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Abstract 27	
  

 Changes in extreme temperature and precipitation may give some of the largest 28	
  

significant societal and ecological impacts. For changes in the magnitude of extreme 29	
  

temperature and precipitation over India, we used a statistical model of generalized 30	
  

extreme value (GEV) distribution. The GEV statistical distribution is a time-dependent 31	
  

distribution with different time scales of variability bounded by a precipitation, maximum 32	
  

(Tmax), and minimum (Tmin) temperature extremes and also assessed their possibility 33	
  

changes are evaluated and quantified over India is presented. The GEV-based method is 34	
  

applied on both precipitation and temperature extremes over India during the 20
th

 and 21
st
 35	
  

centuries using multiple coupled climate models taking an interest in the Coupled Model 36	
  

Intercomparison Project Phase 5 (CMIP5) and observational datasets. The regional means 37	
  

of historical warm extreme temperatures are 34.89, 36.42, and 38.14 
o
C for three different 38	
  

(10, 20, and 50-year) periods, respectively; whereas the cold extreme mean temperatures 39	
  

are 7.75, 4.19, and -1.57 
o
C. It indicates that 20th century cold extreme temperatures have 40	
  

relatively larger variations than the warm extremes. As for the future, the CMIP5 models 41	
  

of warm extreme regional mean values increase from 0.33 to 0.75 
o
C in all return periods 42	
  

(10-, 20-, and 50-year periods), while in the case of cold extreme means values vary 43	
  

between 0.58 and 2.29 
o
C. In the future, cold extreme values have a larger increasing rate 44	
  

over the northwest, northeast, some parts of north central, and Inter Peninsula regions. 45	
  

The CRU precipitation extremes are larger than the historical extreme precipitation in all 46	
  

three (10, 20, and 50-year) return-periods. 47	
  

 48	
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1. Introduction 50	
  

 Extreme weather events, amplified by climate change, can lead to major 51	
  

environmental issues affecting human society. Precipitation and temperature are two 52	
  

major components of a changing climate that have been analyzed extensively over the 53	
  

past two decades (Trenberth and Shea 2005; Li et al., 2009; Kharin et al., 2013). 54	
  

According to the United Nations Office for Disaster Risk Reduction UNISDR (2015), 55	
  

India is the third most influenced nation by weather related by disasters, which can 56	
  

largely be attributed to both higher occurrences of extreme temperatures and precipitation. 57	
  

Recently, Trenberth (2005) showed that climate change due to increased greenhouse gas 58	
  

emissions leads to changes in extreme event behavior in terms of precipitation and 59	
  

temperature all over the world. Generalized Extreme Value (GEV) statistical distribution 60	
  

has long been used to examine time-series of climate extremes with different return levels 61	
  

using three extreme value distributions that were proposed by Fisher and Tippet (1928). 62	
  

The three distributions are referred to as Gumbel, Frechet, and negative Weibull, which 63	
  

are discussed in Section 2. Jaruskova and Rencova (2008) studied the extreme changes in 64	
  

annual maxima and minima temperature series using five meteorological sites, 65	
  

implementing extreme value theory and hypothesis testing within the framework of the 66	
  

GEV-based method. 67	
  

 Jenkinson (1955) used GEV distribution for extreme precipitation events, which 68	
  

offered extensive adaptability of the three extreme value distributions. Later, several 69	
  

researchers used GEV statistical distribution to study extreme precipitation for many 70	
  

regions and different countries around the world (Fowler and Kilsby 2003; Nadarajah 71	
  

2005; and Gilleland and Katz 2006). In China, a warming trend has been confirmed in 72	
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both annual minimum and maximum temperature in the twentieth century (Choi et al. 73	
  

2009; You et al. 2011). Later studies also showed notable extreme temperature increases 74	
  

in northeastern China, and the smallest increase in the southern region (Liu et al. 2004). 75	
  

The frequency of extreme temperature events in China is expected to increase at an 76	
  

accelerating rate based on Coupled Model Inter-comparison Project (CMIP) historical 77	
  

projections (Wang and Chen 2014; Yang et al. 2014). Utilization of GEV distribution on 78	
  

temperature and precipitation over China has been extensively studied in several 79	
  

investigations (Wang and Zhou 2005; Zhang et al. 2011; Yang et al. 2014). As for India, 80	
  

Shashikanth et al. (2017) applied a GEV distribution to GCM summer monsoon 81	
  

precipitation in India during 1961-1990 and 2081-2100. They found a slight increase in 82	
  

the future extreme spatial mean in the later period. However, the statistical GEV 83	
  

distributions of extreme minimum and maximum temperatures in India have not been 84	
  

examined in any previous studies. We utilize this method over India to address this issue. 85	
  

CMIP models and observations are discussed in Section 2. The GEV statistical 86	
  

distribution methodology is described in Section 3. Section 4 presents the results of the 87	
  

GEV distribution in three different periods and occurrences over India, and finally the 88	
  

conclusions are discussed in Section 5.   89	
  

2. Data and Method 90	
  

 The observational dataset of gridded monthly precipitation (P), minimum and 91	
  

maximum surface temperatures (Tmin and Tmax) are taken from the study of the Climate 92	
  

Research Unit (CRU TS3.1) described by Harris et al. (2014). The datasets are collected 93	
  

from 1901 to 2005 over land areas, based on daily values from rain gauge measurements 94	
  

provided by more than 4,000 weather stations distributed around the world (New et al., 95	
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1999, 2000). The precipitation and surface temperatures are collected from different 96	
  

sources, with rigorous quality checking procedures before gridding (Mitchell and Jones, 97	
  

2005; Harish et al., 2014). Figure 1 shows the Indian map with seven regions.  98	
  

 The monthly precipitation, and the minimum and maximum surface temperatures 99	
  

(Tmin and Tmax) are simulated by CMIP5 (Coupled Intercomparison Project Phase 5) 100	
  

models for a historical (hereafter referred to as "Historical") period from 1850 to 2005 101	
  

(Smith et al., 2013; Lamarque et al., 2010) as well as the 21st century (years 2006-2100) 102	
  

employing four different representative concentration pathways (RCPs) (Moss et al., 103	
  

2010, Taylor et al., 2012). The Historical and different scenarios of CMIP5 models are 104	
  

listed in Table 1. Further details on the models and their configuration are described in 105	
  

the references, online at http://www-pcmdi.llnl.gov/. We have considered only models for 106	
  

which the same ensemble member i.e. 'r1i1p1' is available both in the historical and four 107	
  

(RCP2.6, RCP4.5, RCP6.0, and RCP8.5) scenarios considered here. According to the 108	
  

IPCC Fifth Assessment Report, the CMIP5 models exhibit improvements in the 109	
  

simulations especially surface temperature and precipitation compared to the previous 110	
  

climate models (Flato et al. 2013). The outputs for both historic and different RCPs 111	
  

outputs are available on different spatial scales, which are consequently regridded to a 112	
  

common spatial scale of 1
o
 in latitude and 1

o
 in longitude resolution.  113	
  

 Out of the monthly CMIP5 model outputs (listed in Table 1), Historical 114	
  

experiments, RCP (2.6, 4.5, 6.0, and 8.5) experiments of Tmin, Tmax, and Precipitation (P) 115	
  

are utilized for our analysis.  116	
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 Three types of extreme distributions compose a GEV distribution: Gumbel, 117	
  

Frèchet, and Weibull, also known as type I, II, and III respectively (Martins and 118	
  

Stedinger 2000; Feng et al., 2007). These can generally be described by 119	
  

𝐺( 𝑧; 𝜇,𝜎, 𝜉 =

𝑒𝑥𝑝 −𝑒𝑥𝑝 −
!!!

!
, 𝜉 = 0

𝑒𝑥𝑝 − 1+ 𝜉
!!!

!

!!!!

, 𝜉 ≠ 0, 1+ 𝜉
!!!

!
> 0

                                 (1) 120	
  

 where µ, σ and ξ are the location, scale, and shape parameters, respectively. 121	
  

Particular cases of Eq. (1) with 𝜉 → 0, 𝜉 > 0,𝑎𝑛𝑑  𝜉 < 0 correspond to the Gumbel, 122	
  

Frèchet, and the negative Weibull distributions, respectively. Generally, the value of 𝜉 is 123	
  

greater than zero for precipitation data, although the distribution of Gumbel is sometimes 124	
  

adequate.  125	
  

 Several methods have been developed for the estimation of the parameters of 126	
  

GEV distributions. These include the method of moments by Christopeit (1994), the less 127	
  

influenced method of L-moments (Hosking, 1990; Hosking and Wallis, 1997); the 128	
  

Bayesian method by Smith and Naylor (1987), Coles and Tawn (2005). The most popular 129	
  

method is the maximum likelihood method (Smith and Naylor, 1987; Unkašerić and 130	
  

Tošić, 2009), which has the advantage of allowing the addition of fitting co-variables 131	
  

(such as trends, cycles or physical variables) (Katz et al., 2002). The detailed procedure 132	
  

of these methods summarized by the El Adlouni et al. (2007), Kioutsioukis et al. (2010), 133	
  

and Kharin et al. (2013). In this study, the maximum likelihood method is used to 134	
  

estimate the parameters of the GEV distribution. The regression parameters of 135	
  

𝜇(𝑡),𝜎(𝑡),𝑎𝑛𝑑  𝜉(𝑡) are the location, scale, and shape respectively. The parameters of the 136	
  

likelihood function, given n observations {(t1,z1), (t2,z2),......,(tn,zn)} at period ti at which 137	
  

the greatest zi is acquired, is provided by 138	
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𝐿 𝜃|𝑡!,𝑧!   =    𝑔 𝑧!;   𝜇 𝑡! ,𝜎 𝑡! , 𝜉 𝑡!
!

!!!                                                                    (2) 139	
  

where 140	
  

𝑔 𝑧;   𝜇,𝜎, 𝜉   =   
!

!
[1+ 𝜉

!!!

!
]! !!! !

    𝑒𝑥𝑝 − 1+ 𝜉
!!!

!

!! !

                        (3) 141	
  

The log-likelihood function is 142	
  

𝑙 𝜃|𝑡!,𝑧!   =   − 𝑙𝑜𝑔𝜎 𝑡! + 1+
!

! !!

  𝑙𝑜𝑔 1+ 𝜉 𝑡!
!!!! !!

! !!

+ [1+!

!!!143	
  

𝜉 𝑡!
!!!! !!

! !!

]
!

!

! !!                                                                                                         (4) 144	
  

𝜎 𝑡! > 0 and 1+ 𝜉 𝑡! 𝑧! − 𝜇 𝑡! /𝜎 𝑡! > 0  for i=1, ...., n. For every value of 𝜉 𝑡!  145	
  

that equals to zero, it is important to utilize the suitable limiting form, replacing the GEV 146	
  

by the Gumbel (𝐸𝑞. (1)  𝑓𝑜𝑟  𝜉 = 0) log-likelihood function, 147	
  

𝑙 𝜃|𝑡! , 𝑧! = −𝑙𝑜𝑔𝜎 𝑡! −
!!!! !!

! !!
− 𝑒𝑥𝑝 −

!!!! !!

! !!
                                                    (5) 148	
  

The maximum likelihood estimate of θ yields the maximization of Eq. (4) and/or Eq. (5). 149	
  

Rao (1973) estimated the confidence intervals for the selected return periods using the 150	
  

delta method. Figure 1 shows the regression, model fits and estimated the return values of 151	
  

monthly maximum temperatures.  152	
  

 We implement this GEV analysis to study the minimum and maximum surface 153	
  

temperatures and precipitation as simulated by CMIP5 models in the historical 154	
  

experiments (years 1901-2005), CRU observations, and experiments for the 21st century 155	
  

(years 2006-2100) with four different radiative forcing scenarios.  156	
  

3. Results 157	
  

3.1 CMIP Historical and CRU temperature extremes  158	
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 The spatial distribution of extremes for the Historical runs in India during 1901-159	
  

2005 is presented by showing maximum and minimum temperature extremes with 160	
  

different return time periods are shown in Figure 2. The top and bottom panels show 161	
  

maximum and minimum extremes respectively with return periods of 10, 20 and 50 years, 162	
  

denoted as T(max,10), T(max,20), and T(max,50) for maximum temperatures and T(min,10), T(min,20), 163	
  

T(min,50), for minimum temperatures respectively. The regional mean value for each return 164	
  

time period is mentioned at the top of each plot. The mean values indicate high warm 165	
  

extreme temperature conditions in India with average values of 34.89, 36.42, and 38.14
o
C 166	
  

for T(max,10), T(max,20), and T(max,50) respectively. The mean CRU extreme regional values 167	
  

are 34.80, 36.46, and 38.42
o
C for the 10, 20, and 50 year periods (Figure not shown). 168	
  

T(max,10) and T(max,20) show the most evident warm extremes over Northwest and North-169	
  

central regions. These extreme regions extend to the Interior peninsula at T(max,50). Similar 170	
  

extreme warm surface temperatures are observed over the northwestern part of India 171	
  

(Gadgil, 2018). These three regions show maximum extremes with return values all 172	
  

above 40
o
C, while the Western Himalaya region exhibits the lowest maximum 173	
  

temperature extremes at about 10
o
C. At T(max,10) large cold extremes cover most parts of 174	
  

the Western Himalaya region and slowly turn to warming extremes at T(max,50). The 175	
  

minimum temperature extremes show large variations over India except for the Western 176	
  

Himalaya region. The mean value of minimum temperature extreme over the entire 177	
  

region in India is 7.75, 4.19, and -1.57
o
C for three (10, 20 and 50-year) return periods, 178	
  

respectively. More extreme cold changes are observed in Figure 2 over the northeastern 179	
  

and western regions of India, and cold temperature extremes drop from 7
o
C to -20

o
C for 180	
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10 and 50 years period. The warmer and colder extremes of the minimum temperature are 181	
  

observed over southern and northern parts of India respectively.   182	
  

3.2 CMIP Historical and CRU changes in temperature extremes 183	
  

 The spatial differences between CMIP and CRU warm and cold temperature 184	
  

extremes for the three return estimates of 10, 20, and 50 year periods are shown in Figure 185	
  

3. The upper and lower panels display the changes in warm and cold temperature 186	
  

extremes for three time periods respectively. The positive (red color) and negative (blue 187	
  

color) values in these diagrams indicate the warmest and coldest Historical extremes for 188	
  

the three different periods.  189	
  

 The difference between the warm extremes decreases slightly from the 10 to 50-190	
  

year period over central and northern parts of India. Warm and cold bands are clearly 191	
  

observed over the southern regions of the warm extreme difference map. Looking at the 192	
  

cold extreme differences, a cold band (with a magnitude of ~4.5
o
C) is observed in the 193	
  

northwest region of India for the 50-year period, indicating that the CRU cold extremes 194	
  

are warmer than those of CMIP5 historical runs. The regional mean value decreases from 195	
  

0.14 to -0.20
o
C for warm extremes and decreases from -0.55 to -0.95

o
C for cold extremes 196	
  

from 10 to 50 year periods. From Figure 3, the magnitude of the difference of cold 197	
  

extremes is little larger than those of the warm extremes for all three return periods over 198	
  

India. The mean value of warm and cold extreme differences are less than a degree 199	
  

indicating a fairly good agreement between the Historical and CRU temperatures for the 200	
  

three different return periods. Kharin et al. (2005, 2007) observed that the temperature 201	
  

differences between CMIP5 multi-model and ERA-Interim are generally larger for cold 202	
  

extremes than for warm extremes during the period from 1986 to 2005. Table 2 203	
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summarizes the warm and cold extreme temperature mean values for the 10, 20, and 50-204	
  

year periods of each region for the CRU, Historical, as well as the differences between 205	
  

the two. It is evident from the table that the maximum warm extreme mean temperature is 206	
  

observed in the Interior Peninsula over the Historical ensemble and CRU temperatures 207	
  

for the 20- and 50-year return periods.  208	
  

3.4 Future climate extreme changes in CMIP5 projections 209	
  

 The spatial GEV distribution for three different return values of 10, 20, and 50 210	
  

years estimated from CMIP5 maximum temperatures of different RCP scenarios (RCP 211	
  

2.6, 4.5, 6.0, and 8.5) for the period 2006-2099 are shown in Figure 4. All RCPs suggests 212	
  

comparable spatial distributions of maximum temperatures over the three different 213	
  

periods.  The spatial distributions of warm extremes for all RCPs look similar in the 50-214	
  

year period. Moderately warm regional mean temperature changes are observed in 215	
  

RCP2.6 and RCP8.5 scenarios at about 1.15, 1.28, and 1.28
o
C for the three (10, 20 and 50 216	
  

year) periods, respectively. In RCP2.6, the warm temperature extremes are observed in 217	
  

northwest (NW) and north central (NC) regions in the 10-year period, while warm 218	
  

extremes cover three regions (NW, NC, and IP) in the 20-year period, and most of the 219	
  

regions in India in the 50 year period. In RCP8.5 the maximum temperatures are 220	
  

observed in most of the Indian regions with regional means of 39.96, 39.99, and 41.18
o
C 221	
  

for the three (10, 20, and 50-year) return periods, respectively. Maximum extreme 222	
  

temperatures of about ~44
o
C are observed in several grids throughout India under (RCP 223	
  

2.6 and 8.5) CMIP5 experiments in the 20 and 50 year return periods. Similar extreme 224	
  

temperatures reach values of around 46
o
C in large areas of northwest and Interior 225	
  

peninsula regions over equatorward of 25
o
. All simulations demonstrate an ascent of 226	
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more than ~3.5
o
C over three regions (NW, NC, and IP), and a warming of more than 2

o
C 227	
  

over the western Himalayan region in the 50 year period. 228	
  

 The spatial distribution of cold temperature extremes during the 21
st
 century 229	
  

under the RCP scenarios (RCP 2.6, 4.5, 6.0, and 8.5) for the three different time periods 230	
  

over India are shown in Figure 5. The regional mean values of cold extremes have 231	
  

consistently decreasing trends in all RCP scenarios. The northwest, western Himalayas, 232	
  

and northeast are the main regions exhibiting diminishing trends in all three return 233	
  

periods. The mean value of cold extremes for the 50-year period is ~7
o
C higher than the 234	
  

20-year period for RCP2.6. For the other concentration pathways (RCP 4.5, 6.0 and 8.5), 235	
  

the projected increase in cold temperature extremes ranges from 2.5
o
C to 2.8

o
C, and 3.3

o 
236	
  

C to 3.9
o 
C over the period 10 to 20 and 20 to 50-year return periods, respectively. Note 237	
  

that the positive changes of about ~5
o 

C in temperature are observed in the RCP8.5 238	
  

experiment in 21st century relative to the 1901-1960 historic period (Basha et al., 2017). 239	
  

The cold temperature extreme slowly decreases with latitude from south to north of India 240	
  

in all RCP scenarios. The magnitude at the southern tip of India is about 20
o
C, which 241	
  

decreases to -23
o
C over the northern tip. The maximum regional cold extreme value at 242	
  

about 12.73
o
C is observed in RCP8.5 for a 10-year period, while the minimum at about -243	
  

0.99
o
C is observed in RCP2.6 for 50-year return period.  244	
  

3.5 Temperature extremes inter-model uncertainty in CMIP5 projections: 245	
  

 The variability of the warm and cold temperature extremes over India can be 246	
  

shown by standard deviations as shown in Figures 6 and 7, which depict the spatial 247	
  

distributions of standard deviations for three different time periods (10, 20, and 50-year) 248	
  

of warm (Tmax) and cold (Tmin) extremes projected in the four different scenarios (RCP2.6, 249	
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4.5, 6.0, and 8.5), respectively. The spatial map in Figure 6 indicates the maximum to be 250	
  

in the southern part of Interior Peninsula (IP), while the second maximum (relatively 251	
  

weak) is at the Western Himalaya (WH) region in RCP2.6 at the 50-year period. The 252	
  

standard deviation of warm extremes is larger in the 50-year period compared to the 10- 253	
  

and 20-year periods especially in the southern part of India in all RCP scenarios. The 254	
  

maximum mean value is about 0.75
o
C in RCP8.5 (10-year period), whereas the minimum 255	
  

value is observed in RCP2.6 (50-year return value) at about 0.33
o
C. The standard 256	
  

deviations change in small increments across different scenarios for all return periods. 257	
  

For example, the standard deviation changes in 20-year return values are 0.47, 0.45, 0.41, 258	
  

0.49
o
C under RCP2.6, 4.5, 6.0, and 8.5 scenarios, respectively. 259	
  

 The spatial distribution of different CMIP5 experiments for three different time 260	
  

periods (10, 20, and 50-year) return values of cold extreme (Tmin) standard deviations are 261	
  

shown in Figure 7. A distinct feature of warm bias (up to 3.5
o
 C) in eastern and western 262	
  

regions of India is observed in all scenarios at 20- and 50-year periods. In cold extremes, 263	
  

the 50-year return period standard deviation is higher compared to other return values 264	
  

under RCP2.6. The maximum mean value of Tmin,50 is about 2.29
o
C in RCP2.6, while the 265	
  

minimum value (Tmin,10) is observed in RCP8.5.  The cold extremes have a larger 266	
  

variability comparing to warm temperature extremes. The mean maximum value of warm 267	
  

temperatures (Tmax,50) is almost three times as large as the Tmin,50 in RCP2.6. The 268	
  

variability of warm extremes (given by the standard deviation) are spatially fairly 269	
  

uniform in all the return periods, which is not the case for cold extremes under CMIP5 270	
  

scenarios. Recent observational (Lee et al., 2014) and modeling (Kharin et al., 2007, 271	
  

2013) studies have reported larger variability of warming in cold extremes compared to 272	
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warm extremes across different return periods. This indicates that variability in cold 273	
  

temperature extremes is larger than those of warm temperature extremes over India.  274	
  

4. Precipitation extremes 275	
  

4.1 Historical and CRU precipitation extremes and differences 276	
  

 The spatial variations of Historical (top panel), CRU (middle panel), and the 277	
  

differences between the two (bottom panel) of extreme precipitation for three different 278	
  

return periods (10, 20, and 50-year) are shown in Figure 8. The three (10, 20, and 50-279	
  

year) periods of precipitation extremes are computed from the GEV procedure by using 280	
  

monthly precipitation grids. From Figure 8, precipitation extremes increase significantly 281	
  

from the 10 to the 50-year period in both Historical and CRU observations. In 282	
  

CMIP5_historical runs the extreme precipitation appears to have a positive trend in the 283	
  

Interior Peninsula, which extends slightly into North Central (NC) part of India. The 284	
  

maximum trends, however is concentrated in the IP region. In the case of CRU, the 285	
  

increasing trend is observed over the IP and NC regions for the 20-year period, which 286	
  

also extends to most parts of India except for the southern tip and the Western Himalayan 287	
  

regions for the 50-year period. A widespread increase in extreme precipitation is 288	
  

observed in CRU for the 50-year period over the IP, NC, WC and EC regions. The 289	
  

differences between Historical and CRU extreme precipitations indicate that the CRU 290	
  

extreme values are slightly higher over the IP and NC, while Historical is slightly higher 291	
  

in the northern and southern parts of India for the 10- and 20-year periods. In the 50-year 292	
  

period, precipitation is higher in the Historical runs compared to CRU over the Interior 293	
  

Peninsula, Western Himalayan regions. However, extreme precipitation is lower in the 294	
  

Historical runs, in the northwest and extending to northwest and extending to north-295	
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central regions of India. The regional mean differences are -11.89%, -11.33% and 4.69% 296	
  

for all three (10, 20, and 50-year) periods, respectively.  297	
  

 The multi-model extreme precipitation differences for the 10-, 20-, and 50-year 298	
  

return periods during the period 2006-2100 for each CMIP5 scenarios (RCP2.6, 4.5, 6.0, 299	
  

and 8.5) relative to the 1901-2005 historical periods are shown in Figure 9. The 300	
  

northwestern region has the greatest decrease in all CMIP5 scenarios for all three return 301	
  

periods, which implies that the warmest region has the greatest decrease in extreme 302	
  

precipitation in future projections. The maximum mean difference is about ~23% in 303	
  

RCP8.5 for the 50-year return period. In comparison, future projections of extreme 304	
  

precipitation are slightly higher than Historical ones in the northern and some regions 305	
  

within Interior Peninsula. However, the Historical precipitation extremes are dominant in 306	
  

the 50-year period, and to a smaller extent in the 10-year period. The regional mean 307	
  

changes of extreme precipitation for the 50-year period are -10.4%, -12.9%, -4.3%, and -308	
  

22.9% under the RCP2.6, 4.5, 6.0, and 8.5 scenarios, respectively. From Figure 9, the 309	
  

regional mean changes of future precipitation extremes are 1.9% and 5.9% in RCP2.6 310	
  

(20-year period) and RCP6.0 (20-year period), respectively. Shashikanth et al. 2017 also 311	
  

found that significant changes in monsoon precipitation extremes during a 30-year period 312	
  

(2081-2100) compared to the historic period. 313	
  

5. Conclusions 314	
  

  We have assessed the Historical and CRU precipitation and temperature extremes 315	
  

and likely future changes within them throughout India. We quantified the warm and cold 316	
  

temperatures as well as precipitation extremes of CMIP5 for all Representative 317	
  

Concentration Pathway scenarios (RCP2.6, 4.5, 6.0, and 8.5) for the future using a 318	
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statistical model of climate extremes based on GEV distributions for the three return 319	
  

periods (10, 20, and 50-year). The most important findings of our analysis are 320	
  

summarized as follows: 321	
  

 Extreme warm values in Historical Tmax in India appear to be rather moderate. 322	
  

The regional means of extreme maximum temperatures are 34.89, 36.42, and 38.14 
o
C for 323	
  

all three (10, 20, and 50-year) return periods, respectively, while the minimum extreme 324	
  

temperatures are 7.75, 4.19, -1.47 
o
C for those same return periods. Comparing the 10- to 325	
  

50-year return periods, the warm extremes increase at about ~3 
o
C over northwestern, 326	
  

north central, and Interior peninsula regions. Cold extremes are decreased ~5 
o
C 327	
  

especially over the eastern and western regions of India.  328	
  

 The regional relative mean differences of Historical and CRU Tmax extremes are 329	
  

0.14, 0.01 and -0.20 
o
C for the three (10, 20, and 50-year) periods, respectively. 330	
  

Comparing the 10- and 50-year return periods shown that the relative changes of extreme 331	
  

temperatures decrease in Northwest, North central, and northern part of Interior peninsula, 332	
  

and increase over lower part of the west coast. The relative mean differences of CRU 333	
  

cold extremes are slightly higher than those of the Historical runs. The relative mean 334	
  

differences of cold extremes are -0.55, -0.64, and 0.28 
o
C for the three (10, 20, and 50-335	
  

year) periods, respectively. CRU shows more changes in the cold extremes as opposed to 336	
  

warm extremes compared to the Historical extremes. Regionally, northwestern and 337	
  

northeastern regions of India show the highest changes. 338	
  

 Future Tmax extreme temperatures increase in all RCP scenarios compared to 339	
  

historical temperatures, especially for the 20 and 50 year periods. The regional extreme 340	
  

mean values increase moderately compared to the historical values at about 1.85 and 2.92 341	
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o
C in the 50-year period under RCP6.0 and 8.5 scenarios. In the case of Tmin extreme 342	
  

mean temperatures of RCP2.6 decrease by nearly 5 
o
C compared to the historical values, 343	
  

while the minimum extreme temperature mean in RCP8.5 increase by nearly 4 
o
C 344	
  

compared to historical temperatures in 50-year return period. It must be noted that the 345	
  

effect of increasing radiative forcing under higher concentration pathways is larger on 346	
  

cold temperatures compared to warm temperatures.  347	
  

 The spatial variability of CRU extreme precipitation rates is substantially larger 348	
  

compared to Historical extremes in all three return periods. Upon comparing 10-, and 50-349	
  

year periods, changes in precipitation extremes are observed in both the location and 350	
  

scale of the distribution, especially over North Central and Interior Peninsula regions of 351	
  

India. In the other regions, CRU precipitation extreme changes increase slightly in the 352	
  

50-year period. The regional mean relative difference of Historical and CRU precipitation 353	
  

extremes is observed the 50-year period at about -14.6%. It indicates that Historical 354	
  

precipitation extremes show smaller values compared to CRU in several regions in India. 355	
  

The past and future differences of extreme precipitation are significantly larger when 356	
  

comparing to Historical to RCP8.5, implying that increasing radiative forcing under 357	
  

higher greenhouse gas concentrations may lead to larger changes in precipitation 358	
  

extremes.  359	
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Figure captions 366	
  

Figure 1. Sample plot of Generalized Extreme Value (GEV) distribution return values, 367	
  

 empirical and modeled fits with 95% confidence level, together with the map of 368	
  

 India divided in the seven regions used in this study. 369	
  

Figure 2. The historical maximum temperature (Tmax; top panel), and minimum 370	
  

 temperature (Tmin; bottom panel) extremes for 10-year (left), 20-year (middle), 371	
  

 and 50-year (right) periods during 1901-2005. 372	
  

Figure 3. The difference between CMIP5_historical and CRU maximum temperature 373	
  

 (Tmax; top panel), and minimum temperature (Tmin; bottom panel) extremes for 374	
  

 (left) 10-year, (right), 20-year, and (right) 50-year periods during 1901-2005. 375	
  

Figure 4. The (left) 10-year, (middle) 20-year, and (right) 50-year return values of CMIP5 376	
  

multi-model mean of warm temperature extremes for the period 2006-2100 377	
  

under RCP2.6 (1
st
 row), RCP4.5 (2

nd
 row), RCP6.0 (3

rd
 row), and RCP8.5 378	
  

(bottom row) scenarios, together with the regional average stated on top of each 379	
  

panel. 380	
  

Figure 5. The (left) 10-year, (right) 20-year, and (right) 50-year return values of CMIP5 381	
  

multi-model minimum temperature extremes projected in 2006-2100 under 382	
  

RCP2.6 (1
st
 row), RCP4.5 (2

nd
 row), RCP6.0 (3

rd
 row), and RCP8.5 (bottom 383	
  

row) experiments, together with the regional means stated on top of each panel. 384	
  

Figure 6. The CMIP5 inter-model standard deviations for the 10-year (left), 20-year 385	
  

(middle), and 50-year (right) return values of warm temperature extremes 386	
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simulated in the RCP2.6 (1
st
 row), RCP4.5 (2

nd
 row), RCP6.0 (3

rd
 row), and 387	
  

RCP8.5 (bottom row) experiments, respectively.	
  388	
  

Figure 7. The CMIP5 inter-model standard deviations for the 10-year (left), 20-year 389	
  

(middle), and 50-year (right) return values of cold temperature extremes 390	
  

simulated in the RCP2.6 (1
st
 row), RCP4.5 (2

nd
 row), RCP6.0 (3

rd
 row), and 391	
  

RCP8.5 (bottom row) experiments, respectively.	
  392	
  

Figure 8. The 10-year (left), 20-year (middle), and 50-year (right) return values of 393	
  

Historical (1
st
 row), CRU (2

nd
 row), and the relative change between Historical 394	
  

and CRU (%, bottom row) of precipitation extremes during 1901-2005.  395	
  

Figure 9. The CMIP5 multi-model mean relative change (%) for the 10-year (left), 20-396	
  

year (middle), and 50-year (right) return values of precipitation extremes 397	
  

between the historic values in 1901-2005 and the simulated values in 2006-2100 398	
  

under RCP2.6 (1
st
 row), RCP4.5 (2

nd
 row), RCP6.0 (3

rd
 row), and RCP8.5 399	
  

(bottom row) scenarios, together with their regional means of relative changes 400	
  

on top of each panel. 401	
  

 402	
  

 403	
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 409	
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