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With the recent surge of affordable, high-performance virtual reality (VR) headsets,

there is unlimited potential for applications ranging from education, to training, to

entertainment, to fitness and beyond. As these interfaces continue to evolve, passive

user-state monitoring can play a key role in expanding the immersive VR experience,

and tracking activity for user well-being. By recording physiological signals such as

the electroencephalogram (EEG) during use of a VR device, the user’s interactions in

the virtual environment could be adapted in real-time based on the user’s cognitive

state. Current VR headsets provide a logical, convenient, and unobtrusive framework for

mounting EEG sensors. The present study evaluates the feasibility of passively monitoring

cognitive workload via EEG while performing a classical n-back task in an interactive

VR environment. Data were collected from 15 participants and the spatio-spectral EEG

features were analyzed with respect to task performance. The results indicate that scalp

measurements of electrical activity can effectively discriminate three workload levels, even

after suppression of a co-varying high-frequency activity.

Keywords: cognitive workload, electroencephalogram (EEG), virtual reality, HTC VIVE, n-back task

1. INTRODUCTION

The integration of user-state biofeedback to future virtual reality (VR) and augmented reality (AR)
systems is vital for providing more immersive, adaptive and functional VR experiences, as well
as optimizing human performance for a wide variety of application domains (Bisson et al., 2007;
Lobel et al., 2016; Cipresso et al., 2018). Current VR headsets provide a logical, convenient, and
unobtrusive framework for mounting EEG sensors. Additionally, recent advances in dry/wireless
EEG electrodes (Wang et al., 2016; Zander et al., 2017; de Camp et al., 2018; Lee et al., 2018;
Kam et al., 2019) and motion artifact suppression (Gwin et al., 2010; Daly et al., 2015; Kline et al.,
2015; Snyder et al., 2015; Arad et al., 2018) further increase the practicality of integrating EEG into
VR headsets.

The vast majority of literature focuses on active or reactive modulation (Zander and Kothe,
2011) of EEG to directly control or interact in the virtual environment, such as decoding imagined
movement signals from EEG to navigate through the virtual environment while the user remains
stationary in the physical space (Leeb et al., 2007; Scherer et al., 2008; Royer et al., 2010;
Velasco-Alvarez et al., 2010; Doud et al., 2011). However, these designs often require significant user
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training, rely on unnatural or obtrusive sensory stimuli, and
exhibit performance issues that limit practical, long-term use
(Lotte et al., 2008, 2010; Ron-Angevin and Diaz-Estrella, 2009).

In contrast, implicit or passive BCI control, where the user’s
cognitive or affective state is passively monitored and used to
affect some auxiliary aspect of the interaction (Zander and Kothe,
2011; Brouwer et al., 2015; Unni et al., 2017; Horvat et al., 2018;
Ihme et al., 2018) may be better-suited for practical integration
into VR systems. Such passive feedback can be designed to be
less sensitive to BCI decoding errors, with the potential of being
less noticeable and distracting to the user compared to decoding
errors in direct BCI control of the environment. Thus, such
passive feedback holds promise for improving engagement and
immersion in VR.

Prior studies have attempted to classify different cognitive
tasks such as rest vs. mental imagery (e.g., mental math or
object rotation) using brain activity. The number of tasks and
task difficulty can be altered to produce detectable changes
in cognitive state. This has been effectively demonstrated in
both EEG (Ruchkin et al., 1991; Ryu and Myung, 2005; So
et al., 2017) and fNIRS (Power et al., 2010, 2012; Herff et al.,
2013b). Other studies have further investigated changes in
brain activity with respect to changes in cognitive workload
during task performance using EEG (Berka et al., 2007;
Brouwer et al., 2012; Gerjets et al., 2014; Hogervorst et al.,
2014; Mühl et al., 2014; Ewing et al., 2016; Schultze-Kraft
et al., 2016; Grissmann et al., 2017a,b; Scharinger et al.,
2017; Pergher et al., 2018) and fNIRS (Ayaz et al., 2012;
Herff et al., 2013a; Unni et al., 2017). It has also been
shown that cognitive workload models trained on one task
condition can be effectively transferred to other conditions
(Baldwin and Penaranda, 2012).

Studies have also used passive neurofeedback of EEG or fNIRS
to modulate the controllability of the player’s avatar in a video
game (Muhl et al., 2010), the transformation of the avatar into
another physical form (Bos et al., 2010), the adaptation of the
game difficulty (Girouard et al., 2013), or to monitor items in the
VR environment that were detected by the user (Zander et al.,
2010). See Lécuyer et al. (2008), Lotte et al. (2013), and Kerous
et al. (2018) for reviews of the application of brain-computer
interfaces for VR and videogames.

The aforementioned EEG-based studies largely utilize
the various combinations of the traditional power spectral
bands: θ ,α,β , γ over frontal, central, and parietal locations.
Of particular relevance to estimating cognitive workload and
working memory from EEG, numerous studies have indicated
that the fronto-parietal network exhibits a decrease in α power
with increasing task demands, while θ power is positively
correlated with increasing task demands (Sauseng et al., 2005,
2010; Brouwer et al., 2012). Other studies suggest that β activity
behaves similarly to α, but may be due to motor activity
required by the tasks (Pesonen et al., 2007; Scharinger et al.,
2017). Due to the limitations of scalp EEG, γ activity has
been less frequently reported in relation to cognitive workload.
Fitzgibbon et al. found widespread γ activations in a variety of
cognitive tasks (Fitzgibbon et al., 2004). Tallon-Gaudry et al.
revealed a specific γ -band feature for a memory task that

appeared decoupled from head and neck muscle activity (Tallon-
Baudry et al., 1998). Additionally, magnetoencephalographic
(MEG) and electrocorticographic (ECoG) indicate that
α-γ and θ-γ coupling play a role in working memory
(Roux and Uhlhaas, 2014).

The present study aims to build upon the prior work on
passive EEG-neurofeedback using the n-back task (Brouwer
et al., 2012) through the use of an interactive, head-mounted
VR experience. This represents a deliberate attempt to move
beyond controlled and sterile experimental environments toward
a practical VR application, where there is a detailed and
potentially-distracting environment where the user is physically
interacting with objects to perform a task. In order to verify
that EEG measures of cognitive workload can be reliably
attained using an interactive VR environment, we adapted the
well-established n-back task (Kirchner, 1958) for modulating
cognitive workload into an immersive virtual environment using
a HTC VIVE VR headset1. For the classical n-back task,
participants are presented with a series of symbols and are
asked to respond when the current symbol matched the symbol
presented n symbols ago in the sequence. The cognitive workload
increases as a function of increasing n. To adapt the task to amore
immersive, game-like virtual environment, stimuli were a series
of colored balls presented on a virtual podium the VR headset as
shown in Figure 1.

The details of the environment were intentionally designed
to be video game-like to increase the level of immersion
for comparison of task performance to prior, less visually-
distracting desktop-based studies. While the present study does
not implement closed-loop BCI control, the intention is to
inform the integration of EEG-based feedback into future
interactive VR systems.

2. MATERIALS AND METHODS

2.1. Participants and Experimental Setup
Fifteen participants [ages 18–35 (mean 24.73), 4 female, all
right-handed] were recruited to participate in the experiment,
which was approved by the Institutional Review Board of Old
Dominion University. Participants first completed an informed
consent, a visual acuity test, the Motion Sickness Susceptibility
Questionnaire short-form (MSSQ-short; Golding, 2006), and the
Ishihara Color Blindness test (Clark, 1924). All participants tested
satisfied the inclusion criteria, specifically, all participants read
the 20/30 line on the visual acuity test, scored at least 19 on
the MSSQ, and correctly determined all symbols on the color-
blindness test.

The HTC VIVE hardware system primarily consists of
a motion-tracked headset display, two motion-tracked hand
controllers, and two “lighthouse” base stations that are capable
of providing 6 Degree of Freedom (6DOF) tracking. After the
screening process, the EEG cap was placed on the participant’s
head and the EEG electrodes were filled with electrolyte gel.
The electrode cap was then covered with a protective plastic
hair dressing cap to insure that the gel did not seep onto the

1https://www.vive.com/
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FIGURE 1 | Configuration of the experimental equipment on a participant

(excluding the protective plastic hair dressing cap).

VR headset, and the VR headset was positioned over the EEG
cap. The wireless EEG amplifier was placed in a shoulder strap
on the participants back. The configuration of the experimental
equipment on a participant (excluding the protective plastic hair
dressing cap) is shown in Figure 1.

After the EEG and VR equipment was positioned, participants
grasped a VIVE hand controller in the dominant hand (i.e., the
right hand for all participants). Participants were placed in a
standing position approximately 1 m in front of the recording
computer, within the VR workspace.

2.2. Experimental Task
Stimuli are a series of colored balls presented on a virtual podium
the VR headset. Following McMillan et al. (2007), each ball is
colored red, blue, purple, green, or yellow. A ball receptacle
is placed to the right and left of the participant in the virtual
environment. The target receptacle was shaped as treasure chest.
For a particular run, the participant’s task was to pick up a virtual
ball from the podium directly in front of them using the hand
controller and move it to the target receptacle if the current ball
color matched the color of the ball presented N trials before and
to the opposite receptacle otherwise. Screen captures illustrating
a single trial of the task are shown in Figure 2.

Participants completed a 5 min practice block to familiarize
themselves with the VR system and the n-back task. For the
practice block, participants performed the 1-back task until one
run consisting of a random sequence of 20 balls was completed
without any errors. Following the practice block, participants

performed a series of three experimental blocks in randomized
order: 0-back, 1-back, and 2-back blocks consisting of 4 runs
each. For the 0-back task, participants simply determine whether
each ball is red or not.

For each block, participants received specific instructions
regarding the task, followed by 4 experimental runs of the
same n-back task. Each experimental run consisted of a random
sequence of 20 balls, each of them remaining visible for 4 s,
immediately followed by the onset of the next ball. Only a single
ball is displayed at any given time and an auditory tone signaled
the appearance of each new ball. The sequence of ball colors was
generated randomly such that a minimum of 2 target trials were
present in the run. The empirical maximum number of targets in
a run was 7.

Participants were required to respond to all balls in each
experimental run. Failure to respond (i.e., not placing the ball in
a receptacle before the end of the trial) reset the run from the
beginning and negated the erroneous run. While such run resets
occurred for several participants during the training run, only
a single reset for a single participant occurred during the actual
experimental runs.

The order of the experimental blocks were counterbalanced
across participants. For each participant, the target receptacle
locations were counterbalanced to avoid biases that may be
created by the lateral movements. To help engage participants,
the performance (percent correct) was displayed after each trial.
The total duration of the experiment was kept to 20min to reduce
the risk of simulator sickness, thus the time between successive
runs and blocks was less than a minute.

2.3. Data Collection and Analysis
Each participant wore an 8-channel electrode cap (g.LADYBIRD,
Guger Technologies) with active electrodes positioned based
on the international 10-20 system (Sharbrough et al., 1991).
Specifically, electrode positions F3, Fz, F4, C3, C4, P3, Pz, P4
were used (see Figure 3), based on neural activations from prior
EEG and fMRI studies (Owen et al., 2005; Brouwer et al., 2012).
EEGwas collected using an 8-channel wireless biosignal amplifier
(g.MOBIlab, Guger Technologies), grounded to the left earlobe,
referenced to the right earlobe, and digitized at a 256 Hz.

The position of the VR headset and the controller were also
tracked and digitized at 32 Hz. Communication between the VR
software (developed in Unity2) and the BCI2000 EEG recording
software was performed via UDP communication using the
application connector in BCI2000 (Schalk et al., 2004).

A bipolar reference was applied because it empirically
minimized the correlation of high frequency activity, presumed
to be due primarily to scalp muscle tension (e.g., frontalis,
temporalis, and/or occipitalis), with the task compared to an
ear or common-average reference. Eight bipolar channels were
created by subtracting the adjacent earlobe-referenced channels
from right to left and anterior to posterior, as indicated by the
numbered positions in Figure 3.

A conservative Hampel outlier filter was applied to the EEG
reduce the occasional impulse-like artifact due to the wireless

2https://unity3d.com/
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FIGURE 2 | Screen captures of a single trail of the n-back task using colored balls in the interactive virtual environment. Each frame represents the binocular view as

observed through the VR headset. (1) The podium and instruction display. (2) The trial begins when the colored ball appears. (3) Participant uses the trigger on the

hand controller to grasp the ball. (4) Participant moves the ball to the right toward the non-target receptacle. (5) Participant releases the ball in the non-target

receptacle and the trial ends. (6–8) A new trial begins for which the ball is placed in the target receptacle to the left.

FIGURE 3 | Electrode montage with bipolar channels indicated by the

numbering between adjacent electrode pairs.

transmission. The Hampel filter computes the median of a sliding
1-second window centered on the current sample. The median
absolute deviation is computed over the window. If the current
sample differs from the median by more than five standard
deviations, it is replaced with themedian. The processed EEGwas
visually inspected to verify the efficacy of the artifact removal.

The EEG data were segmented by 4-second ball-presentation
intervals (i.e., trials), yielding 240 total trials (4 runs × 3
conditions × 20 balls per run) per participant. The last trial
of each run was excluded from the analysis due to a software
issue that prematurely terminated data collection, which resulted

in 228 total trials per participant for analysis. Because task
performance satisfactory for all participants (see Results section),
all trials (i.e., correct and incorrect ball placements) were
included in the analysis.

The frequency spectrum of the EEG was computed for each
4 s run using Welch’s method with a 256-point FFT and 50%
overlap. The resulting spectral amplitudes were log transformed
and the spectral bins were averaged over the traditional EEG
bands: θ (5–7 Hz), α (8–14 Hz), β (15–30 Hz), and γ (31–
55 Hz). Frequencies below 5 Hz are prone to gross movement
artifacts and were excluded from the analysis. Additionally, a
higher frequency range termed HF (70–100 Hz) was analyzed.
This band was shown to be correlated with the task and is outside
the frequency range of typical scalp EEG, thus the task-dependent
variations of this band are suspected to be modulated in-part by
subtle scalp muscle tension.

The data were parsed by n-back level. To explore the
univariate characteristics of each spectral feature, Spearman’s
correlation was computed between the n-back level and the
spectral amplitude for each frequency band and bipolar channel.
Because the HF band exhibited large task-related correlations
relative to the lower-frequency bands, it is suspected that this
high-frequency band is due in-part to task-dependent EMG
resulting from scalp muscle tension as suggested in Mühl et al.
(2014). Since EMG activity is broadband and likely also pervades
the low-frequency bands (Goncharova et al., 2003; Fu et al.,
2006; Muthukumaraswamy, 2013; Yilmaz et al., 2014; Janani
et al., 2017), a linear regression model was applied to reduce the
correlation of this high-frequency activity in the lower frequency
bands. Using the trial-wise spectral amplitude of each lower
frequency band as the regressand (i.e., θ , α, β , and γ ), a linear
regression model was generated with the corresponding HF-
band spectral amplitude as the regressor. The model was then
used to remove the correlated activity by subtracting the model
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FIGURE 4 | (Left) The relative frequency of the normalized hand-controller position (computed as the signed resultant of the horizontal x-y hand-controller

coordinates) across participants for the three workload conditions. Positive and negative values indicate positions to the right and left of center, respectively. (Right)

The r-squared correlation of the workload level with the normalized hand-controller position across participants.

output from the respective regressand. This approach is referred
to herein as HF suppression.

Spearman’s correlation was used to quantify the relationship
between the univariate spatio-spectral features and the cognitive
workload level. To explore the multivariate discriminative power
of the spatial and spectral features, various combinations of the
features (5 spectral bins X 8 channels) were classified using
regularized linear discriminant analysis (rLDA) with a four-fold
cross-validation (due to the number of trials being perfectly
divisible by 4). Specifically, the HF suppression (i.e., regression)
approach was applied to the training data for each fold and the
fitcdiscr function in MATLAB was used to preform the rLDA and
optimize the regularization parameters. The HF suppression was
performed separately on the test data for each fold.

3. RESULTS

The average task performance (correct bin placement)
was 99.67 ± 1.56% for n = 0; 98.17 ± 4.51% for n = 1;
and 95.83± 7.49% for n= 2. Fourteen participants scored above
80% on all runs; the remaining participant scored above 70% on
all runs. Twelve of the participants scored above 90% on all runs.

Figure 4 (left) shows the relative frequency of the normalized
hand-controller position (computed as the signed resultant
of the horizontal x-y hand-controller coordinates) across
participants for the three workload conditions. It is observed
that the distribution of controller positions is consistent across
conditions. The rightmost peak is larger due to the fact that
all participants were right-handed and the base position is
right-of-center. Figure 4 (right) shows a boxplot3 of the r-
squared correlation of the workload level with the normalized

3Boxplots were generated using the ‘boxplot function in MATLAB, where the
central mark indicates the median, and the bottom and top edges of the box
indicate the 25th and 75th percentiles, respectively. The whiskers extend to the
most extreme data points and outliers are indicated with the “+” symbol.

hand-controller position across participants, indicating that
the movements exhibit minimal bias with respect to the
workload level.

The results of the Spearman correlation analysis for each
band and bipolar channel are shown in Figure 5, where the HF
suppression is indicated with asterisks (*). Note that the HF
band exhibits correlation values in the same general range as
the traditional EEG bands workload level for most channels,
and that the magnitude of the correlations in each band across
participants is somewhat inconsistent in the frontal channels and
more consistent in the posterior channels. It can also be observed
that the magnitude of the correlations generally drop by varying
degrees in each frequency band after HF suppression.

The differences in average spectral amplitude across
conditions for selected participants and channels are shown in
Figure 6. While there are clear broadband differences across
workload levels for particular channels and some common
activity across subsets of participants (i.e., participants H and L
in Figure 6), it should be noted that neither the channels nor
the relative spectral amplitude modulation across workload
levels (i.e., participants A and H/L in Figure 6) appear consistent
across participants.

To assess the most discriminable univariate features across
participants, a two-sided Wilcoxon rank sum test was used
to determine the percentage of participants with statistically-
significant differences in spectral amplitude between the extreme
workload levels of n = 0 and n = 2 for each feature.
The results shown in Figure 7 were Bonferroni corrected
to a significance level of 6.94 × 10−4 [0.05/(9 frequency
bands× 8 channels)].

The HF band at F3-Fz was significant for 80% of the
participants. Otherwise, the most consistent features for roughly
73% of the participants were β and γ at F3-Fz and γ at Pz-P4, all
before HF suppression. After HF suppression, multiple feature
have roughly 50% prevalence including frontal/central θ , β at
Fz-F4, and γ at Fz-F4/F3-C3.
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FIGURE 5 | Box plots across participants of the Spearman correlation between the spectral amplitude and workload level for each frequency band and bipolar

channel, arranged topographically by channel. The title of each subplot indicates the polarity of the bipolar channel. The asterisks (*) indicate the result after HF

suppression.

FIGURE 6 | Selected log-amplitude spectra from six different participants across workload levels. The top row represents frontal channels and the bottom row

represents posterior channels.

Figure 8 shows the four-fold classification accuracy for each
frequency band using all bipolar channels for n = 0 vs. 2 and n
= 0 vs. 1 vs. 2. Similar to the correlation analysis, the HF band
achieves a comparatively high classification accuracy, and the
performance generally drops for each band after HF suppression.
However, the inter-quartile range of each comparison is well
above the random-chance level, even after HF suppression.

Figure 9 shows the four-fold classification accuracy using all
bipolar channels and various frequency ranges as features for the
classifier. To further indicate the significance of the classification
results, permutation tests were performed by randomizing the
class labels for each scenario, performing the classification
procedure, and repeating 100 times. Since the results were nearly
identical for each feature combination for a given workload-level

comparison, the random permutation results for the θ :HF
condition are included in the figure, labeled as “rand.” Similar
to the results shown in Figure 8, HF suppression decreased
performance for all conditions and the inter-quartile range of
each condition are above inter-quartile range randomization test.
For n = 0 vs. 1 vs. 2, all observations are above inter-quartile
range randomization test. Figure 10 shows the average accuracy
trends across the workload level comparisons for different
frequency-band combinations.

To further examine the spatial contributions of the multi-
band classification, Figure 11 shows the four-fold classification
accuracy workload level extremes of n = 0 vs. n = 2, arranged
by channel. For each channel, the traditional low-frequency EEG
bands (θ to β), and HF for comparison, were included as features
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for the classifier. The inter-quartile ranges are generally higher
in the frontal channels compared to the parietal channels. The
effects of the HF band are most prominent on the left frontal
channel (F3-Fz) and the posterior channels (P3-Pz and Pz-P4).

4. DISCUSSION

The results of this study demonstrate that it is possible to
discriminate several mental workload levels using electrical
activity recorded from the scalp during an interactive VR
task. Figure 7 indicates that the most consistent features across
participants are frontal β and γ and parietal γ prior to
HF suppression. However, after HF suppression, frontal β

and γ are the most consistent features across participants,

FIGURE 7 | The percentage of participants with statistically significant

differences (after Bonferroni correction) in spectral amplitude between n = 0

and n = 2 for each band and bipolar channel. The asterisks (*) indicate the

result after HF suppression.

though appreciably less consistent compared to the un-
corrected features.

Further examining the univariate features in Figure 5, the
parietal activity above the α band is generally positively
correlated with workload level. Otherwise, there is high
variability across participants, which is consistent with that
reported in Brouwer et al. (2012). However, the classical fronto-
parietal α/θ activations (Sauseng et al., 2005, 2010; Brouwer et al.,
2012) were not consistently observed across participants in the
present study. Additionally, β/γ were more prominent in the
present study compared to prior findings. These differences may
be due to the fact that the present study used an interactive,
immersive VR design that incorporated stereotyped movements
and rich visual input compared to prior related studies. For
example, it has been reported that VR generated more β/γ
activity compared to the real-world medium in hand illusion
experiments (Škola and Liarokapis, 2016). Another study that
analyzed EEG collected during an interactive VR stepping game
found statistically-significant hemispherical differences in the
α,β , γ bands (de Oliveira et al., 2018).

The HF band exhibits comparable correlations to the lower
frequencies in nearly all channels. The positive central/parietal
correlations is consistent with broadband EMG due to subtle
scalp muscle tension (Goncharova et al., 2003; Fu et al., 2006;
Janani et al., 2017). However, Figures 5, 6 suggest that the
high-frequency activity in the frontal channels is not always
positively correlated with task difficulty, which is not indicative
of consistent task-related muscle tension and may be due to
arbitrary, spontaneous muscle activity—possibly linked to the
head-mounted display.

The single frequency-band classification accuracy in
Figure 8 shows that most frequency bands exhibit roughly
similar performance ranges before and after HF suppression,
respectively. As expected, this can generally be extended to the
combined-band results in Figure 9, with the combined-band
results generally exhibiting higher overall accuracy ranges.

FIGURE 8 | Box plots of the four-fold classification accuracy across participants for each combination of workload levels. For each frequency band, all bipolar

channels were included as features for the classifier. The blue horizontal lines indicate the chance level of classification accuracy. The asterisks (*) indicate the result

after HF suppression.
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FIGURE 9 | Box plots of the four-fold classification accuracy across participants for each combination of workload levels. The horizontal axis indicates the range of

frequency bands included in the classifier. The blue horizontal lines indicate the random-chance level of classification accuracy. The “rand” label indicates the

classification results from randomly permuting the labels for the θ :HF features, which produces nearly identical results for all feature combinations tested. The asterisks

(*) indicate the result after HF suppression.

FIGURE 10 | The mean accuracy of the various workload level comparisons

for different frequency-band combinations. The asterisks (*) indicate the result

after HF suppression.

This suggests that spectral bands contain some degree of
complimentary information for classification. As shown in
Brouwer et al. (2012), Figure 10 reaffirms that the extreme

workload levels (i.e., 0 vs. 2) are more clearly discriminable that
the first-degree levels of 0 vs. 1 and 1 vs. 2, with 0 vs. 1 being the
least discriminable.

Figure 11 shows that the frontal channels tend to produce
higher classification accuracies. When assessing the spatial
(Figure 11) and spectral (Figure 8) contributions in isolation
it is noted that, in general, there are not drastic differences
in the performances across bands or channels. However,
by comparing to the combined-band results of Figure 9,
information frommultiple frequencies and channels is crucial for
maximizing performance.

This result may be a function of unique and complementary
information in the various channels and frequency bands, but it
may also be an indication of individual differences as suggested
in Figures 5, 6, and in Brouwer et al. (2012). While Figure 7

appears to indicate prevalent features across participants, in a
15-fold transfer learning protocol (training on all combinations
of 14 participants and testing on the remaining participant), the
training error was high and the cross-validation results were only
slightly above random chance - further supporting the notion of
individual differences across participants. Possible explanations
for the individual differences could be due to varying memory
span, cognitive ability (Gonzalez, 2005), or arousal (Matthews
andDavies, 2001); vigilance decrement (Mackworth, 1968;Warm
et al., 2008); or fatigue effects over the duration of the task.
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FIGURE 11 | Box plots of the four-fold classification accuracy across participants for n = 0 vs. n = 2, arranged by channel. The horizontal axis indicates the range of

frequency bands included in the classifier. The blue horizontal lines indicate the random-chance level of classification accuracy. The asterisks (*) indicate the result after

HF suppression.

Further analysis indicated that a straightforward 5 Hz
highpass filter is effective at suppressing low-frequency artifacts
due to the deliberate, stereotyped gross movements required
for the task. However, the elimination of EMG artifacts due
to more subtle scalp tension remains a significant challenge
(Goncharova et al., 2003; Fu et al., 2006; Muthukumaraswamy,
2013; Yilmaz et al., 2014, 2018; Janani et al., 2017). Because of
the overlapping frequency ranges, it is effectively impossible to
definitively isolate EMG and EEG activity without applying a
neuromuscular blockade (Whitham et al., 2008). Furthermore,
studies suggest that any degree of cognitive workload will create
subtle, correlated head and neck muscle tension that further
confounds such analysis (Laursen et al., 2002; Krantz et al., 2004;
LC Leyman et al., 2004; Whitham et al., 2008; Roman-Liu et al.,
2013).

The present approach uses linear regression to remove the
correlated activity of a high-frequency band from the low-
frequency EMG bands. While this may generate a reasonable
approximation of EMG activity, there are several issues with this
simplistic approach. Firstly, this approach assumes that there is a
linear relationship between the dynamics of EMG contamination
across frequency bands (Kim et al., 2017). If this relationship
is not linear, then residual EMG artifact will be present in the
EMG-suppressed signal. Secondly, assuming the high-frequency
EMG activity is highly-correlated with the task, this regression
approach may be suppressing genuine EEG relationships with
the task (Mühl et al., 2014). Overall, these two contrasting effects
may cancel to a degree and result in a reasonable estimate of the
lower-frequency EEG activity.

In summary, this analysis demonstrates that cognitive
workload during an interactive VR task can be estimated via
scalp recordings. Using the traditional low-frequency EEG bands
(θ−β), average workload classification accuracies across reached
81.1% (chance 50%) for 0 vs. 2 and 63.9% (chance 33.3%)
for 0 vs. 1 vs. 2. By comparison, classification accuracies of
73.6 and 60.6%, respectively, can be achieved using the same
bands after HF suppression. The recordings appear robust
to the head-mounted setup and gross-movements. However,
the results suggest that the cognitive workload task generates
individual differences in brain activity, which likely require the
development of subject-specific models. Furthermore, there are
likely contributions of both EEG and scalp muscle tension-
related EMG to cognitive workload classification. Ultimately,
for practical cognitive workload discrimination, it may not
be necessary to isolate EEG from EMG if the result is
effective. However, in this case, care must be taken such
that EMG does not become consciously or subconsciously
conditioned to be predominant over EEG for manipulating
the task outcome in closed-loop scenarios, as EEG (or other
measures of brain activity) represents the intrinsic biomarker of
cognitive workload.
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