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Abstract—In this paper, we present a new algorithm for
statistical speech feature enhancement in the cepstral domain.
The algorithm exploits joint prior distributions (in the form
of Gaussian mixture) in the clean speech model, which incor-
porate both the static and frame-differential dynamic cepstral
parameters. Full posterior probabilities for clean speech given
the noisy observation are computed using a linearized version
of a nonlinear acoustic distortion model, and, based on this
linear approximation, the conditional minimum mean square
error (MMSE) estimator for the clean speech feature is derived
rigorously using the full posterior. The final form of the derived
conditional MMSE estimator is shown to be a weighted sum
of three separate terms, and the sum is weighted again by the
posterior for each of the mixture component in the speech model.
The first of the three terms is shown to arrive naturally from
the predictive mechanism embedded in the acoustic distortion
model in absence of any prior information. The remaining two
terms result from the speech model using only the static prior and
only the dynamic prior, respectively. Comprehensive experiments
are carried out using the Aurora2 database to evaluate the new
algorithm. The results demonstrate significant improvement in
noise-robust recognition accuracy by incorporating the joint prior
for both static and dynamic parameter distributions in the speech
model, compared with using only the static or dynamic prior and
with using no prior.

Index Terms—Acoustic distortion model, Bayesian estimation,
conditional MMSE, dynamic prior, noise reduction, weighted sum-
mation.

I. INTRODUCTION

O
NE OF THE major problems that still remains unsolved

in the current speech recognition technology is noise

robustness (r.f., [27], [32]). Two major classes of techniques

for noise robust speech recognition include: 1) the model-do-

main approach, where the speech models in the recognizer

are modified or adapted to match the statistical properties of

the unmodified noisy test speech; and 2) the feature-domain

approach, where the noisy test speech (possibly the “noisy”

training speech as well) is modified or enhanced to move

toward clean speech as closely as possible. Our earlier work

[2], [8], [9], demonstrated remarkably superior performance

of the feature-domain approach over the model-domain one.

When the training speech is corrupted intentionally, followed
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by feature enhancement (i.e., front-end denoising) and re-

training of the hidden Markov model (HMM) system, a higher

performance is achieved than that under the matched noisy

condition which sets the limit of the model-domain approach.

Toward solving the noise robustness problem based on the

feature-domain approach, we recently have successfully devel-

oped a family of speech feature enhancement algorithms that

make use of the availability of stereo training data consisting

of simultaneously collected clean and noisy speech under a

variety of real-life noisy conditions [8], [9], [13]–[15]. While

high performance under severe noise distortion conditions is

achievable, it is desirable to remove or reduce the need for

the stereo training data, and to overcome the potential problem

of unexpected mismatch between the acoustic environments

for recognizer deployment and for stereo training. To this end,

we have more recently focused on the development of a new,

alternative family of statistical and parametric techniques for

noise-robust speech recognition. In this paper, we present a

new algorithm for statistical speech feature enhancement free

from the use of stereo training data. It has been built upon a

series of published work on parametric modeling of nonlinear

acoustic distortion [1], [2], [11], [19], [24], [25], [30] and rep-

resents a significant extension of these earlier work. The main

innovations of the current work are: 1) incorporation of the dy-

namic cepstral features in the Bayesian framework for effective

speech feature enhancement; 2) a new enhancement algorithm

using the full posterior that elegantly integrates the predic-

tive information from the nonlinear acoustic distortion model,

the prior information based on the static clean speech cepstral

distribution, and the prior based on the frame-differential dy-

namic cepstral distribution; and 3) efficient implementation of

the new algorithm.

In addition to extending the use of the nonlinear acoustic

distortion model, our new enhancement algorithm can also

be viewed as a generalization or modification of some major

speech enhancement techniques in existence. Conventional

spectral subtraction methods [5], [6] work by obtaining a noise

estimate in the linear spectral domain and then subtracting that

from the noisy observation in the same domain. The subtraction

residual gives the spectral estimate for clean speech but there

are no mechanisms to reject the subtraction result even if it

deviates substantially from the clean speech statistics (due, for

instance, to a poor noise estimate). This is because there is no

prior model or template for clean speech that can be used for

verifying the “reasonableness” of the spectral subtraction result.

The new statistical technique presented in this paper provides
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a formal framework to overcome this deficiency, and can be

viewed as generalized, probabilistic noise removal. When

all the signals are represented in the cepstral or log domain,

such generalized “noise removal” that takes into account the

prior information is achieved via optimal statistical estimation

using a nonlinear environment model. This process has been

formalized as an efficient feature enhancement algorithm and

will be presented in detail in this paper.

There are numerous speech waveform or feature enhance-

ment techniques in the literature, including our own earlier

work, that also heavily rely on the use of prior information

for the clean speech statistics [1], [3], [4], [16]–[19], [24],

[28]–[30]. The new technique described in this paper either

generalizes or differentiates from these cited earlier algorithms

in three key aspects. The first aspect concerns the nature of the

prior information used for characterizing the clean speech sta-

tistics. The prior speech models used for speech enhancement

described in [1], [3], [4], [19], [24], and [30] use no dynamic

or trajectory properties of speech. Only the spectral shape

information derived from each individual frame of speech is

exploited. On the other hand, the prior speech models described

in [17], [18], [28] make use of very weak dynamic properties

of speech via an ergodic HMM. It has been well known that

the HMM captures only the global, loosely specified temporal

information of speech, and not the strong, locally defined,

trajectory property of speech [7], [10], [26]. We believe that

the latter, strong dynamic property is more important and

desirable as the prior information for speech enhancement for

the following reason. When viewed as generalized spectral

“subtraction,” statistical enhancement techniques all operate

by denoising while (optimally) “verifying” the “subtraction

residual” via probabilistic matching with the prior clean

speech model. If the prior model is equipped with the dy-

namic-matching mechanism that permits the matching not only

at the level of individual (static) frames but simultaneously

at the level of a local sequence (dynamic) of frames, then the

“verifying” performance—the principal role of the prior model

for denoising—will be greatly enhanced. Instead of exploiting

complex (locally) dynamic models as speech prior [10], [26],

the technique described in this paper capitalizes on the simplest

kind of such local dynamic information—frame-differential

dynamic parameters—in constructing the speech prior model.

Given the success of such dynamic parameters in speech

recognition and given the motivation provided above for

using the locally dynamic properties of speech, we expect a

desirable balance between performance gain in speech feature

enhancement and a low degree of algorithm complexity.

The second aspect in which the current work generalizes or

differentiates from the earlier statistical techniques for speech

enhancement concerns the specific domain in which speech and

noise are parameterized. We believe that the cepstral or log do-

main is most desirable if the purpose of speech enhancement

is for robust speech recognition, since this is the domain as

close as possible to the back end of the recognizer. The work in

[3], [4], [17], [18], [28], [29] developed the enhancement tech-

niques mainly in the linear domain, either in the time-sample

or frame-bounded (linear) spectral domain. While the speech

feature enhancement techniques reported in [19], [24], and [30]

pertain to the same log domain as in the current work, the cur-

rent work generalizes them in providing both the static and dy-

namic prior information rather than only the static prior (or vir-

tually no prior). We further note that the early work reported in

[16] developed the speech enhancement technique also in the

log domain. But the reported technique in [16] makes use of

neither static nor dynamic prior information, thereby falling into

the non-Bayesian framework, in contrast to the Bayesian frame-

work where our new technique belongs and where the prior

speech information has been exploited more heavily than all pre-

viously reported techniques.

The third important and unique aspect of the current work is

the novel approximation technique developed in dealing with

the nonlinearity in the acoustic distortion model. The Vector-

Taylor-Series algorithm introduced and evaluated in [24], [25],

[30] is a highly simplified and special case of our algorithm, and

as will be shown in Section VI, it gave considerably lower per-

formance in robust speech recognition compared with the full

implementation of our algorithm. The approximation technique

described in this paper is also different from that developed in

the recent work reported in [19]. In addition to incorporating a

dynamic prior, our new algorithm uses the rigorous full poste-

rior to compute the estimator, subject only to the approximation

introduced by truncated Taylor series expansion based on the

original work of [24], [25].

The organization of this paper is as follows. In Section II, we

establish a statistical model for the acoustic environment which

relates the log-spectral vectors of clean speech, noise, and noisy

speech in a nonlinear manner. This model provides the mecha-

nism for observation likelihood computation, and serves as the

basis for the Bayesian approach to solving the clean speech esti-

mation problem. In Section III, we describe “prior” models for

both clean speech and noise, supplying the prior information

for estimating clean speech. The prior model for clean speech

consists of joint static and frame-differential dynamic cepstral

components. The prior information for noise is a deterministic,

time varying noise estimate obtained via a sequential algorithm

that effectively tracks nonstationarity of the noise. Combining

the prior information and a linearized version of the statistical

model for approximating the nonlinear acoustic environment,

where linearization is carried out via truncated Taylor series, we

use Bayes rule to derive the conditional minimum mean squared

estimate (MMSE) for the clean speech cepstra. The derivation

is presented in Section IV in detail. Section V addresses several

key implementation issues, including the choice of the Taylor

series expansion point, and the use of an iterative technique

aimed to successively improve the Taylor-series approximation

accuracy. In Section VI, comprehensive experimental results are

reported that demonstrate the effectiveness of the new Bayesian

approach, and in particular, of the use of dynamic cepstral fea-

tures in the prior model.

II. STATISTICAL MODEL FOR ACOUSTIC DISTORTION

We first establish a statistical model for the log-spectral-do-

main acoustic distortion, which allows the computation of the

conditional likelihood for the noisy speech observation, in the

same domain, given all relevant information.
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Following the standard discrete-time, linear system model for

the acoustic distortion in the time and frequency domain [1],

[24], we have the relationship between the noisy speech ( ),

clean speech ( ), additive noise ( ), and channel impulse

response with corresponding transfer function

and

(1)

respectively, where denotes circular convolution, and is the

frequency-bin index in DFT for a fixed-length time window.

Power spectra of the noisy speech can then be obtained from

the DFT in (1) by

where denotes the (random) angle between the two complex

variables and ( ).

We now apply a set of Mel-scale filters ( in total) to power

spectra in the frequency domain, where the filter is

characterized by the transfer function . This produces

channel (Mel-filter bank) energies of

(2)

with .

Denoting the various channel energies in (2) by

and

we simplify (2) to

(3)

where we define

is a scalar, which can be shown to have its value between

and 1.

Define the log channel energy vectors

(4)

and define the vector

Equation (3) can now be written as

(5)

where the operation for two vectors denotes element-wise

product, and each exponentiation of a vector above is also an

element-wise operation.

To obtain the log channel energy for noisy speech, we apply

the log operation on both sides of (5)

(6)

This can be further simplified to

(7)

where “ ” denotes element-wise vector division in the above,

and the last step of approximation uses the assumption1 that

.

1Justifications for this assumption are provided here. From cosh(z) =
(e + e )=2, it is clear that as z moves away from zero, where the minimum
of cosh(0) = 1 lies, the function cosh(z) rises quickly above zero at
an exponential rate. For example, cosh(2) = cosh(�2) = 3:76 > 1,
cosh(3) = cosh(�3) = 10:07� 1, etc. The corresponding situation where
j(n� x� h)=2j is between 2 to 3 is common in the data. In the meantime,
while ��� in principle ranges from �1 to 1, we find empirically that it is mostly
within the range of �0:3 to +0:3.
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Due to the generally small values of the last term in (7), this

acoustic environment model can be interpreted as a predictive

mechanism for where the predictor is

in which

The small prediction residual in (7):

(8)

is complicated to evaluate and to model. It is therefore repre-

sented by an “ignorance” model as a Gaussian random vector.

Using the stereo speech data consisting of about 10 000 digit

sequences in the training set of the Aurora2 database and using

(7), we have empirically verified that the average value of

is very close to zero for each vector ele-

ment. We also observed empirically that the distribution of has

Gaussian shapes (subject to the truncation above and below

). Therefore, as a reasonable choice, the zero mean vector is

fixed in the Gaussian distribution as an approximate model for

the prediction residual.

The covariance matrix of the modeled Gaussian random

vector for the prediction residual (8) is clearly a function of

the (instantaneous) SNR. Empirical analysis verifies this SNR

dependency, and further shows that the covariance matrices for

all SNR levels are strongly diagonally dominant. Diagonality

of the covariance matrix is therefore assumed in the implemen-

tation.

The work presented in this paper avoids the implementation

complexity associated with the SNR dependency. Instead, as

an approximation, we estimate one fixed diagonal covariance

matrix, by pooling all available SNR’s including clean speech,

of the residual noise using the Aurora2’s full multi-condition

training set. Since the true noise is available in the Aurora2 data-

base, errors in the model can be computed precisely for each

frame in the training set. And the sample covariance matrix is

computed as its estimate. Assuming a fixed (diagonal) covari-

ance matrix , the statistical model for the acoustic environment

is thus established as

(9)

with .

Another simplification in the implementation work described

in this paper is to take account of additive noise only. The

channel distortion is handled via a separate process of cepstral

mean normalization. This further simplifies the model of (9)

into

(10)

The Gaussian assumption for the residual in model of (10)

allows straightforward computation of the likelihood for the

noisy speech observation according to

(11)

This likelihood model is one key component in the Bayesian

framework for speech enhancement, which will be described in

Section IV.

III. PRIOR MODELS

In addition to the acoustic environment model for the like-

lihood evaluation of as derived in the preceding section, the

Bayesian estimation framework which we adopt here also re-

quires “prior” models for the statistical behavior of clean speech

features and of noise features. Both the speech and noise fea-

tures are known to be nonstationary. The mechanisms we have

designed to capture the nonstationarity in the prior model for

clean speech are: 1) using dynamic features which take the local,

time difference of static features; and 2) using multiple modes

(mixtures) in the probability distribution, allowing the mode to

switch freely at different times in an unstructured manner. In

contrast, the mechanism designed to embrace the nonstation-

arity in the prior model for noise is to directly represent the

prior properties of the noise features in an explicitly time-in-

dexed fashion. Both of these design considerations make use

of the well established results of our earlier research [8], [11],

thereby facilitating the implementation of the new speech en-

hancement algorithm considerably.

A. Model for Clean Speech Incorporating Dynamic Features

The prior model exploited in this work takes into account both

the static and dynamic properties of clean speech, in the domain

of log Mel-channel energy (or equivalently in the domain of

cepstrum via a fixed, linear transformation). One simple way of

capturing the dynamic property is to use the frame-differential,

or “delta” feature, defined by

where a one-step, backward time (frame) difference is used in

this work.

The functional form of the probability distribution for both

the static and delta features of clean speech is chosen, motivated

by simplicity in the algorithm implementation, as a mixture of

multivariate Gaussians, where in each Gaussian component the

static and delta features are assumed to be uncorrelated with

each other. This gives the joint PDF:

(12)

In our speech feature enhancement system implementation,

a standard EM algorithm is used to train the mean and covari-

ance parameters , , , and in the cepstral domain.

Then the mean vectors in the log Mel-channel energy domain

are obtained via the linear transform using the inverse cosine

transformation matrix. The two covariance matrices in the log

Mel-channel energy domain are computed also from those in the
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cepstral domain, using the inverse cosine transformation matrix

and its transpose. After this training and the transformations,

we now assume that all parameters in (12) are known in the log

Mel-channel energy domain.

Note that due to the inclusion of the delta feature in (12), the

speech frame is no longer independent of its previous frame.

This allows the trajectory information of speech to be captured

as part of the prior information. Compared with the conventional

approaches which exploit only the static features in the Gaussian

mixture model, the additional information source provided by

(12) is the new dynamic parameters and which cannot

be inferred from the static parameters and . These or-

thogonal sources of information permit more accurate charac-

terization of the prior statistical properties of the clean-speech

sequence.

B. Model for Noise Features Using Time-Varying, Fixed-Point

Estimate

In principle, in the Bayesian framework adopted in this work,

it is also desirable to provide a prior distribution for the noise

parameter . Due to the fast changing nature of the noise in

the database (Aurora2) which we evaluate our algorithm on,

the noise distribution would need to be nonstationary or time-

varying; that is, the noise distribution be a function of time frame

. Given only a limited amount of noisy speech training data

available, even assuming a simple Gaussian model for the noise

feature with a time-varying mean and variance, accurate estima-

tion of these parameters is still very difficult. We in this work

use the results from our earlier research where the noise fea-

ture is assumed to be deterministic and is tracked sequentially

directly from the individual noisy test utterance.2 This is equiva-

lent to assuming a nonstationary (degenerated) Gaussian model

as the prior for noise, where the mean vector indexed separately

for each time frame is known and where the covariance matrix

is fixed to be zero. That is, the prior probability distribution for

noise is reduced to a time-varying, vector-valued, delta function

(13)

The above method of dealing with noise nonstationarity can

be considered as a “nonparametric” technique, where the noise

variable is explicitly indexed by each time , rather than

being drawn from a parametric distribution. This is in contrast

to the use of the time-invariant mixture model as a parametric

method for capturing speech nonstationarity as described ear-

lier in this section. The speech nonstationarity is implicitly em-

bedded via the possibility of mode (component) switching in

the mixture model. This parametric technique is appropriate

for modeling clean speech, since the training set used to esti-

mate the parameters in the mixture model can often easily cover

the acoustic space of the “hidden” clean speech responsible for

generating the noisy speech observations.3 However, this same

2Details of this sequential estimation algorithm for highly nonstationary noise
can be found in [11], which has been based on the theoretical framework pub-
lished in [31].

3This statement would not be correct if Lombard effect were prominent in the
production of distorted speech. Our evaluation data from Aurora2 database do
not fall into this situation.

parametric technique would not be appropriate for modeling

noise nonstationarity. This is because the noise types and levels

are too numerous, and they are too difficult to predict in ad-

vance for training a mixture model with a full coverage of the

acoustic space for the time-varying noise embedded in the test

data. Adaptation to the test data is necessary, and the very small

amount of adaptation data in each changing test utterance makes

parametric techniques ineffective. The nonparametric adaptive

tracking technique we developed in [11] produces explicitly

time-varying parameters in (13) that are used in the current

work. Here we briefly explain the computation of this noise

tracking algorithm in principle. It uses the iterative stochastic

approximation to improve piecewise linear approximation to a

nonlinear acoustic distortion model, and it uses a recursive EM

algorithm to compute the (locally) optimal on-line estimate of

the noise at each frame taking into account the exponentially

decaying effects of the past history. In the algorithm implemen-

tation, three iterations are used for each new noisy speech frame.

In each iteration, the posterior probability for each mixture com-

ponent of the Gaussian-mixture clean speech model is computed

first. Then the first and second-order derivatives of the E-step

objective function are computed using this posterior in an effi-

cient, recursive manner. Finally, the noise estimate is updated

using both orders of derivatives.

IV. BAYESIAN APPROACH TO SPEECH FEATURE ENHANCEMENT

Given the prior models for clean speech (12) and for noise

(13), and given the likelihood model (11), an application of

Bayes rule in principle would give the posterior probability for

the clean speech conditioned on the noisy speech observations.

This computation, however, is highly complex, since it would

require very expensive nonlinear techniques. The computation

is made feasible in this work, as described in this section, in

two ways. First, linearization on the nonlinear predictor, , in

the likelihood model (11) is made. The approximation accu-

racy is improved via an iterative technique in nonlinear signal

processing [23], which was previously successfully applied to

speech enhancement in [19] and in spontaneous speech recog-

nition in [12]. Second, while computing the entire posterior

probability would be desirable for an integrated system for

signal processing and speech recognition, speech feature en-

hancement as front-end signal processing of primary concern

to this work does not require the complete posterior probability.

In this section, we describe the estimator used in this work that

can be computed via Bayes rule from the likelihood model (11)

and prior models (12) and (13). We then derive the estimation

formulas with the prior speech model for static features only

and for joint static/dynamic features, respectively, using linear

approximation to the nonlinear predictor, , in the likelihood

model (11).

A. Minimum Mean Square Error (MMSE) Estimator

Given the observation vector , the minimum mean square

error (MMSE) estimator for the random vector is one that

minimizes the MSE distortion measure of
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or

From the fundamental theorem of estimation theory (cf., [23, pp.

175–176]), the MMSE estimator is shown to be the following

conditional expectation, which is the expected value of the pos-

terior probability :

(14)

This becomes

(15)

after using Bayes rule.

While the MMSE estimator is generally more difficult to de-

rive than some other estimator for random parameters such as

the maximum a posteriori (MAP) estimator for speech wave-

forms or features, we choose the MMSE estimator in this work

for two reasons. First, in much of the past work on speech en-

hancement using HMMs, the MMSE estimator has in practice

exhibited consistently superior enhancement performance over

the (approximate) MAP estimator for speech waveforms or fea-

tures (cf. [17] and [28]). The second reason is a theoretical one.

Although the MMSE estimator is defined for the MSE distor-

tion measure, its optimality also extends over to a large class

of other distortion measures (under only some mild conditions).

This property does not hold for the MAP estimator. Because

the perceptually significant distortion measure for speech is un-

known, the wide coverage of the distortion classes by the MMSE

estimator with the same optimality is highly desirable.

B. Estimation With Prior Speech Model for Static Features

Only

To facilitate the derivation of the MMSE estimator with the

prior speech model for joint static and dynamic features, we in

this subsection first derive the estimator with prior speech model

for static features only. The result will be extended to the desired

case in the next subsection.

In this derivation, the prior model for clean speech is a sim-

plified version of model (12), and frame index is dropped since

the model is independent of

(16)

The derivation starts from (15), from which we use

to obtain

(17)

Using the deterministic prior noise model (13), (17) is sim-

plified to

(18)

Using the likelihood model (11), we now evaluate the integral

in (18) as

(19)

where and are treated as constants. This integral, unfortu-

nately, does not have a closed-form result due to the nonlinear

function of in . To overcome this, we linearize the

nonlinearity using truncated Taylor series. The first-order Taylor

series has the form of

where is the fixed expansion point,4 and is the gra-

dient of function evaluated at . The zero-th order Taylor

series expansion on has a much simpler form

This approximation simplifies the likelihood model (11) to

(20)

which will be used in the remaining derivation in this paper.

Now, the integral of (19) becomes

(21)

where , which can be treated as a constant now.

After fitting the exponent in (21) into a standard quadratic form

in , and using , a closed-form result is

obtained as

(22)

where we introduced the weighting matrices

and , and where

can be easily shown to be the likelihood of observation given

the -th component in the clean speech model and under the

zero-th order approximation made in (20). That is,

4Selection of this expansion point is crucial for the success of speech recog-
nition applications. This issue will be discussed in Section V.
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The denominator in (18)

can be easily computed in closed form also under the zero-th

order approximation of (20)

(23)

Now, substituting (22) and (23) into (18), we obtain the final

closed-form MMSE estimator

(24)

where

is the posterior probability for the mixture component.

The MMSE estimator for clean speech in (24) has a clear

interpretation. The component in the first term, , is the prior

mean vector in the clean speech model. The component in the

second term

is the true clean speech vector perturbed by a small zero-mean

residual, and can be interpreted as the prediction of clean speech

when no prior information on speech statistics is available. After

the prior information is being made available, each summand in

the estimator of (24) is a weighted sum of these two terms (for

each mixture component), where the weights are determined by

the relative sizes of the variances, and , in the likelihood

prediction model and in the prior speech model, respectively.

The final MMSE estimator is another, outer-loop, weighted sum

of this combined prediction with each weight being the posterior

probability for each mixture component.

C. Estimation With Prior Speech Model for Static and

Dynamic Features

We now derive the (conditional) MMSE estimator using a

more complex prior speech model (12) with dynamic features,

instead of model (16) with static features only.

Given the estimated clean speech feature in the immediately

past frame, , the conditional MMSE estimator for the cur-

rent frame becomes

Following a similar derivation for (18), its counterpart result

is

(25)

where we used the approximation

(26)

This approximation dramatically simplifies the MMSE esti-

mator, which would otherwise require dynamic programming

or a solution of the inverse of a large tridiagonal matrix.

Either would incur a much larger computational cost than the

approximate solution presented in this section. The approxima-

tion above can be justified if we assume a zero variance, i.e.,

, in the presumed Gaussian for . That

is, the MMSE estimator is assumed to have incurred no

error: . This assumption is

less erroneous when the history in the past is short than when

this history is longer, and hence we choose instead of the

frame further back as in most speech recognition systems.

To compute the integral in the above (25), we first evaluate

the conditional prior of

(27)

Fitting the exponent in (27) into the standard quadratic form

in , we have

(28)

where

(29)

and

(30)

Using the same zero-th order approximation, (20), to the

nonlinear function in the likelihood model, and substituting
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(28)–(30) into (25), we obtain the final result for the conditional

MMSE estimator

(31)

where

and

(32)

and where is used.

Note that

This thus also provides a clear interpretation of (31), general-

izing from (24) given earlier. That is, each summand in (31),

as a mixture-component specific contribution to the final

estimator, is a weighted sum of three terms. The unweighted

first two terms are derived from the static and dynamic elements

in the prior clean speech model, respectively. The unweighted

third term is derived from the predictive mechanism based on

the linearized acoustic distortion model in absence of any prior

information.

Note also that under the limiting case where , we

have

Then the conditional MMSE estimator (31) reverts to the

MMSE estimator (24) when no prior for dynamic speech

features is exploited. This shows a desirable property of (31)

since when the effect of using the prior for dynamic

features should indeed be diminishing to null.

As the opposite limiting case, let . We then have

That is, only the prior information for the dynamic speech fea-

tures is used for speech feature enhancement.

V. KEY ISSUES IN ALGORITHM IMPLEMENTATION

In this section, we provide some key implementation details

for the speech feature enhancement algorithm (31) derived in the

preceding section, and then give the algorithm execution steps.

A. Initialization and Iterative Refinement of Taylor Series

Expansion Point

While deriving the conditional MMSE estimator (31), as well

as its limiting case (24), we left untouched the key issue of

how to choose the Taylor series expansion point, , in approx-

imating the likelihood model in (20). This crucial issue for the

algorithm implementation is resolved in two ways. First, the fol-

lowing crude but reasonable estimate for the “clean” speech is

used to initialize the Taylor series expansion point:

Second, this initial estimate is refined successively via iterations

using the conditional MMSE estimator (31). This turns the algo-

rithm (31) into an iterative one, which will be formalized shortly.

The motivation for the use of iterations is our simple recogni-

tion that the accuracy of the truncated Taylor series approxima-

tion to a nonlinear function is determined largely by the accu-

racy of the expansion point to the true variable value of the func-

tion’s argument (given the fixed expansion order), and that (31)

is simply the “best” available estimate of that true variable value.

Therefore, the successive refinement on this estimate should im-

prove the Taylor series approximation accuracy and hence the

new estimator’s quality. The use of iterations is also motivated

by its success in the work of [19], where a large number of

Taylor series expansion points are used. This contrasts the one

single-point expansion used in this work that considerably cuts

down the computational load in our algorithm.

The convergence property of our iterative algorithm has not

been systematically explored. However, under the special case

where (using no prior information), (31) becomes the

well known fixed-point iterative solution of solving for in the

nonlinear equation

(33)

The convergence property for this special case of the algorithm

can be found in standard numerical analysis textbooks (e.g.,

[22]). Since the gradient of the right hand side of (33) is always

less than one

the iterative solution to (33) is guaranteed to converge, as has

been observed in our experimental work also.

B. Variance Scaling

Another important issue we explored in the algorithm imple-

mentation is the variance weighting aimed to balance the con-

tributions of the static and dynamic feature priors to the overall

qualities of denoising and of speech recognition performance.

We found that the use of the variances in the clean speech model

estimated from the training data set alone does not give optimal

performance (see details in Section VI-C). This suggests that

the information provided by the static cepstral means and that

by the differential cepstral means in the clean speech model do

not consistently complement each other in enhancing the accu-

racy of the model, based on the simple parametric form of PDF

given by (12), in representing the true, underlying dynamics of

clean speech features.5

5This has been a well known problem in statistical modeling of speech-feature
dynamics. A search for solutions to this problem has produced a number of
advanced statistical models beyond the conventional HMM [7], [26], [10].
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An additional reason why the use of the variances in the clean

speech model estimated from the training data set is not most

desirable may be attributed to the approximation made in (26):

. Due to the necessarily imperfect estimator, this vari-

ance can not be zero. Not accounting for such a variance is a

source of the above problem.

Rather than providing a rigorous, expensive solution, we

adopt a simple yet effective way of problem fixing which we

describe below. That is, the contributions of the static and

dynamic feature priors are adjusted by empirically scaling6 the

variance (including all diagonal elements) in (31). This

keeps the estimation algorithm intact while slightly changing

the weights in (31) to

(34)

(35)

where is the variance scaling factor. The effects of choosing

different will be studied and reported in Section VI-C.

C. Algorithm Description

Summarizing the implementation considerations above, we

now describe the complete execution steps for the speech feature

algorithm below.

First, train and fix all parameters in the clean speech model:

, , , , and . Then, compute the noise esti-

mates, , for all frames of all test data based on the sequen-

tial tracking algorithm described in [11]. Further, precompute

the weights , , and , which are dependent on only the

known model parameters, according to (34), (35) and (32).

Next, fix the total number, , of intra-frame iterations. For

each frame in a noisy utterance , set iteration

number , and initialize the clean speech estimator by

(36)

where is the error covariance matrix in the acoustic distortion

model described in Section II, and is estimated in advance from

a set of training data.

Then, execute the following steps sequentially over time

frames.

• Step 1: Compute

(37)

where .

• Step 2: Update the estimator:7

6This process is similar to the empirical weighting of the language model
score adopted by almost any speech recognition system.

7We set x̂ to be the right-hand side of (36) and update the estimator for
t > 1.

(38)

• Step 3: If , increment by one and continue the

iteration by returning to Step 1. If , then increment

by one and start the algorithm again by re-setting to

process the next time frame until the end of the utterance

.

VI. SPEECH RECOGNITION EXPERIMENTS

A. Database and Recognition Task

The iterative algorithm presented thus far for estimating clean

speech feature vectors has been evaluated on the Aurora2 data-

base, using the standard recognition tasks designed for this data-

base [20]. The database consists of English connected digits

recorded in clean environments. Three sets of digit utterances

(sets A, B, and C) are prepared as the test material. These ut-

terances are artificially contaminated by adding noise recorded

under a number of conditions and for different noise levels (sets

A, B, and C), and also by passing them through different distor-

tion channels (for set C only).

The recognition system used in our evaluation experiments

are based on continuous HMM’s, and one HMM is trained for

each digit under clean condition. Both training and recognition

phases are performed using the HTK scripts provided by the Au-

rora2 database. The speech feature used for the reference exper-

iments to evaluate the new denoising algorithm is the standard

MFCC’s. The new algorithm is used only as the front-end.

B. Results for Aurora2 Task

Table I summarizes the results for all three sets of the test data

in the Aurora2 database. The HMM systems with four different

front-ends are compared: 1) use of the iterative algorithm to im-

plement the conditional MMSE estimator, as described in Sec-

tion V, with the prior speech model consisting of both static and

dynamic cepstra and with the optimal variance scaling factor;

2) use of the same estimator except with the prior speech model

consisting of only the static cepstra; 3) use of the same esti-

mator except with the prior speech model consisting of only

the dynamic cepstra; and 4) use of the slightly modified, Au-

rora2-supplied standard reference MFCC’s with no denoising.8

The HMMs used in the four systems are the same. They are

trained using the same clean-speech training set supplied in the

Aurora2 database. Note that the front-end (2) above is imple-

mented by setting the variance scaling factor in (34) and (35)

to be a very large number (5000). And the front-end (3) above is

implemented by setting the variance scaling factor to be zero.

These extreme values effectively nullify the contributions from

the dynamic and static features, respectively, in the prior speech

model.

Comparisons in Table I show that the conditional MMSE

estimator that fully utilizes both the static and dynamic cep-

stral distributions [front-end (1)] performs significantly better

than the same estimator which utilizes only the partial infor-

mation [front-ends (2) and (3)]. In producing the results with

8The Aurora2-supplied MFCC’s use the log-magnitude spectra, and we mod-
ified them to the log-magnitude squared spectra.
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TABLE I
COMPARISONS OF AURORA2 RECOGNITION RATES (%) FOR THE HMM

SYSTEMS USING FOUR DIFFERENT FRONT-ENDS FOR ALL SETS OF TEST DATA:
1) USING MIXTURE-OF-GAUSSIAN CLEAN-SPEECH MODEL UTILIZING BOTH

STATIC AND DYNAMIC CEPSTRA; 2) USING MIXTURE-OF-GAUSSIAN

CLEAN-SPEECH MODEL UTILIZING ONLY STATIC CEPSTRA; 3) USING

MIXTURE-OF-GAUSSIAN CLEAN-SPEECH MODEL UTILIZING ONLY DYNAMIC

CEPSTRA; 4) MFCC’S WITH NO DENOISING. THE SAME SINGLE SET OF

HMMS USED IN THE FOUR SYSTEMS ARE TRAINED USING THE IDENTICAL

CLEAN-SPEECH TRAINING SET SUPPLIED IN THE AURORA2 DATABASE AFTER

CEPSTRAL MEAN NORMALIZATION. CEPSTRAL MEAN NORMALIZATION IS

APPLIED TO THE TEST SETS ALSO, AFTER SPEECH FEATURE ENHANCEMENT

TABLE II
DETAILED RECOGNITION RATES (%) USING THE CONDITIONAL MMSE

ESTIMATOR FOR CLEAN SPEECH. FOUR NOISE CONDITIONS: SUBWAY, BABBLE,
CAR, EXHIBITION-HALL NOISES; SNRS FROM 0 DB TO 20 DB IN 5-DB

INCREMENT; SET-A RESULTS CLEAN SPEECH TRAINING

front-end (1), an optimal value of is used (details of

the optimization will be discussed later.) They are, however, all

significantly and consistently better than the standard MFCC’s

supplied by the AURORA task using no robust preprocessing

to enhance speech features [front-end (4)]. The relative word

error rate reduction using front-end (1) is 64.54% compared

with the results with standard MFCCs using no enhancement.

These results are statistically significant, based on a total of

test utterances from all set A, B, and C,

among which there are 8008 distinct digit sequences corrupted

under various distortion conditions.

In Table II, detailed recognition rates (%) for each of the

four noise conditions and for each of the SNR’s in Set-A using

front-end (1) are provided. The same results for Set-B and Set-C

are presented in Tables III and IV, respectively, with different

noise types and distortion conditions.

C. Effects of Different Ways of Incorporating Joint Static and

Dynamic Priors

As one major contribution of this work to speech enhance-

ment, the frame-differential dynamic cepstral features (in the

log-domain) are used, in conjunction with the static cepstra, in

the prior speech model in the Bayesian statistical framework to

remove additive noise in the linear domain. We have systemati-

cally carried out experiments to evaluate the effects of incorpo-

rating such a new source of prior in our speech feature enhance-

TABLE III
DETAILED RECOGNITION RATES (%) USING THE CONDITIONAL MMSE

ESTIMATOR FOR CLEAN SPEECH. FOUR NOISE CONDITIONS: RESTAURANT,
STREET, AIRPORT, AND TRAIN-STATION NOISES; SNRS FROM 0 DB TO 20 DB

IN 5-DB INCREMENT; SET-B RESULTS WITH CLEAN SPEECH TRAINING

TABLE IV
DETAILED RECOGNITION RATES (%) USING THE CONDITIONAL MMSE

ESTIMATOR FOR CLEAN SPEECH. FOUR NOISE CONDITIONS: SUBWAY (AS IN

SET-A) AND STREET NOISES (AS IN SET-B), AND BOTH ARE MODIFIED

BY PASSING THE NOISY SPEECH THROUGH A DIFFERENT DISTORTION

CHANNEL; SNRS FROM 0 DB TO 20 DB IN 5-DB INCREMENT; SET-C
RESULTS WITH CLEAN SPEECH TRAINING

ment applications. The comprehensive experimental results are

shown in Table V, where the full Aurora2 test sets (A, B, and C)

are used and HMMs are trained with clean speech.

In Table V, the percent speech recognition accuracy is shown

for a wide range of degree, signified by varying values of the

variance scaling factor in (34) and (35), to which the dynamic

prior information is jointly used with the static prior informa-

tion. When setting , we have and .

From (31), we see that the term associated with the use of the

static prior is eliminated and the dynamic prior becomes the en-

tire prior at work. At the other extreme, when (set at a

very large number of 5000 in the program), we have

and . Under this condition, the term associated with

the use of the dynamic prior is eliminated and the static prior

becomes the entire prior at work. We note that neither of these

extreme conditions produces good performance. The peak per-

formance is reached for the value of the variance scaling factor

in the range between five and six. Based on the analysis pro-

vided in (26) of Section IV, this suggests that the variance of the

conditional MMSE estimator, , would be on average in the

range of four to five times of the estimated variance for the dy-

namic parameter using the clean-speech training set. This anal-

ysis elegantly accounts for the need for using variance scaling

in order to achieve the optimally performance. In summarizing

the above results and analysis, we conclude that the direct use of

the estimated variances from clean speech (i.e., ) without
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TABLE V
SPEECH RECOGNITION ACCURACY (%) AS A FUNCTION OF VARIANCE SCALING FACTOR � IN (34) AND (35). � ADJUSTS THE RELATIVE CONTRIBUTIONS OF THE

STATIC AND DYNAMIC FEATURE DISTRIBUTIONS IN THE PRIOR SPEECH MODEL TO SPEECH ENHANCEMENT. THE LAST COLUMN LISTS THE RECOGNITION

ACCURACY WHEN NEITHER THE STATIC NOR THE DYNAMIC PRIOR INFORMATION IS USED DIRECTLY WHEN THE WEIGHTW IS SET TO ZERO. FULL TEST SETS

(A, B, AND C) ARE USED. HMMS ARE TRAINED WITH CLEAN SPEECH. CEPSTRAL MEAN NORMALIZATION IS USED AFTER SPEECH FEATURE ENHANCEMENT

taking account of the variance of the estimator does not lead

to the optimal performance. The optimal balance for the joint

use of the static and dynamic prior information depends on the

quality of the estimator, which is measured by the variance of

the estimator.

In the final column of Table V, we also list the recognition

accuracy when the weight is set to zero, or equivalently

and in (31). That is, no prior informa-

tion from either the static or dynamic portion is used directly.

The prior information is only minimally and indirectly used in

computing the outer-loop weight of posterior of (31) and

in initializing the estimator in (36). This is a highly simplified,

special case of our full algorithm of (31), which, as shown in

Table V, has produced very poor performance. It is interesting

to note that this special case corresponds to the algorithm de-

scribed in [30], [24], where no similar and terms exist

for direct and explicit use of the speech prior. Since is

equivalent to , our algorithm can be viewed as a princi-

pled way of generalizing that in [30], [24] by taking into account

the errors in using the prediction to approximate the true ob-

servation in (10). It is also interesting to note that the recog-

nition accuracy reported in [30], using the identical training and

test sets as we have used to obtain the results in Table V, is

comparable to our special case under the same (poor) approx-

imations. The somewhat minor difference, 78.37% in [30] vs.

77.08% in Table V, may be accounted for by their use of ad-

ditional bandpass filtering which we did not use, and possibly

by different implementations of the algorithm such as their dis-

tributed assignment of the nonlinear function’s argument, versus

our single-point initialization described in Section V-A.

D. Effects of Using Iterations for Estimator Refinement

In this subsection, we report the experimental results on the

role of using iterations to refine the conditional MMSE esti-

mator as described in Section V. While we gave theoretical mo-

tivations for using iterations in Section V.A, we show empir-

ical evidence here now. In Table VI is shown the speech recog-

nition accuracy for the full Aurora2 test sets as a function of

the within-frame iteration number in the iterative algorithm

of Section V.C. Consistent improvement of recognition rates

is achieved as the iteration number increases from one to

three, for both cases where the optimal balance is used between

the static and dynamic priors (top row in Table VI) and where

only the static prior is used (bottom row). After iteration three,

the accuracy tapers off slowly. We note that most of the previ-

ously published, related algorithms correspond to using a single

within-frame iteration . In this study, we show that more

iterations improve the robust speech recognition performance

due to the greater accuracy in the Taylor series approximation

TABLE VI
SPEECH RECOGNITION ACCURACY (%) AS A FUNCTION OF THE WITHIN-FRAME

ITERATION NUMBER J USED IN THE ITERATIVE CONDITIONAL MMSE
ENHANCEMENT ALGORITHM DESCRIBED IN SECTION V.C. CEPSTRAL MEAN

NORMALIZATION IS USED AFTER SPEECH FEATURE ENHANCEMENT

TABLE VII
THE SAME RECOGNITION ACCURACY RESULTS AS IN TABLE VI, EXCEPT NO

CEPSTRAL MEAN NORMALIZATION IS USED

TABLE VIII
THE SAME SUMMARY RECOGNITION ACCURACY RESULTS AS IN TABLE I,

EXCEPT NO CEPSTRAL MEAN NORMALIZATION IS APPLIED

to the nonlinear acoustic distortion model. However, the optimal

balance of the iteration number has only be explored empirically

in this study.

E. Effects of Cepstral Mean Normalization

In the current implementation of the speech feature enhance-

ment algorithm derived in Section IV, no channel distortion has

been taken into account. Rather, the effects of channel distortion

are handled via a separate process of cepstral mean normaliza-

tion after the conditional MMSE estimator is computed. All the

results presented so far include this latter process. To examine

how effective this separate process is, we present in Table VII

the speech recognition results analogous to Table VI, except

by removing cepstral mean normalization in both training and

testing. In all cases, the accuracy improvement using cepstral

mean normalization is consistent but relatively minor.

We also present in Table VIII the summary recognition results

analogous to Table I (except no cepstral mean normalization

is used), where a breakdown is shown between the results of

Sets A/B (additive noise only) and Set C (additive noise plus

channel mismatch). Uniform degradation of the performance is

observed.
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Fig. 1. Comparing spectrograms of two versions [(c) and (d)] of the enhanced speech with and without using the dynamic feature distribution in the prior speech
model. From top to bottom: (a) noisy speech (SNR = 0 dB); (b) true clean speech; (c) enhanced speech by the conditional MMSE estimator using joint static
and dynamic feature distributions in the prior speech model; and (d) enhanced speech by the MMSE estimator using only the static feature distribution in the prior
speech model.

F. Illustrations of the Effects of Incorporating Dynamic Prior

The above speech recognition results have consistently

proved the benefits of incorporating the dynamic prior for

the conditional MMSE estimator computation in the overall

performance. We in this subsection further examine some

fine-grained properties that illustrate the underlying reasons

for the performance improvement. We do this by comparing

the acoustic properties of the enhanced speech features using

different prior information, and by comparing them with the

target, true speech as well as with the initial distorted speech

before the enhancement.

In Fig. 1 are four spectrograms,9 with and without feature

enhancement, for one Aurora2 test utterance corrupted by non-

stationary babble noise with an average SNR of 0 dB. From the

top panel to the bottom one are: (a) noisy speech before fea-

ture enhancement; (b) true clean speech as the target result for

enhancement; (c) enhanced speech as the conditional MMSE

estimate using joint static and dynamic feature distributions in

the prior speech model; and (d) enhanced speech using only the

static feature distribution in the model. Comparing the spectro-

grams of (c) and (d), we observe a greater degree of smoothness

across frames, due to the use of the dynamic prior. In particular,

during frames starting at 200, the smooth formant transition has

9The spectrograms are computed by multiplying the inverse Cosine trans-
formation matrix to each of the cepstral vectors in the speech utterance on a
frame-by-frame basis.

been largely recovered in the enhanced features when the dy-

namic prior is used [comparing (c) with (b)]. In contrast, such a

smooth formant transition in the clean speech has been mostly

eliminated when no dynamic prior is used [panel (c)].

Fig. 2 shows the same kind of spectrogram comparisons as in

Fig. 1, but using a new test utterance and with a different type

of additive noise (the same average SNR of 0 dB). The same

smoothness across frames in the enhanced features of panel (c)

can be seen, contrasting sharply with the frequent abruptness

across frames in the spectrogram shown in panel (d).

Fig. 3 shows yet another example of the spectrogram com-

parisons for a new utterance that contains locally negative dB

SNR during the last digit with frames 110–140 (

averaged over the utterance as in Figs. 1 and 2). By comparing

panels (b), (c), and (d), we observe that the both enhancement

algorithms cut off some major clean speech features in the neg-

ative-SNR region, but the algorithm incorporating the dynamic

prior (c) is still doing a lot better than the one without the dy-

namic prior (d).

When the SNR is increased from 0 dB to 5 dB, spectrogram

comparisons presented in Fig. 4 demonstrate significantly re-

duced differences between using and without using the dynamic

prior. In fact, most of the speech recognition performance im-

provement we observed in the experiments reported in this sec-

tion comes from the case, consistent with the

general observation illustrated in Figs. 1–4.



230 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 12, NO. 3, MAY 2004

Fig. 2. The same spectrogram comparisons as in Fig. 1 using a new test utterance and with a different type of additive noise (SNR = 0 dB).

Fig. 3. Spectrogram comparisons with an example test utterance showing locally negative dB SNR (SNR = 0dB averaged over the utterance as in Figs. 1 and 2).
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Fig. 4. Spectrogram comparisons where the average SNR is 5 dB. The difference is reduced between using and without using the dynamic feature distribution
in the prior speech model.

VII. SUMMARY AND DISCUSSIONS

In this paper, a novel algorithm with its detailed derivation,

implementation, and evaluation is presented for statistical

speech feature enhancement in the cepstral domain. It incor-

porates the joint static and dynamic cepstral features in the

prior speech model in the Bayesian framework for optimal

estimation of the clean speech features. The estimator is based

on the full posterior computation and it elegantly integrates

the predictive information from a statistical nonlinear acoustic

distortion model, the prior information based on the static

prior, and the prior based on the frame-differential dynamic

prior. We have efficiently implemented this algorithm, which is

used in the Aurora2 noise-robust speech recognition under the

clean training condition. The results demonstrate significant

improvement in the recognition accuracy by incorporating the

joint static/dynamic prior, compared with using only the static

or dynamic prior and with using no prior.

While the noisy speech data provided by Aurora2 is not

real-life data such as Aurora3, the success of our approach

should in principle be able to generalize as long as the noise

can be accurately estimated. Some earlier related denoising

algorithms developed in our lab have been generalized from

Aurora2 to Aurora3 and other internal data with real-life

acoustic distortion without any difficulty [15] using the noise

tracking algorithm developed in [11] (also described at the end

of Section III of this paper). This verifies the effectiveness of

the noise tracking algorithm for real-life noisy speech data, and

also suggests that the new denoising algorithm presented in

this paper based on the same noise estimate can also generalize

well.

While a strong, log-domain speech prior model is exploited

and described in this paper, one specific limitation of the current

work is its use of a rather weak noise prior model. The prior in-

formation about noise has been made deterministic in terms of

its point estimate in this work, rather than probabilistic by in-

corporating the noise variance estimate as well. Conventional

spectral subtraction techniques may thus use the same noise es-

timate to remove the noise by converting it back from the log do-

main to the linear spectral domain. However, in addition to the

need for setting several heuristic, error-prone parameters (such

as spectral floor and overestimation factor, etc.), direct noise

subtraction does not make use of the prior information about

speech. That is, after obtaining the subtraction residual, which

gives the spectrum estimate for clean speech, there are no princi-

pled ways of verifying that the residual looks like clean speech.

If the residual does not look like the clean speech, it would

be highly desirable to reject the spectral subtraction result and

re-try the subtraction procedure, perhaps with different setups

for the heuristic parameters. The technique presented in this

paper can be viewed as a formal framework to achieve just that.

The measure for how the “residual”10 looks like clean speech

10This becomes the conditional MMSE estimate in our statistical framework,
in place of the spectral difference between the noisy speech and noise estimate
in spectral subtraction.
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is taken to be how likely it is to have scored the prior model

that characterizes the statistical property of clean speech. One

major innovation introduced in this work is to exploit both the

static and dynamic features in establishing this prior model so

that when examining to what degree the “residual” fits with the

clean speech statistics, not only the spectral shape of each in-

dividual frame is taken into account, but also the trajectory of

these shapes across time frames is used as a measure for the

“fitting”. All the above intuitively appealing aspects of noise

reduction are gracefully integrated into a consistent statistical

framework as presented in this paper. This framework can thus

be viewed as comprehensive and probabilistic “noise removal”,

based on any fixed noise estimate either in the linear spectral do-

main (as in spectral subtraction), or in the log spectral domain

related to the linear-domain variables via a nonlinear environ-

ment model (as has been explored in this paper).

In addition to improving the prior model for the additive

corrupting noise, further work will also include estimation of

channel distortion and its optimal use in an extended version of

the Bayesian enhancement framework described in Section IV.

The results presented in Section VI.E demonstrated that the

simple use of cepstral mean normalization does not accomplish

the desired goal of compensating the channel distortion.

While the “ignorance” modeling approach adopted to quanti-

tatively represent the prediction residual in the statistical model

of (9) for the nonlinear acoustic distortion (Section II) has been

shown to be reasonably successful, for greater success it is de-

sirable to provide a more accurate, “mechanistic” model for

the prediction residual. We are currently working toward such

a model and the related, new Bayesian estimation approach to

speech feature enhancement.

Finally, the optimal estimator presented in Section IV can be

easily extended to include the conditional variance estimation,

in addition to the conditional mean (point) estimation derived

in this paper. Given both the mean and variance estimates for

the enhanced speech features, the heuristic variance scaling

procedure discussed in Section V-B can be eliminated, and

our future work will also be able to aim at a tight integra-

tion between the front-end denoising and the back-end speech

recognition.

REFERENCES

[1] A. Acero, Acoustic and Environmental Robustness in Automatic Speech

Recognition. Norwell, MA: Kluwer, 1993.

[2] A. Acero, L. Deng, T. Kristjansson, and J. Zhang, “HMM adaptation

using vector Taylor series for noisy speech recognition,” in Proc. Int.

Conf. Spoken Language Proc., vol. 3, 2000, pp. 869–872.

[3] H. Attias, J. Platt, A. Acero, and L. Deng, “Speech denoising and dere-

verberation using probabilistic models,” Advances in Neural Informa-

tion Processing Systems (NIPS), vol. 13, pp. 758–764, 2000.

[4] H. Attias, L. Deng, A. Acero, and J. Platt, “A new method for speech

denoising and robust speech recognition using probabilistic models for

clean speech and for noise,” in Proc. Eur. Conf. Speech Communication,

2001, pp. 1903–1906.

[5] M. Beroutti, R. Schwartz, and J. Makhoul, “Enhancement of speech cor-

rupted by acoustic noise,” in Proc. Int. Conf. Acoustics, Speech, Signal

Processing, vol. 1, 1979, pp. 208–211.

[6] S. Boll, “Suppression of acoustic noise in speech using spectral sub-

traction,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 27, pp.

113–120, 1980.

[7] L. Deng, “A generalized hidden Markov model with state-conditioned
trend functions of time for the speech signal,” Signal Process., vol. 27,
pp. 65–78, 1992.

[8] L. Deng, A. Acero, M. Plumpe, and X. D. Huang, “Large-vocabulary
speech recognition under adverse acoustic environments,” in Proc. Int.

Conf. Spoken Language Processing, vol. 3, 2000, pp. 806–809.
[9] L. Deng, A. Acero, L. Jiang, J. Droppo, and X. D. Huang, “High-

performance robust speech recognition using stereo training data,” in
Proc. Int. Conf. Acoustics, Speech, Signal Processing, vol. 1, 2001,
pp. 301–304.

[10] L. Deng, M. Aksmanovic, D. Sun, and J. Wu, “Speech recognition using
hidden Markov models with polynomial regression functions as non-
stationary states,” IEEE Trans. Speech Audio Processing, vol. 2, pp.
507–520, 1994.

[11] L. Deng, J. Droppo, and A. Acero, “Recursive estimation of nonsta-
tionary noise using a nonlinear model with iterative stochastic approx-
imation,” in Proc. Automatic Speech Recognition and Understanding,
Dec. 2001, p. 4.

[12] L. Deng and J. Ma, “Spontaneous speech recognition using a statistical
coarticulatory model for the hidden vocal-tract-resonance dynamics,” J.

Acoust. Soc. Amer., vol. 108, no. 6, pp. 3036–3048, Dec. 2000.
[13] L. Deng, K. Wang, A. Acero, H. Hon, J. Droppo, C. Boulis, Y. Wang, D.

Jacoby, M. Mahajan, C. Chelba, and X. D. Huang, “Distributed speech
processing in MiPad’s multimodal user interface,” IEEE Trans. Speech

Audio Processing, vol. 10, pp. 605–619, Nov. 2002.
[14] J. Droppo, L. Deng, and A. Acero, “Evaluation of the SPLICE algorithm

on the Aurora2 database,” in Proc. Eur. Conf. Speech Communication,
Aalborg, Denmark, Sept. 2001, pp. 217–220.

[15] J. Droppo, A. Acero, and L. Deng, “Evaluation of SPLICE on the Au-
rora2 and Aurora3 tasks,” in Proc. Int. Conf. Spoken Language Proc.,
Denver, CO, Sept. 2002, pp. 121–124.

[16] Y. Ephraim, “Speech enhancement using a minimum mean-square error
log-spectral amplitude estimator,” IEEE Trans. Acoust., Speech, Signal

Processing, vol. 33, pp. 443–445, 1985.
[17] , “Statistical-model-based speech enhancement systems,” Proc.

IEEE, vol. 80, pp. 1526–1555, Oct. 1992.
[18] , “A Bayesian estimation approach for speech enhancement using

hidden Markov models,” IEEE Trans. Signal Processing, vol. 40, pp.
725–735, 1992.

[19] B. Frey, L. Deng, A. Acero, and T. Kristjansson, “ALGONQUIN: Iter-
ating Laplace’s method to remove multiple types of acoustic distortion
for robust speech recognition,” in Proc. Eur. Conf. Speech Communica-

tion, Aalborg, Denmark, Sept. 2001, pp. 901–904.
[20] H. Hirsch and D. Pearce, “The AURORA experimental framework for

the performance evaluations of speech recognition systems under noisy
conditions,” in Proc. ISCA ITRW ASR2000 on Automatic Speech Recog-

nition: Challenges for the Next Millennium, Paris, France, Sept. 2000.
[21] A. H. Jazwinski, Stochastic Processes and Filtering Theory. New

York: Academic, 1970.
[22] J. H. Mathews and K. D. Fink, Numerical Methods — Using MATLAB,

3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1999.
[23] J. Mendel, Lessons in Estimation Theory for Signal Processing, Com-

munications and Control. Englewood Cliffs, NJ: Prentice-Hall, 1995.
[24] P. Moreno, “Speech Recognition in Noisy Environments,” Ph.D. disser-

tation, CMU, 1996.
[25] P. Moreno, B. Raj, and R. Stern, “A vector Taylor series approach for en-

vironment-independent speech recognition,” in Proc. Int. Conf. Acous-

tics, Speech, Signal Processing, vol. 1, 1996, pp. 733–736.
[26] M. Ostendorf, V. Digalakis, and J. Rohlicek, “From HMM’s to segment

models: A unified view of stochastic modeling for speech recognition,”
IEEE Trans. Speech Audio Processing, vol. 4, pp. 360–378, 1996.

[27] “ESE2 special sessions on noise robust recognition,” in Proc. Eur. Conf.

Speech Communication, D. Pearce, Ed., Aalborg, Denmark, Sept. 2001.
[28] H. Sameti, H. Sheikhzadeh, L. Deng, and R. Brennan, “HMM-based

strategies for enhancement of speech embedded in nonstationary noise,”
IEEE Trans. Speech Audio Processing, vol. 6, pp. 445–455, Sept. 1998.

[29] G. Saleh and M. Niranjan, “Speech enhancement using a Bayesian ev-
idence approach,” Comput. Speech Lang., vol. 15, no. 2, pp. 101–125,
Apr. 2001.

[30] J. Segura, A. Torre, M. Benitez, and A. Peinado, “Model-based
compensation of the additive noise for continuous speech recognition:
Experiments using the AURORA2 database and tasks,” in Proc. Eur.

Conf. Speech Communication, Aalborg, Denmark, Sept. 2001, pp.
221–224.

[31] D. M. Titterington, “Recursive parameter estimation using incomplete
data,” J. R. Statist. Soc. B, vol. 46, pp. 257–267, 1984.

[32] Speech Commun., vol. 34, 2001.



DENG et al.: ESTIMATING CEPSTRUM OF SPEECH UNDER THE PRESENCE OF NOISE 233

Li Deng (S’83–M’86–SM’91) received the B.S. de-
gree from University of Science and Technology of
China in 1982, the M.S. degree from the University
of Wisconsin-Madison in 1984, and the Ph.D. degree
from the University of Wisconsin-Madison in 1986.

He worked on large-vocabulary automatic speech
recognition in Montreal, QC, Canada, from 1986 to
1989. In 1989, he joined Department of Electrical and
Computer Engineering, University of Waterloo, Wa-
terloo, ON, Canada, as Assistant Professor; he be-
came Full Professor in 1996. From 1992 to 1993, he

conducted sabbatical research at Laboratory for Computer Science, Massachu-
setts Institute of Technology, Cambridge, and from 1997 to 1998, at ATR In-
terpreting Telecommunications Research Laboratories, Kyoto, Japan. In 1999,
he joined Microsoft Research, Redmond, WA, as Senior Researcher, and is
currently a Principal Investigator in the DARPA-EARS Program and Affiliate
Professor of electrical engineering at University of Washington, Seattle. His
research interests include acoustic–phonetic modeling of speech, speech and
speaker recognition, speech synthesis and enhancement, speech production and
perception, auditory speech processing, noise robust speech processing, statis-
tical methods and machine learning, nonlinear signal processing, spoken lan-
guage systems, multimedia signal processing, and multimodal human–computer
interaction. In these areas, he has published over 200 technical papers and book
chapters, and has given keynote, tutorial, and other invited lectures. He recently
completed the book Speech Processing—A Dynamic and Optimization-Oriented

Approach (New York: Marcel Dekker, 2003).
Dr. Deng served on Education Committee and Speech Processing Technical

Committee of the IEEE Signal Processing Society during 1996–2000, and is
currently serving as Associate Editor for the IEEE TRANSACTIONS ON SPEECH

AND AUDIO PROCESSING.

Jasha Droppo received the B.S. degree in electrical
engineering (cum laude, with honors) from Gonzaga
University in 1994. He received the M.S. degree in
electrical engineering and the Ph.D degree in elec-
trical engineering from the University of Washington,
Seattle, under Les Atlas in 1996 and 2000, respec-
tively. At the University of Washington, he helped to
develop and promote a discrete theory for time-fre-
quency representations of audio signals, with a focus
on speech recognition.

He joined the Speech Technology Group at Mi-
crosoft Research, Redmond, WA, in 2000. His academic interests include noise
robustness and feature normalization for speech recognition, compression, and
time-frequency signal representations.

Alex Acero (S’83–M’90–SM’00–F’03) received an
engineering degree from the Polytechnic University
of Madrid, Spain, in 1985, an M.S. degree from Rice
University, Houston, TX, in 1987, and the Ph.D.
degree from Carnegie Mellon University, Pittsburgh,
PA, in 1990, all in electrical engineering.

He was a Senior Voice Engineer at Apple
Computer (1990–1991) and Manager of the Speech
Technology Group at Telefonica Investigacion
y Desarrollo (1991–1993). He joined Microsoft
Research, Redmond, WA, in 1994, where he is

currently Manager of the Speech Group. He is also Affiliate Professor at the
University of Washington, Seattle. He is author of the books Spoken Language

Processing (Englewood Cliffs, NJ: Prentice-Hall, 2000) and Acoustical and

Environmental Robustness in Automatic Speech Recognition (Norwell, MA:
Kluwer, 1993). He also has written chapters in three edited books, has eight
patents, and over 80 technical publications. His research interests include noise
robustness, signal processing, acoustic modeling, statistical language mod-
eling, spoken language processing, speech-centric multimodal interfaces, and
machine learning. He is associate editor of Computer Speech and Language.

Dr. Acero has had several positions within the IEEE Signal Processing So-
ciety, including Member-at-Large of the Board of Governors, associate editor
of IEEE SIGNAL PROCESSING LETTERS, and as Member (1996–2000) and Chair
(2000–2002) of the Speech Technical Committee. He was General Co-Chair
of the 2001 IEEE Workshop on Automatic Speech Recognition and Under-
standing, Sponsorship Chair of the 1999 IEEE Workshop on Automatic Speech
Recognition and Understanding, and Publications Chair of ICASSP ’98.


