for A and
2 for B in our illustration.

We used the model described in Section 3 without covariates adjustment. Since the
outcomes were binary, we assumed for subjects in principal stratum C = c and treatment
receipt T = t, the outcome success rate (Y ) and principal compliance (C)

Y |C = c, T = t; αct ∼ Bernoulli(αct)
C|ρ ∼ Multinomial(ρ0, ρ1, ρ2, ρ3)

where αct represents the probability of success for subjects in principal compliance stratum
C = c when taking treatment T = t. We used the following conjugate priors αct ∼ Beta(a, b)
and ρ = (ρ0, ρ1, ρ2, ρ3) ∼ Dirichlet(b0, b1, b2, b3) in our Bayesian inference, where values of
(a, b) and (b0, b1, b2, b3) determine how informative these priors are. For this data analysis,
we also conducted a sensitivity analysis using different parameter values for these conjugate
priors. Specifically, let a = b = b0 = b1 = b2 = b3 = λ, where λ may take different values.
When λ = 1, then uninformative flat priors are assumed for all parameters of interest.
Given the model specifications, causal estimands of interest are then functions of µct, for
example, CACE12 = µ32 − µ31. The data augmentation algorithm can be described as
follows

(a) I-step: Given a draw of ρ, and α from their current approximate distribution and
observed data, draw Ci for each i from a multinomial distribution with sample size
equal to 1 with conditional probabilities computed using a simplified version of Table 3.

(b) P-step: Given observed data and current Ci drawn from the I-step,

ρ|observed data, C ∼ Dirichlet(n0 + b0, n1 + b1, n2 + b2, n3 + b3)
αct ∼ Beta(mct + a, nct −mct + b)

where nc is the number of subjects in stratum C = c, nct is the number of subjects
with C = c and T = t, and mct is the number of successes with C = c and T = t.

We used the DA algorithm to approximate the posterior distributions of the causal pa-
rameters for the hypothetical data. The approximate posterior distributions were obtained
using 12,000 iterations from each of 20 independent runs of the DA algorithm after the first
10,000 iterations were discarded and each run started with different initial values drawn
from uniform distributions over the range of the parameters. This scheme was used for all
data analyses discussed in this paper. The 95% credible intervals were constructed from
the marginal posterior distributions of parameters of interest.

We considered inference under two settings: one with Assumption 1-3 and the other
with Assumption 1-4. As discussed previously, given Assumption 1-3, none of the causal
treatment effects are point identifiable in the classical statistical sense; after adding As-
sumption 4 (ρ2 = 0), only µ32−µ30 is point-identifiable in the classical statistical sense and
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µ22 − µ20 is no longer applicable. The results from our analysis are summarized in Table 4
for different prior specifications and two sets of assumptions.

Cheng & Small (2006) analyzed this hypothetical data set using a method of moment
approach and presented the results in their Table 4. This hypothetical data set was also
analyzed using a maximum likelihood (ML) inference approach in Long (2005), where the
identification regions were obtained and their confidence intervals were constructed based
on 5000 bootstrap samples (Horowitz & Manski 2000). The identification regions using the
ML approach were similar to those in Cheng & Small (2006) and their confident intervals
were constructed to cover the identification regions with fixed probability in the spirit of
Horowitz & Manski (2000) and Cheng & Small (2006) . The results found in Long (2005)
were very close to those found in Cheng & Small (2006). Their results show that in general
the addition of Assumption 4 shortens the identification regions as well as their confidence
intervals, however the improvement is small. Under Assumption 1-3, the identification
region for µ31−µ30 is (0.41,0.51) with a confidence interval of (0.34,0.58); under Assumption
1-4, the identification region changes to (0.44, 0.50) with a confidence interval of (0.37,0.57).
Under Assumption 1-3, the identification region for µ11−µ10 is (0.39,0.79) with a confidence
interval of (0.22,0.96); under Assumption 1-4, the identification region changes to (0.42,
0.73) with a confidence interval of (0.23,0.92) . More importantly, under Assumption 1-3,
the identification region for µ32−µ10 is (0.16,0.23) with a confidence interval of (0.06,0.32);
under Assumption 1-4, µ32 − µ30 becomes point identifiable with an estimate of 0.20 and
a confidence interval of (0.11,0.29). Our proposed Bayesian analysis shows similar trends,
and our results also show that in terms of estimating µ32 − µ30, our analysis without
Assumption 4 is just as informative as with Assumption 4.

Compared to the results obtained using the flat priors (λ = 1), our sensitivity analysis
shows that different prior specifications have minimal impact on the causal estimands de-
fined in the principal compliance straum C = 3, that is, µ32−µ31, µ32−µ30, and µ31−µ30.
However, the specification of priors has various degrees of impact on the causal estimands
defined in the principal stratum C = 2 and C = 1. The prior close to the flat prior (λ = 0.5)
has less impact than the priors that are strongly informative (λ = 10). The standard devia-
tion of the posterior distribution and the width of credible intervals decreases considerably
as a result of strong informative priors, hence the power of the analysis improves. Since the
compliance rate is high in this study, the proportion of always-compliers (C = 3) is likely to
be high whereas the proportion of other principal strata is likely to be low. In the stratum
where the number of subjects is low, strong priors may dominate the observed data and
have substantial impact on the causal estimands, in this case, those for C = 1 and C = 2,
which is consistent with what we observed in this data analysis.

In general, when causal estimands are partially identifiable, our Bayesian 95% credible
intervals under both set of assumptions and different prior specifications are considerably
narrower than the corresponding 95% confidence intervals for identification regions found in
Cheng & Small (2006). These findings are consistent with our discussion in Section 2.3. The
one exception is for µ̂32− µ̂30 under Assumption 1-4. Using our approach, µ̂32− µ̂30 is 0.20
with a 95% credible interval is around (0.11, 0.29) for different prior specifications, which
are similar to those found in Cheng & Small (2006). Since µ32 − µ30 is point identifiable in
this case, this result indicates that our approach and the approach proposed by Cheng &
Small (2006) lead to comparable results when a parameter is point identifiable.

For the partially identifiable estimands in this hypothetical study, the improvement of
efficiency using our approach does not lead to different conclusions regarding the causal
estimands of interest for this hypothetical data. Under both sets of assumptions, our anal-
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ysis shows that the 95% credible interval of CACE12 excludes 0, indicating a significant
treatment effect between active treatment 1 and 2 among always-compliers. Our results
also show significant treatment effect for always-compliers when comparing treatment 2 vs
control and treatment 1 vs control, and for 1-only-compliers subpopulation when compar-
ing treatment 1 vs control. However, the comparison between treatment 2 and control in
2-only-compliers subpopulation is inconclusive.

In summary, given this hypothetical data, we are able to obtain informative results.
Specifically, under two sets of assumptions, treatment 1 is better than treatment 2 for
always-compliers, and both are better than control for always-compliers and 1-only-compliers,
whenever the comparisons are applicable. These findings are consistent with those in Cheng
& Small (2006), but with improved precision.

4. Application to the WTP Data

In this section, we illustrate the proposed method with an application to the behavioral
intervention study, the “Women Take Pride” (WTP) study (Janevic et al. 2003). We
denote the three treatment groups by 0 for the usual care control treatment, 1 for the
Group treatment, 2 for the Self-Directed treatment. The outcome of interest in this data
analysis is the common cardiac bothersome score (Janevic et al. 2003) measured at Month
18. The common cardiac bothersome score ranges from 0 to 25 with higher scores indicating
greater symptom effect. We created a binary outcome Y by comparing the measurement
at Month 18 with that at baseline such that Y = 1 if the score does not increase, that is,
symptoms do not worsen, and Y = 0 if otherwise. The compliance was defined as whether a
woman completed at least one unit of materials. The primary objective of this data analysis
was to estimate the effect of intervention programs after adjusting for non-compliance. For
this study, Assumptions 1 and 3 hold, since patients did not have access to the alternative
program if not assigned to that program. However, Assumption 2 may be questionable,
since the interaction between patients in the group format may have an impact on the
outcomes. For the purpose of exposition, we still make Assumption 2 in the data analysis.
In addition, it is not clear whether Assumption 4 holds and we conduct a sensitivity analysis
with or without Assumption 4.

We used the same model as described in Section 3.4 with the same conjugate priors, and
analyzed the WTP data. We conducted our analysis under Assumption 1-3 with possible
addition of Assumption 4 and its variations. Similar to the hypothetical data analysis, under
Assumption 1-3, no causal treatment effect is point-identifiable when using the method
of moment method proposed by Cheng & Small (2006) and a maximum likelihood (ML)
analysis in Long (2005).

We first conducted sensitivity analysis using prior specifications as those in Section 3.4
and the conclusions were similar. Therefore only results using flat priors are reported and
Table 5 summarizes these results under four different sets of assumptions: 1) Assumption
1-3; 2) Assumption 1-3 and Assumption 4, that is, 2-only-compliers (C = 2) do not exist; 3)
Assumption 1-3 and ρ1 = 0, that is, 1-only-compliers (C = 1) do not exist; 2) Assumption 1-
3 and ρ0 = 0, that is, always non-compliers (C = 0) do not exist. Under these assumptions,
some causal estimands may not be applicable (Table 5). This study was also analyzed in
Long (2005) using the ML analysis. As we discussed previously, Long (2005) showed that
a ML analysis would lead to similar results as the method by Cheng & Small (2006) in this
type of settings, therefore we only compare our results with those from the ML analysis.
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We first focus on the results obtained under Assumption 1-3. The ML identification
region of CACE12 (= µ32 − µ31) is (−0.26, 0.39) and its bootstrap 95% confidence interval
is (−0.37, 0.50) (Long, 2005). A Bayesian analysis using flat priors shows that the mean
of its posterior distribution is 0.08 and its 95% credible interval is (-0.15, 0.28), which
is considerably narrower than the 95% confidence interval for the identification region.
However, since it still includes 0, there is no strong evidence indicating that either treatment
is better than the other for the always-compliers (C = 3). For estimating µ32 − µ30, the
95% confidence interval for its ML identification region is (-0.04,0.57) which includes 0,
and its 95% Bayesian credible interval is (0.02,0.41) which excludes 0. Hence, based on this
Bayesian analysis, there is some evidence indicating that the SD format(2) is better than the
control for always-compliers in terms of improving the outcome. Similar to the arguments
made in Section 4.4, due to the high compliance rates across treatment arms, there is
little information based on which one could make inference about the treatment effects for
the other two principal compliance strata (1-only-compliers and 2-only-compliers). This is
reflected by the wide ranges of 95% credible intervals for µ22 − µ20 and µ11 − µ10, even
though their widths are shorter than those of 95% “pseduo-confidence intervals”.

Under four different sets of structural assumptions, our results in Table 5 show that the
causal effect µ32 − µ30 remains significant. Additional assumptions reduce the number of
parameters, and hence may improve efficiency. Furthermore, the addition of assumption
ρ2 = 0 or ρ1 = 0 lead to the point identifiability of µ32 − µ30 and µ31 − µ30, respectively.
Specifically, the addition of assumption ρ2 = 0 or ρ1 = 0 shortens the Bayesian credible in-
tervals for all causal effects defined in the principal stratum C = 3, and makes the estimates
of µ32 − µ31 close to becoming significant. The impact of assumption ρ0 = 0 is relatively
small due to the high compliance rates. In practice, caution needs to be exercised when
adding structural assumption, since these assumptions may lead to biased estimates when
they do not hold.

In summary, the results from our data analysis show that the Self-Directed treatment
was better than the control for always compliers and the other causal comparisons were not
statistically significant. In the settings of our interest, our results also seem to indicate that
Bayesian inference can potentially achieve greater power in detecting significant treatment
effects compared to the method of moment (Cheng & Small 2006) or the ML approach
(Long 2005), which use the confidence intervals for the identification regions.

5. Discussion

For multi-arm trials subject to non-compliance, we propose a likelihood-based framework
and a Bayesian inference approach. A data augmentation algorithm is used to approximate
the marginal posterior distribution of causal parameters of interest. We also propose sensi-
tivity analysis to investigate the impact of structural assumptions and priors. The proposed
method is compared to a method of moment approach in Cheng & Small (2006) using a
hypothetical data set used in Cheng & Small (2006) and the WTP study (Janevic et al.
2003). Our results show that the 95% Bayesian credible intervals are in general narrower
than the estimated 95% confidence intervals for the identification regions of causal param-
eters, and that additional structural assumptions have the potential to improve the power
of an analysis, if they hold.

In settings concerned in this paper, our proposed method has some attractive features
compared to existing methods that compute the identification regions and their confidence
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intervals. The framework is conceptually straightforward, and is not different from cases
where parameters are point-identifiable in classical statistical sense. It is very flexible and
can be easily applied to model different types of outcomes and extended to accommodate
covariates adjustment, additional structural assumptions, and more complex designs such as
the DRPT design in Long et al. (2008), which is a subject for future research. The proposed
method may achieve greater power in terms of detecting significant treatment effects, espe-
cially when existing substantive knowledge can be incorporated to the priors. Furthermore,
the interpretation of the credible intervals remains the same and it is straightforward to
evaluate the properties of posterior distributions of causal parameters of interest. However,
when using the proposed Bayesian approach in the settings of our interest, it is possible
that the marginal posterior distribution of a parameter still concentrates its mass and re-
mains flat over a part of the parameter space, in which case caution needs to be exercised in
constructing 95% credible intervals. Consequently, in the presence of partially identifiable
parameters, it is of future interest to systematically study and compare the properties of
Bayesian credible intervals for the true values of parameters and confidence intervals for
identification regions.

In addition to the DRPT design, our Bayesian approach can be extended to accom-
modate other interesting features of the WTP study. First, the WTP study includes the
intervention of a group format, which allows interaction between participants; consequently,
the outcome variable may be correlated between subjects assigned to the same group and
Assumption 2 is questionable. To address this issue, one can introduce multivariate dis-
tributions for modeling Y for subjects of a same group in the group treatment arm, and
one needs to change the complete data likelihood (1) and observed data likelihood (2) ac-
cordingly. Second, all participants in the WTP study completed between 0 to 6 weekly
units and hence partial compliance was present. To adjust for partial compliance, one can
still use the principal compliance framework by extending the approach proposed in Jin &
Rubin (2008) to the case of multi-arm trials.

The proposed Bayesian approach shares one limitation with existing methods, though
to a lesser degree. For complex designs with more treatment arms, the proposed analysis,
while valid, may not be very informative, for example, it is likely that all credible intervals
include 0. To improve the power of the analysis, it may require incorporating existing
substantive knowledge into the priors and making strong structural assumptions.
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Table 1. The expected outcome µc,r,t for principal com-
pliance stratum C = c when assigned to treatment R = r
and actually receiving treatment T = t under Assumption
1 and 2
Subpopulation Population R
Defined by C Proportion 0 1 2

3 ρ3 µ3,0,0 µ3,1,1 µ3,2,2

2 ρ2 µ2,0,0 µ2,1,0 µ2,2,2

1 ρ1 µ1,0,0 µ1,1,1 µ1,2,0

0 ρ0 µ0,0,0 µ0,1,0 µ0,2,0

Table 2. The expected outcome µc,t for principal
compliance stratum C = c when actually receiving
treatment T = t under Assumption 3 (ER) in addition
to Assumption 1 and 2.
Subpopulation Population R
Defined by C Proportion 0 1 2

3 ρ3 µ3,0 µ3,1 µ3,2

2 ρ2 µ2,0 µ2,0 µ2,2

1 ρ1 µ1,0 µ1,1 µ1,0

0 ρ0 µ0,0 µ0,0 µ0,0

Table 3. The structure of the observed data likelihood for subject i for all
possible combinations of Ri and Ti under Assumption 1-3. Each cell value
represents the probability of the observed data (Yi, Xi, Ri, Ti) if the value of
Ci were known, and the conditional probability of Ci given the observed data
is computed as the ratio of each cell entry to its row total.
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Table 4. Bayesian analysis of the hypothetical data using different prior spec-
ifications under two sets of assumptions. Mean is the mean of the Bayesian
posterior distribution; SD, the standard deviation of the posterior distribution; CI,
the 95% Bayesian credible interval; NA, an estimand is not applicable. λ rep-
resents different conjugate prior specifications and λ = 1 corresponds to the
uninformative flat priors.

Assumption 1-3 Assumption 1-4
Mean SD CI Mean SD CI

Causal Effects Prior distributions with λ = 1

µ32 − µ31 -0.26 0.04 (-0.33,-0.19) -0.27 0.03 (-0.33,-0.20)
µ32 − µ30 0.20 0.05 (0.11,0.29) 0.20 0.04 (0.12,0.28)
µ31 − µ30 0.46 0.04 (0.37,0.54) 0.47 0.04 (0.39,0.54)
µ22 − µ20 0.17 0.38 (-0.62,0.83) NA NA NA
µ11 − µ10 0.58 0.12 (0.31,0.79) 0.56 0.14 (0.26,0.79)

Prior distributions with λ = 0.5

µ32 − µ31 -0.26 0.04 (-0.33,-0.18) -0.27 0.03 (-0.34,-0.20)
µ32 − µ30 0.20 0.05 (0.11,0.29) 0.20 0.04 (0.12,0.28)
µ31 − µ30 0.46 0.04 (0.37,0.54) 0.47 0.04 (0.39,0.55)
µ22 − µ20 0.14 0.47 (-0.85,0.93) NA NA NA
µ11 − µ10 0.59 0.14 (0.28,0.82) 0.55 0.16 (0.21,0.82)

Prior distributions with λ = 10

µ32 − µ31 -0.24 0.04 (-0.30,-0.18) -0.25 0.03 (-0.31,-0.19)
µ32 − µ30 0.20 0.05 (0.12,0.29) 0.20 0.04 (0.12,0.28)
µ31 − µ30 0.45 0.04 (0.37,0.52) 0.45 0.04 (0.38,0.52)
µ22 − µ20 0.11 0.15 (-0.19,0.39) NA NA NA
µ11 − µ10 0.48 0.08 (0.28,0.63) 0.43 0.10 (0.21,0.61)

Table 5. Bayesian analysis for the outcome of interest (common cardiac symp-
tom bothersome score at month 18) in the WTP study under different sets of
assumptions using flat priors (λ = 1). Mean is the mean of the Bayesian poste-
rior distribution; SD, the standard deviation of the posterior distribution; CI, the
95% Bayesian credible interval; NA, an estimand is not applicable.

Mean SD CI Mean SD CI

Causal Effects Assumption 1-3 Assumption 1-3 and ρ2 = 0

µ32 − µ31 0.08 0.10 (-0.15,0.28) 0.07 0.05 (-0.03,0.17)
µ32 − µ30 0.19 0.10 (0.02,0.41) 0.12 0.06 (0.01,0.23)
µ31 − µ30 0.12 0.12 (-0.07,0.40) 0.05 0.06 (-0.07,0.18)
µ22 − µ20 -0.16 0.34 (-0.77,0.60) NA NA NA
µ11 − µ10 -0.33 0.35 -0.90,0.42) -0.18 0.39 (-0.86,0.65)

Assumption 1-3, ρ1 = 0 Assumption 1-3, ρ0 = 0

µ32 − µ31 0.09 0.05 (-0.01,0.20) 0.05 0.15 (-0.23,0.35)
µ32 − µ30 0.13 0.06 (0.02,0.25) 0.26 0.12 (0.04,0.49)
µ31 − µ30 0.04 0.06 (-0.08,0.15) 0.21 0.14 (-0.06,0.47)
µ22 − µ20 0.00 0.39 (-0.74,0.76) -0.17 0.20 (-0.59,0.16)
µ11 − µ10 NA NA NA -0.36 0.26 (-0.84,0.06)
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