
Eurographics/SIGGRAPH Symposium on Computer Animation (2003)

D. Breen, M. Lin (Editors)

Estimating Cloth Simulation Parameters from Video

Kiran S. Bhat,1 Christopher D. Twigg,1,2 Jessica K. Hodgins,1 Pradeep K. Khosla,1 Zoran Popović2 and Steven M. Seitz,2
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Abstract

Cloth simulations are notoriously difficult to tune due to the many parameters that must be adjusted to achieve

the look of a particular fabric. In this paper, we present an algorithm for estimating the parameters of a cloth

simulation from video data of real fabric. A perceptually motivated metric based on matching between folds is

used to compare video of real cloth with simulation. This metric compares two video sequences of cloth and

returns a number that measures the differences in their folds. Simulated annealing is used to minimize the frame

by frame error between the metric for a given simulation and the real-world footage. To estimate all the cloth

parameters, we identify simple static and dynamic calibration experiments that use small swatches of the fabric.

To demonstrate the power of this approach, we use our algorithm to find the parameters for four different fabrics.

We show the match between the video footage and simulated motion on the calibration experiments, on new video

sequences for the swatches, and on a simulation of a full skirt.

1. Introduction

Several recent major movie releases have demonstrated that

the motion of clothing adds greatly to the appearance of a

virtual character. This effect is particularly compelling for

scenes that include both real and synthetic actors such as

those with Yoda and Anakin Skywalker in Episode II: At-

tack of the Clones. In such scenes, the virtual clothing must

move and be rendered so that it blends in seamlessly with

the motion and appearance of the real clothing in the scene.

Realistic virtual clothing is possible now because of recent

advances in cloth simulation techniques4, 9, 5, 37, 6.

The motion of fabric is determined by resistance to bend-

ing, stretching, shearing, external forces, aerodynamic ef-

fects, friction, and collisions. Although with the right set

of parameters, good simulators produce very realistic look-

ing motion, choosing parameters that will provide a particu-

lar appearance remains a time consuming task that requires

the computation and viewing of many forward simulations.

Some parameters can be chosen based on the animator’s in-

tuition about the fabric—a knit fabric is more stretchy than a

woven fabric such as linen, for example. But not all the pa-

rameters of a cloth simulator are intuitive or map directly

c© The Eurographics Association 2003.



Bhat et al. / Estimating Cloth Simulation Parameters from Video

to measurements that can made by a system such as the

Kawabata system22. In our paper, we address this problem

by using optimization to automatically determine these pa-

rameters from a sequence of video frames of the fabric under

consideration.

The parameters are optimized on a set of static shots and

motion clips of a small swatch of a particular fabric and then

tested on a simulation of a full skirt made from that fabric.

We designed the swatch tests to span the space of behaviors

that we expect to see in the final sequences of motion with

the skirt so that all parameters can be tuned appropriately.

We use simulated annealing for the optimization step with

an optimization function that assesses the extent to which

the folds in the simulated and physical fabric match. This

match is evaluated by means of a shape metric that uses pro-

jected light to detect surface orientation in real and simulated

fabrics. The metric is tuned to be most sensitive along folds

and to discount planar regions.

We use the system to find the parameters for four differ-

ent fabrics. We show the match between the video footage

and the simulated motion on the calibration experiments, on

additional video sequences for the swatches, and on a sim-

ulation of a full skirt as shown in the image on the previous

page.

2. Related Work

Cloth modeling has a long history, dating back to work in the

textile community from the mid-1930s by Peirce27. Work on

cloth modeling in computer graphics has focused on devel-

oping dynamic simulation techniques that are both realis-

tic and fast. Baraff and Witkin describe a cloth model that

uses stiff springs with implicit time integration4. This model

was subsequently adapted to reduce the over-damping due to

implicit integration9. Explicit time integration approaches18

use weaker springs for stretching and shearing, often explic-

itly limiting the amount of stretching29, 6. Choi and Ko in-

troduced a bending energy model that more accurately cap-

tures the fine creases and bends of cloth9. Lahey provides

a comprehensive overview of cloth hysteresis models from

the perspective of computational fabric mechanics23. Exten-

sive work has also been done on modelling collisions and

friction. Cloth self-collision is handled either by untangling

the cloth37, 39, 3 or by preemptively avoiding collisions30, 20, 6.

Various potential field methods have been used for general

collision detection and response33, 32.

Despite this large body of work on cloth simulation mod-

els, little work has appeared in the computer graphics liter-

ature on estimating the parameters of these models so that

they match the behavior of real fabrics. Cloth parameter

estimation has been studied in the textile community (for

an overview, see Breen and colleagues17), but such meth-

ods have not yet enjoyed wide-spread use in the computer

graphics community. An important exception is the work by

Breen5 who used the Kawabata system22 to measure bend-

ing, shearing, and tensile parameters by subjecting a swatch

of fabric to a series of mechanical tests and measuring the

force needed to deform it into a standard set of shapes. Al-

though the Kawabata system can provide accurate measure-

ments, these measurements are problematic for computer

graphics cloth simulation problems for two reasons. First,

there might not be a direct and simple mapping between the

parameters for a particular cloth model and the Kawabata

parameters. Second, the Kawabata system does not measure

dynamic cloth parameters, e.g. air drag or damping, which

are of key importance for moving cloth.

One promising approach for modelling cloth parameters

is to automatically search for parameters that match real,

observed cloth. Jojic and Huang fit parameters of a particle-

based cloth model to fit a range scan of real cloth in a static

rest configuration, draped over a sphere21. More challenging

still, they attacked the problem of measuring the 3D geom-

etry of an object from the resting shape of a piece of cloth

draped over it, a problem that we do not consider in this pa-

per. However, Jojic and Huang did not treat the problem of

measuring dynamic parameters or demonstrate accurate re-

sults across a range of fabric types.

More distantly related are techniques for computing the

geometry of cloth from images. Coarse estimates of the

time-varying geometry of cloth can be computed using tra-

ditional stereo matching techniques by using two or more

cameras and treating each time instant independently (see

Scharstein and Szeliski31 for an overview). More accurate re-

sults may be obtained by projecting structured light patterns

on the cloth (see Zhang et al.40 for an overview). Rather than

computing shape at every time instant independent from the

next, it can be advantageous to integrate images over time to

improve accuracy. Two examples of promising work along

these lines are Carceroni and Kutulakos8 and Torresani et

al.34; both studies demonstrated reconstructions of moving

cloth.

3. Cloth Model

Because our framework for estimating cloth simulation pa-

rameters is independent of the cloth model, we can in prin-

ciple select a specific model that meets a set of criteria

such as accuracy or simulation speed. Our choice of a cloth

model was guided by two goals, realism and practicality.

We wanted to use a model that was sophisticated enough to

capture the detailed dynamic behavior found in real fabrics

but still straightforward to implement. Because our intention

was to apply the learned cloth model parameters to arbitrary

garments with varying triangle resolution, it was also im-

portant that the cloth parameters correctly scale to varying

resolutions of cloth.

We used the model described by Baraff and Witkin as the

basis for our cloth simulator4. This model has sufficient rich-
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ness to produce a wide variety of cloth behaviors. The under-

lying meshing is triangular, making clothing modelling eas-

ier. More importantly, its input parameters are independent

of meshing, so that parameters recovered on one mesh (the

test swatch) can be transferred to another (the skirt). While

nonlinear models such as the buckling behavior of Choi and

Ko9 could potentially capture more realistic details of cloth,

there is no straightforward way to scale the parameters of

these models to meshes of varying resolutions. We expect

that future application of our parameter-estimation frame-

work to other scale-invariant cloth models will provide even

more realistic results.

The model developed by Baraff and Witkin formulates the

energy of a particular triangle in terms of so-called condition

functions C(x) such that the total potential energy associated

with the system is given by

Eu =
ks

2
C(x)CT (x) (1)

where ks is a stiffness coefficient associated with the partic-

ular condition function. Forces are then simply calculated by

F = ∇xEu (2)

Damping forces are similarly fomulated in terms of the

C(x),

d = −kd
dC

dx
Ċ(x) (3)

We thus associate a stiffness coefficient ks and a damping

coefficient kd with each of the C(x). In their paper, Baraff

and Witkin describe a set of C(x) consisting of an in-plane

stretch term, an in-plane shear term, and an out-of-plane

bending term, giving a total of six parameters we can use

to tune the internal cloth model. We refer the reader to their

paper for the full details4. We note, however, that (as they

allude to in footnote 5) energy should scale linearly with tri-

angle area to ensure scale independence. Therefore, we need

to be careful when substituting C(x) for stretch and shear

into eq. 1 that the resulting formula is linear in a rather than

quadratic.

In the course of running our experiments, we discov-

ered that a linear drag model such as that used in previous

cloth work4, 9 was not able to capture dynamic aspects of

cloth. In order to add additional air-drag degrees of free-

dom to our cloth model without resorting to fully modeling

aerodynamics25, we developed a simple nonlinear alterna-

tive. To calculate the drag force on a triangle, we decom-

pose the average velocity on the face into two components,

one normal to the surface (vN ) and one tangential (vT ). Total

drag force is then a linear function of tangential velocity and

a quadratic function of normal velocity, with an additional

term k f that controls the degree of nonlinearity,

fdrag = −a

(

kN |vN |
2

1+ k f |vN |2
vN

|vN |
+ kT vT

)

where a is the area of the given triangle. The linear term

is merely Stokes’s law1; the quadratic term matches bet-

ter the experimental behavior of macroscopic bodies in low

Reynold’s number flow14. The addition of the |vN |
2 term in

the denominator which makes the force asymptotic as vN →
∞ was partially motivated by the observed phenomenon of

drag crisis14, where under certain circumstances the drag co-

efficient can actually drop at the onset of turbulence1. The

optimizer is free to eliminate this behavior or other terms

of this equation by setting the corresponding parameters to

zero.

Initially, we used a first-order implicit Euler time inte-

gration scheme similar to the one described by Baraff and

Witkin4. Unfortunately, we found that implicit integration

introduced damping which could not be eliminated by op-

timizing cloth parameters. We had more success in match-

ing realistic cloth motions by using higher-order explicit

methods. The results in this paper all use an adaptive 4th-

order accurate Runge-Kutta methods with embedded error

estimation2. While this method offers the advantages of fa-

miliarity and automatic bounding of error, it is rather slow,

and recent work suggests that using 2nd-order backward

differences9 or Newmark schemes7 may be a better choice.

For collision handling, we use a model similar to Brid-

son and colleagues6 which combines repulsion forces with

impulses to robustly prevent all collisions before they occur.

However, separating repulsion forces from the cloth inter-

nal dynamics and applying them outside the Runge-Kutta

solver affected stability and resulted in visible artifacts. In-

stead, we apply repulsion forces inside the solver loop, so

that the solver’s own internal error estimation can remove

these artifacts. The drawback of this technique is speed, be-

cause the system must check for collisions every time it eval-

uates the state derivatives (as opposed to once every colli-

sion timestep as in Bridson et al.6). To achieve acceptable

performance, we used a number of collision culling algo-

rithms, including hybrid top-down/bottom-up update24, fast

triangle reject tests26, and a curvature-based criterion for re-

jecting self-collisions that was first introduced by Volino and

Thalmann38 and later refined by Provot30.

4. A Metric for Matching Simulation to Video

We use a perceptually motivated metric to compare the mo-

tion of cloth in simulation with a video sequence of real

fabric motion. Our algorithm compares the two sequences

frame by frame and computes an average error across the

entire sequence. Real fabrics exhibit a wide variety of mo-

tion ranging from soft and flowing (satin) to stiff (linen). Our

metric captures the complex dynamics of cloth motion and

also helps to distinguish between different fabrics.

Researchers in computational neurobiology hypothesize

that the human perceptual system is sensitive to moving

edges in video11, 12, 36. Studies have shown that the receptive
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fields of simple cells in the macaque cortex act as edge or

line detectors, responding to oriented edges or lines in nat-

ural scenes19, 35, 10. In cloth, these edges correspond to folds

and silhouettes, which are regions of high variation in shape.

Hence, our perceptually motivated metric for cloth compares

two video sequences, one from simulation and one from the

real world, and returns a number that measures the differ-

ences in their folds. The metric also penalizes the silhouette

mismatch between the two sequences.

Fold Detection and Representation: Folds appear as soft

edges in video whose appearance is dependent on material

properties and lighting. Haddon and Forsyth15, 16 describe

a learning approach for detecting and grouping folds (and

grooves) in images of fabrics. Their technique can handle

lighting effects caused by diffuse inter-reflections in cloth.

However, most fabrics have very complicated reflectance

properties. In our experiments, we eliminate the effects of

lighting and material reflectance by projecting a structured

light pattern of horizontal stripes onto the fabric.

From the light-striped video sequence, we compute the

dominant orientation for each edge pixel by convolving it

with a steerable filter bank13. In our implementation, we use

the G2/H2 quadrature pair with kernel size 12 as the basis fil-

ters. Details of computing the dominant orientation from the

coefficients of filter bank response are given in Appendix I

of Freeman and Adelson13. We convolve the image with the

filter bank, compute the filter coefficient responses, blur the

coefficients using a gaussian kernel, and compute the domi-

nant orientation from these coefficients. We name the result-

ing orientation image an angle map, shown in Fig. 1. The

angle map, which measures the local orientation of the pro-

jected pattern, has a constant value when the surface is pla-

nar and varies at folds. We threshold the gradient of the angle

map to get a gradient mask Mk for each frame of video (Fig.

1).

Mk(i, j) =

{

1, ‖δ(i, j)‖ ≥ τ
0, ‖δ(i, j)‖ < τ (4)

where τ is a user defined threshold and ‖δ(i, j)‖ is the mag-

nitude of the gradient of the angle map at (i, j). The gradient

mask is non-zero at regions of high gradients, corresponding

to folds, and zero at planar regions.

Fold Comparison: Our metric computes the frame by

frame sum of squared differences (SSD) between masked

angle maps in simulation with video. We preprocess the in-

put video sequence to compute the angle map at each frame.

Similarly, in simulation, we render the cloth shape using the

current parameter values and project the same striped pat-

tern, to get a striped simulation sequence. We compute the

angle map at every frame in simulation from this sequence.

We then compute the SSD of the angle values for all overlap-

ping points in the two angle maps. We multiply this differ-

ence with the gradient mask, which helps to emphasize the

Figure 1: Top Row: Input light striped image. Bottom Row

(left to right): angle map and gradient mask.

Figure 2: The stages in the metric pipeline. Top row (left to

right): Angle map from video, angle map from simulation.

Bottom row (left to right): angle map difference, final met-

ric value for this frame (angle map difference multiplied by

gradient mask from video).

differences in fold regions over planar regions (Fig. 2). We

sum the error across all frames to compute the overall error

across the entire sequence. The error at any particular frame

k along the sequence is

E
f old
k

=
Sx

∑
i=0

Sy

∑
j=0

Mk(i, j) · (θreal
k (i, j)−θsim

k (i, j))2
(5)

where (Sx,Sy) is the size of the angle maps and θreal , θsim

are the angle values from real and simulation angle maps

respectively.

Silhouette Comparison: In addition to the angle map error,

we penalize the silhouette mismatch between the simulation

and the video of real cloth. This penalty is proportional to

the difference between the two silhouettes, i.e., the number

c© The Eurographics Association 2003.



Bhat et al. / Estimating Cloth Simulation Parameters from Video

Figure 3: This plot shows angle map error as a function

of bend and stretch stiffness parameters. Dark areas indi-

cate regions of small error and bright areas correspond to

large errors. Note that the space is fairly noisy. The mini-

mum found by the optimizer is contained in the large dark

region in the lower portion of the plot.

of mismatched pixels.

E
silh
k =

Sx

∑
i=0

Sy

∑
j=0

| A
real
k (i, j)−A

sim
k (i, j) | (6)

where

Ak(i, j) =

{

1, inside silhouette

0, otherwise
(7)

The total error in frame k is

Ek = E
f old
k

+αE
silh
k (8)

where α is a user-defined weight that controls the relative

contribution of the two terms. We used a value of 0.1 for α
in our experiments. The error across the entire sequence of

length N frames is given by

E =
N

∑
k=1

Ek (9)

5. Parameter Identification

We use optimization to estimate the parameters of the cloth

simulator from video. Before we describe the details of the

optimizer, we look at the error space of the angle map met-

ric, which gives us useful insight about the parameters of

the system. Fig. 3 shows the variation of error for different

values of bend stiffness and stretch stiffness coefficients for

satin. At each point in the parameter space, we evaluated the

metric error between the first frame of video and a simula-

tion using the parameters. From the figure, it is evident that

the error space is fairly noisy, with many local minima, mo-

tivating the need for a global optimization technique.
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Figure 4: Perturbation analysis at the solution for bend stiff-

ness parameter.

In addition to the parameter values, we estimate the rela-

tive importance of each parameter for a given experiment by

performing a perturbation analysis at the solution point. The

importance or sensitivity of a parameter p depends on its lo-

cal gradient ∂E
∂p

; it relates a small change in parameter value

to a change in the error value. Instead of computing the gra-

dient, we robustly compute the variability of the parameters,

defined as
∂p
∂E

. To compute the variability, we perturb each

parameter of the simulator individually up to ±0.20% of its

value, compute the error and fit a quadratic curve to the data

(Fig. 4). From the quadratic, the variability is computed as

the change in parameter values that results in a 1% change in

the error. Parameters with low variability have high sensitiv-

ity and are estimated more reliably for a given experiment.

6. Optimization Framework

We use simulated annealing to find the parameters that min-

imize the error function given in eq. 9. Simulated anneal-

ing initially explores the space in a semi-random fashion

and eventually takes downhill steps. The likelihood that it

will take a step in a direction that is not locally optimal is

a function of the temperature (Fig. 5). We use the continu-

ous simulated annealing method presented in Press et al.28,

which combines the Metropolis algorithm with the downhill

simplex method for continuous n-variable optimization. We

find it useful to reset the simplex with the current best so-

lution when the temperature reduces by a factor of 3. Prior

to optimization, we perform an exhaustive search for each

fabric, where we choose four values for each cloth parame-

ter across its entire range. This corresponds to a very coarse

sampling of the parameter space. We simulate the fabric for

all points in this coarse set and compute the error for each

point by comparing against the real fabric. We initialize the

optimizer with the point corresponding to the minimum er-
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Figure 5: Progress of the simulated annealing optimizer as

measured by error. The temperature decrease is governed by

a geometric cooling schedule.

ror. We have found that this strategy allows the optimizer to

locate a good minimum of the space.

7. Experiments

We designed simple experiments to capture the dynamics of

the different types of fabrics and the air/cloth interaction.

The experiments are easy to perform, capture, and repeat;

yet they demonstrate the complex dynamics of cloth motion.

The parameters obtained from the simple experiments were

used to simulate skirts and other complex fabric motions. In

essence, our experiments were designed to be a calibration

setup for estimating the static and dynamic parameters of a

cloth simulator.

We perform two estimation experiments for each fabric, a

static test and waving test. We used four types of fabrics:

linen, fleece, satin and knit. These fabrics exhibit a wide

range of static and dynamic behavior and span a large range

of real fabrics.

We perform the static and waving tests on a small swatch

of each fabric. In the static test, the two top corners of the

fabric are held stationary, and the fabric is allowed to sag

under gravity. For a fixed separation between the top cor-

ners, different fabrics attain different static shapes as shown

in Fig. 6. The static test gives a good estimate for the static

stiffness and bend parameters. In the waving test, one of

the top corners of the fabric is fixed and the other corner is

moved back and forth (Fig. 7). The waving motion of fab-

rics in simulation is affected by their dynamic parameters.

We see from the accompanying videos that real fabrics ex-

hibit a wide range of interesting motions even with the same

input excitation. We designed the waving motion to roughly

match the types of motion occurring in real garments such

Figure 6: The static test with four real fabrics. Top row (left

to right): linen and fleece. Bottom row: satin and knit. Top

corner separation is identical across all four fabrics.

Figure 7: Three frames from the waving test for satin.

as skirts. This gives reasonable estimates for cloth parame-

ters while avoiding the need to optimize directly on complex

fabric geometries (e.g. skirts) involving many collisions.

8. Results

In this section, we report the results of simulation param-

eters obtained using our technique applied to four fabrics:

linen, fleece, satin and knit. We measured the mass and di-

mensions of the fabrics. We also accurately measure the po-

sition of the two top corners using a Vicon motion capture

system. We compute the projection matrices for the camera

and projector using a calibration grid comprising of several

motion capture markers. We performed two trials per experi-

ment, each with slightly different initial conditions and opti-

mized on the first 50 frames of video in each trial. Each trial

took approximately 50 hours to converge on a 2.8GHz In-

tel Pentium 4 Xeon processor (approximately 600 iterations

of simulated annealing). For this reason, we started the opti-

mizations on the two trials (per fabric) with the same initial

guess and chose optimized parameters that minimized the

total error on the two trials.

Static test. We performed optimization on two trials for

each fabric; the results are shown in Fig. 8 and Fig. 9. The

two trials have different separation distances between the
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Figure 8: Results of optimization for the static test, trial 1. Top row: real fabrics (left to right) linen, fleece, satin and knit.

Bottom row: Corresponding fabrics in simulation.

Figure 9: Results of optimization for the static test, trial 2. Top row: real fabrics. Bottom row: Corresponding fabrics in

simulation.

Linen Fleece Satin Knit

Pars Start Exp 1 Exp2 Start Exp 1 Exp 2 Start Exp 1 Exp 2 Start Exp 1 Exp 2

1 1e-3 0.009 0.0045 1e-4 0.0001 0.0001 1e-5 1.106e-5 6.94e-6 1e-6 1.52e-6 1.51e-6

2 4000 404.9 3682.1 50 129.2 200.04 50 19.58 19.38 50 27.97 28.36

3 215.44 175.37 208.15 215.44 103.96 31.39 50 76.81 69.65 50 1226.44 2693.07

4 1e-7 9.92e-7 3.22e-7 2.15e-6 2.13e-7 4.11e-7 1e-7 2.49e-7 3.98e-7 1e-7 1.01e-7 2.27e-7

5 10 12.16 10.17 10 4.78 0.064 10 14.42 3.68 10 10.12 11.83

6 10 2.19 13.17 10 13.86 3.75 10 4.11 4.56 10 0.13 4.04

E1 75.0 62.8 136.8 121.5 115.5 92.5 253.1 172.8

E2 81.2 67.0 207.3 98.7 194.7 104.7 179.7 136.1

Table 1: Tabulation of the static parameters from two experiments. Legend: 1=bend, 2=stretch, 3=shear, 4=bend damping,

5=stretch damping, 6=shear damping, E1=error from experiment 1, E2=error from experiment 2.
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Figure 10: Waving results for satin. The top picture in each block shows the real fabric and the bottom shows the corresponding

frame from simulation.
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Bend Stretch Shear Bend Damp Stretch Damp Shear Damp Error

Initial Values 1.0e-05 50 50 2e-07 10 10 179.026

Optimization 1 6.93766e-06 19.3832 69.653 3.98337e-07 3.67932 4.56238 104.747

Optimization 2 7.77204e-06 20.2884 32.6492 2.08755e-07 1.95807 10.6535 104.502

Optimization 3 8.75613e-06 19.8365 50.8304 2.56854e-07 7.08276 9.25576 103.501

Optimization 4 9.55647e-06 19.2745 74.7429 3.14821e-07 5.47909 1.06559 103.243

Optimization 5 8.47762e-06 20.1119 36.762 2.3997e-07 8.38981 11.9167 103.849

Variability (in %) 9.18 8.10 23.01 21.11 >100 >100

Table 2: Performance of simulated annealing on several optimizations. All the optimizations start with values which are within

±5% of the initial values given in the first row. Parameters with high variability (e.g., stretch damping) are estimated poorly

and vary significantly across the different optimizations. However, parameters with low variability (e.g., bend) are consistent

across multiple optimizations.

Linen Fleece Satin Knit

Pars Start Exp 1 Exp2 Start Exp 1 Exp 2 Start Exp 1 Exp 2 Start Exp 1 Exp 2

1 1e-3 0.001 0.0008 1e-4 1.1e-5 0.0001 1e-5 6.4e-6 5.6e-6 1e-6 1.1e-6 1.2e-6

2 4000 2016.8 2935.3 50 82.6 89.3 50 26.4 32.4 50 69.7 12.7

3 215.4 167.8 465.7 215.4 255.2 296.9 50 97.7 74.2 50 37.5 60.0

4 1e-7 3.1e-7 4.7e-7 2.2e-6 1.4e-6 1.3e-6 1e-7 1.5e-6 1.2e-7 1e-7 1.0e-7 5.4e-7

5 10 2.7 5.2 10 2.4 5.9 10 0.6 4.5 10 4.5 3.9

6 10 3.9 5.5 10 1.6 9.8 10 6.6 4.7 10 4.9 2.6

7 2 8.7 2.2 2 2.4 1.6 2 4.8 0.8 2 1.5 1.0

8 2 5.6 2.0 2 3.1 0.3 2 1.8 1.5 2 0.5 1.8

9 2 0.4 1.3 2 4.3 1.2 2 0.9 0.8 2 1.2 0.3

E1 94.2 85.9 93.1 208.8 179.6 222.2 124.0 106.4 114.1 230.7 208.8 246.3

E2 115.7 113.0 100.9 233.2 230.2 180.2 280.8 272.8 178.6 255.1 261.8 225.3

E1+E2 198.9 194.0 409.8 402.4 379.2 292.7 470.6 471.6

Table 3: Parameters from two waving experiments. Line E1 shows the error for Experiment 1 with the initial conditions and

after optimization. It also shows the error for experiment 2 when run with the parameters found for experiment 1 without further

optimization. Similarly line E2 shows the initial error for experiment 2, the error after optimization, and the unoptimized result

with those parameters on experiment 1. The parameter set from the experiment shown in bold is selected as the final estimate for

each experiment because this parameter set minimizes the sum of the error from the two trials, E1 + E2. Satin has very different

starting errors for the two experiments although the initial conditions are the same and the error values after optimization also

differ significantly. Legend: 1=bend, 2=stretch, 3=shear, 4=bend damping, 5=stretch damping, 6=shear damping, 7=linear

drag, 8=quadratic drag, 9=drag degradation, E1=error per frame from experiment 1, E2=error per frame from experiment 2.
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Figure 11: Bar charts showing the variability analysis results for the waving test. From left to right: linen, fleece, satin and knit.

Legend: 1=bend, 2=stretch, 3=shear, 4=bend damping, 5=stretch damping, 6=shear damping, 7=linear drag, 8=quadratic

drag, 9=drag degradation.
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top corners. For each fabric, we optimized for six param-

eters: stiffness and damping parameters for stretch, shear,

and bend. The air drag parameters were fixed for this ex-

periment to the mid point of their range of values. The initial

values for the two trials were obtained from a coarse exhaus-

tive search (four values per parameter). The initial values

and final values of the estimated parameters are summarized

in Table 1. Figs. 8 and 9 show a very good visual match

between the simulations with their counterpart real fabrics.

However, there is a significant disparity in the optimized pa-

rameter values from the two trials. In order to understand

this disparity, we performed a set of optimizations (on a sin-

gle fabric) with very similar initial values. Table 2 shows the

parameter values for satin from five optimizations where the

initial conditions were randomly varied by ±5%. From the

table, we see that the final error values are very close. We

get consistent estimates for parameters that have lower vari-

ability (e.g., bend, stretch). Parameters with high variability

are estimated poorly, because their values do not contribute

sufficiently to the error. This result is consistent with our in-

tuition that static tests cannot be used to estimate dynamic

parameters like stretch and shear damping or air drag and

motivates the waving test, which exercises both the static

and dynamic parameters.

Waving test. We optimized for nine parameters in the wav-

ing test: the six cloth stiffness and damping parameters and

three air drag parameters (Fig. 10). As with the static test,

we initialized the static parameters in this test from a coarse

exhaustive search. The dynamic parameters were initialized

using a random guess. We optimized on the first 50 frames

of the sequence. The initial values and final values of the

optimized parameters for two trials are reported in Table 3.

The final values of the parameters from the two trials differ

in part because the variability of the parameters is still fairly

high (Fig. 11). Different motions or longer sequences might

further reduce the variability of the parameters. We choose

the parameter set that minimizes the sum of the error from

the two trials. For instance, in the following example of

satin waving, we choose the parameters from experiment 2.

Error: Exp 1 Error: Exp 2 Total Error

Pars: Exp 1 106.4 272.8 379.2

Pars: Exp 2 114.1 178.6 292.7

This approach seems to produce plausible results with

skirts and other validation experiments. However, we

believe that a more general solution for parameter identi-

fication using our framework would be to simultaneously

optimize across multiple trials of different experiments.

Optimization progress. Fig. 12 shows the static shape of

the simulation before and after optimization. Fig. 13 shows

the corresponding angle map comparison. These two figures

show the progress of the optimization and indicate that the

minimum corresponds to a visually compelling match.

Figure 12: Showing the improvement in shape match after

optimization. The top row compares a video frame of fleece

with simulation before optimization. The bottom row shows

the corresponding video/simulation pair after optimization.

Figure 13: Comparison of angle maps for the shapes shown

in Fig. 12 before and after optimization. Top Row (Before

Optimization, from left to right): Angle map from video, an-

gle map from simulation, angle map SSD. Bottom Row: The

corresponding angle maps after optimization.

Metric validation. We compare each of the four optimized

angle maps from simulation (corresponding to the four fab-

rics) with the four angle maps computed from video. In

Fig. 14, each curve shows one fabric (e.g., fleece) compared

with four simulations, corresponding to each fabric type. We

see that each fabric in simulation has a minimum error when

compared to its counterpart in reality. Fig. 14 also demon-

strates that our approach could be potentially useful for rec-

ognizing different types of fabrics in video.

Generalization. We evaluated the parameters obtained

from optimization on longer sequences (150 frames). Fig. 10

and the accompanying videos show a good visual match be-

tween corresponding frames in simulation and video. All

videos are available off the web page and/or included in the

DVD. The videos also show that the parameters obtained

from optimization generalize well on new sequences. We

also validated the estimated parameters on a long sequence

actuated by a robot (Fig. 15). We used a a Mitsubishi PA-10

robot arm to move the corner point along a simple sinusoidal
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trajectory, thereby ensuring that we had the same input mo-

tion across different fabrics. Finally, we used the optimized

parameters to simulate a skipping motion of a human ac-

tor wearing a skirt (Fig. 16). Here, the actor repeats the same

skipping motion (approximately) for the four different skirts.

We used data from a full body optical motion capture of the

actor performing the same skipping motion (in another trial)

to drive the character for the cloth simulation. The results

show that the parameters obtained from our optimization ap-

proach approximately capture the static shape and dynamic

properties of skirts of different materials.

Linen Sim
Fleece Sim

Satin Sim
Knit Sim

Linen

Fleece

Satin

Knit

Optimized Simulation Parameters

E
rr

o
r

1

2

Figure 14: Comparing the optimized parameters in simula-

tion for each fabric with the four real fabrics. For example,

point 1 in the graph shows the error when a simulation with

fleece parameters is compared with video of satin. Similarly,

point 2 is the error when the satin simulation is compared

with real satin. The four curves have a minimum when they

are compared to their correct counterparts.

9. Discussion

This paper describes an optimization framework for identi-

fying the simulation parameters of cloth from video. We cap-

tured the behavior of small swatches of fabric using a set of

dynamic and static tests and demonstrated that the optimizer

could identify appropriate simulation parameters from those

tests. These parameters produced four distinct and recogniz-

able fabrics when applied to a more complex simulation of a

skirt as it was driven by motion capture data from a human

figure.

The cloth model was not the main focus of this research,

yet in early versions of the system it was often the bottle-

neck in achieving appealing results. To match a video se-

quence accurately, the cloth physics model as well as the

collision algorithms must be chosen carefully. Instabilities

in the collision handling will cause perceptible quivering in

the motion of cloth. Conversely, extra damping introduced

by the integration method makes crisp folds impossible to

match. The parameters must also be independent of the res-

olution of the mesh so that they can be identified on low res-

olution swatches and applied to higher resolution garments.

Progress is being made in these areas, however, and cloth

models are continually improving. For example, Bridson et

al.7 introduces a scale-independent bend model with encour-

aging results.

Our cloth model does not diverge significantly from pre-

vious models discussed in the literature. Our only major ad-

dition was a nonlinearity in the drag model. Our approach

should generalize to any parameterized cloth model that pro-

duces a sufficiently rich set of physically realistic motions.

Although the skirt is far more complex than the swatches

that were used to determine the parameters, it is not as

complex as many garments, for example, a form-fitting

pair of pants or a tailored blazer. For more complex gar-

ments, choosing the parameters via optimization on small,

flat swatches may not be sufficient because the shape of the

garment is determined by darts, pleats and by the interplay

of different fabrics (wool, lining, and interfacing, for ex-

ample). More complex garments may require the hand de-

sign of additional tests that mimic particular behaviors or

elements of the garment in isolation. Moreover, the model

might need extra parameters to handle anisotropic effects,

hysteresis and coupling effects (stretching along one direc-

tion causing shrinking in the other direction), all of which

would need specialized tests.

En route to the metric used in the experiments described

here, we tried a number of other metrics: comparing the

overlap of the silhouettes, the distance function between sil-

houette edges, and using information from internal edges

marked on the fabric. The metric that measures folds and

silhouettes, in concert with the projector for the light stripes,

proved to be a simple and effective metric that far out-

performed our earlier attempts. The space of possible met-

rics is vast, of course, but one class of metrics that we did not

experiment with are statistical metrics that compute a func-

tion of the shape of the fabric across time rather than evalu-

ating the match on a frame-by-frame basis. The experiments

with the swatches were carefully controlled to have initial

conditions for the simulation that matched those seen in the

video. If instead, we were to optimize on more complicated

garments, then such tight control of the initial conditions is

unlikely and a statistical metric might be preferable. Such a

metric might, for example, compute the average number of

folds across a time sequence rather than looking for a fold to

appear at a particular location on the swatch.

Our hope is that this work will promote a more rigorous

evaluation of various cloth models, especially with respect

to how accurately they match reality, and perhaps lead to

creation of a standardized set of benchmarks for cloth simu-

lation models.
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Figure 15: Validating the estimated parameters using the same input excitation. The top right corner of the fabric is actuated

using a Mitsubishi PA-10 robot. Each row shows the match between video (top) and simulation (bottom) at four frames chosen

from a 100 frame sequence. The fabrics, from top to bottom, are linen, fleece, satin and knit respectively.
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Figure 16: Validating the estimated parameters on a more complicated motion and garment. We show (from left to right, top to

bottom) several frames of an actor skipping while wearing a fleece skirt. The corresponding frames of the skirt in simulation

shows that our technique captures the approximate shape and dynamics of the real skirt. These frames were equally spaced

across the entire sequence (0.5 seconds apart). The videos in the web page show the validation results on all four skirts.
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