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Abstract

We consider a functional parameter called the conditional average treatment effect

(CATE), designed to capture heterogeneity of a treatment effect across subpopulations

when the unconfoundedness assumption applies. In contrast to quantile regressions,

the subpopulations of interest are defined in terms of the possible values of a set of

continuous covariates rather than the quantiles of the potential outcome distributions.

We show that the CATE parameter is nonparametrically identified under the uncon-

foundedness assumption and propose inverse probability weighted estimators for it.

Under regularity conditions, some of which are standard and some of which are new

in the literature, we show (pointwise) consistency and asymptotic normality of a fully

nonparametric and a semiparametric estimator. We apply our methods to estimate the

average effect of a first-time mother’s smoking during pregnancy on the baby’s birth

weight as a function of per capita income in the mother’s zip code. For non-white

mothers, the average effect of smoking is predicted to become stronger (more negative)

as a function of income.
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1 Introduction

When individual treatment effects in the population are heterogeneous, but treatment as-

signment is unconfounded given a vector X of observable covariates, it is a well-known result

that the average treatment effect (ATE) in the population is nonparametrically identified

(see, e.g., Rosenbaum and Rubin 1983, 1985). Given the heterogeneity of individual effects,

it may also be of interest to estimate ATE in various subpopulations defined by the possible

values of some component(s) of X. We will refer to the value of the ATE parameter within

such a subpopulation as a conditional average treatment effect (CATE). For example, if one

of the covariates is gender, one might be interested in estimating ATE separately for males

and females. As treatment assignment in the two subpopulations is unconfounded given the

rest of the components of X, one can simply split the sample by gender and apply standard

nonparametric estimators of ATE to the two subsamples. A second example, considered by

a number of authors, is to define CATE as a function of the full set of conditioning variables

X. In this case CATE(x) gives the conditional mean of the treatment effect for any point x

in the support of X.

Though not referred to by this name, the CATE function introduced in the second

example already appears in Hahn (1998) and Heckman, Ichimura and Todd (1997, 1998)

as a ‘first stage’ estimand in the (imputation-based) nonparametric estimation of ATE.

Heckman and Vytlacil (2005) discuss the identification and estimation of CATE(x), which

they call ATE(x), in terms of the marginal treatment effect in a general structural model.

Khan and Tamer (2010) mention CATE(x) explicitly, but their focus is on ATE. Lee and

Whang (2009) and Hsu (2012) consider estimating and testing hypotheses about CATE(x)

when X is absolutely continuous, and provide detailed asymptotic theory. MaCurdy, Chen

and Hong (2012) also discuss the identification and estimation of CATE(x).

In this paper we extend the concept of CATE to the technically more challenging situation

in which the conditioning covariates X1 are continuous and form a strict subset of X. As

the unconfoundedness assumption will not generally hold conditional on X1 alone, it is not

possible to simply apply, say, the Lee and Whang (2009) CATE estimator with X1 playing

the role of X. Rather, one needs to estimate CATE as a function of X, and then average out
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the unwanted components by integrating with respect to the conditional distribution of X(1)

given X1, where X(1) denotes those components of X that are not in X1. This distribution

is, however, generally unknown and has to be estimated.

When X1 is a discrete variable (such as in the first example), averaging with respect

to the empirical distribution of X(1)|X1 is accomplished “automatically” by virtue of the

ATE estimator being implemented subsample-by-subsample. The result is an estimate of

CATE(x1) for each point x1 in the support of X1. This suggests that when X1 is continuous

one could at least approximate CATE by discretizing X1 and estimating ATE on the resulting

subsamples provided that they are large enough. However, the CATE estimate obtained this

way will depend on the discretization used and will be rather crude and discontinuous, just

as a histogram is generally a crude and discontinuous estimate of the underlying density

function.

The technical contribution of this paper consists of proposing “smooth” nonparametric

and semiparametric estimators of CATE when X1 is continuous and a strict subset of X,

and developing the first order asymptotic theory of these estimators.1 The estimators are

constructed as follows. First, the propensity score, the probability of treatment conditional

on X, is estimated by either a kernel-based regression (the fully nonparametric case) or by

a parametric model (the semiparametric case). In the second step the observed outcomes

are weighted based on treatment status and the inverse of the estimated propensity score,

and local averages are computed around points in the support X1, using another set of

kernel weights. (Intuitively, the second stage can be interpreted as integrating with respect

to a smoothed estimate of the conditional distribution of the inverse propensity weighted

outcomes given X1.) Under regularity conditions the estimator is shown to be consistent and

asymptotically normal; the results allow for pointwise inference about CATE as a function

of X1. Of the conditions used to prove these results, the most noteworthy ones are those

that are used in the fully nonparametric case to restrict the relative convergence rates of the

two smoothing parameters employed in steps one and two, and prescribe the order of the

1For simplicity, some of the formal results stated in the text will assume that the full vector X has contin-

uous components only. Nevertheless, in applications X will typically contain discrete as well as continuous

covariates. We will discuss how to deal with the mixed case in comments following the formal theorems.

3



kernels.

The CATE estimators described above can be regarded as generalizations of the inverse

probability weighted ATE estimator proposed by Hirano, Imbens and Ridder (2003). An

alternative (first order equivalent) estimator of CATE could be based on nonparametric

imputation (e.g. Hahn (1998)). In this paper we restrict attention to the first approach.

We apply our methods to a dataset on births in North Carolina recorded between 1988

to 2002. More specifically, we estimate the expected effect of a first-time mother’s smoking

during pregnancy on the birth weight of her child as a function of per capita income in the

mother’s zip code (intended to be a proxy for per capita family income). In accordance with

previous studies, we distinguish mothers by race, and focus on the subsample classified as

non-white. The contribution of this exercise to the pertaining empirical literature consists of

exploring the heterogeneity of the smoking effect along a given dimension in an unrestricted

and intuitive fashion. Previous estimates reported in the literature are typically constrained

to be a single number by the functional form of the underlying regression model. If the effect

of smoking is actually heterogeneous, such an estimate is of course not informative about

how much the effect varies across relevant subpopulations and may not even be consistent

for the overall population mean.

Nevertheless, there have been some attempts in the literature to capture the heterogeneity

of the treatment effect in question. Most notably, Abrevaya and Dahl (2008) estimate the

effect of smoking separately for various quantiles of the birth weight distribution. Though

insightful, a drawback of the quantile regression approach is that it allows for heterogeneity

in the treatment effect across subpopulations that are not identifiable based on the mother’s

characteristics alone. Hence, the estimated effects are hard to translate into targeted ’policy’

recommendations. For instance, ibid. report that the negative effect of smoking on birth

weight is more pronounced at the median of the birth weight distribution than at the 90th

percentile. However, it is not clear, before actual birth, or at least without additional

modeling, which quantile should be ‘assigned’ to a mother with a given set of observable

characteristics. In addition, the treatment effect for any given quantile could also be a

function of these characteristics (this is assumed away by the linear specification they use).

4



In contrast, the CATE parameter is defined as a function of variables that are observable a

priori, and the estimator proposed in this paper places only mild restrictions on the shape

of this function.

Qualitatively, the main story that emerges from our empirical exercise is that the pre-

dicted average effect of smoking becomes stronger (more negative) at higher income levels.

This finding is robust across various specifications of X, smoothing parameters, and the

type of estimator used. There is however a great deal of uncertainty about the extent of this

variation.

The rest of the paper is organized as follows. In Section 2 we introduce the CATE pa-

rameter, and discuss its identification and estimation. The first order asymptotic properties

of the proposed estimators are developed. In Section 3 we present the empirical applica-

tion. Section 4 outlines possible extensions of the basic framework, including multivalued

treatments and instrumental variables. Section 5 concludes.

2 Theory

2.1 The formal framework and the proposed estimators

LetD be a dummy variable indicating treatment status in a population of interest withD = 1

if an individual (unit) receives treatment and D = 0 otherwise. Define Y (1) as the potential

outcome for an individual if treatment is imposed exogenously; Y (0) is the corresponding

potential outcome without treatment. Let X be a k-dimensional vector of covariates with

k ≥ 2. The econometrician observes D, X, and Y ≡ D ·Y (1) + (1−D) ·Y (0). In particular,

we make the following assumption.

Assumption 1 (Sampling): The data, denoted {(Di, Xi, Yi)}ni=1, is a random sample of

size n from the joint distribution of the vector (D,X, Y ).

Throughout the paper we maintain the assumption that the observed vector X can fully

control for any endogeneity in treatment choice. Stated formally:

Assumption 2 (Unconfoundedness): (Y (0), Y (1)) ⊥ D
∣∣X.
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Assumption 2 is also known as (strongly) “ignorable treatment assignment” (Rosenbaum and

Rubin 1983), and it is a rather strong but standard identifying assumption in the treatment

effect literature. In particular, it rules out the existence of unobserved factors that affect

treatment choice and are also correlated with the potential outcomes.

Let X1 ∈ R` be a subvector of X ∈ Rk, 1 ≤ ` < k, X absolutely continuous. The

conditional average treatment effect (CATE) given X1 = x1 is defined as

τ(x1) ≡ E[Y (1)− Y (0)|X1 = x1].

Under Assumption 2, τ(x1) can be identified from the joint distribution of (X,D, Y ) as

τ(x1) = E
[
E[Y |D = 1, X]− E[Y |D = 0, X]

∣∣∣X1 = x1

]
or (1)

τ(x1) = E

[
DY

p(X)
− (1−D)Y

1− p(X)

∣∣∣∣∣X1 = x1

]
, (2)

where p(x) = P [D = 1|X = x] denotes the propensity score function. These identification

results follow from a simple string of equalities justified by the law of iterated expectations

and unconfoundedness. While equation (1) identifies CATE somewhat more intuitively, we

will base our estimators on equation (2).

In particular, we propose the following procedure for estimating τ(x1). The first step

consists of estimating the propensity score. We consider two options. Option (i) is a non-

parametric estimator given by a kernel-based (Nadaraya-Watson) regression, that is,

p̂(x) =
1
nhk

∑n
i=1DiK

(
Xi−x
h

)
1
nhk

∑n
i=1K

(
Xi−x
h

) , (3)

where K(·) is a kernel function and h is a smoothing parameter (bandwidth). Option (ii) is a

parametric estimate of p(x), e.g., a logit or probit model estimated by maximum likelihood.

Given an estimator p̂(x) for the propensity score, in the second stage we estimate τ(x1)

by inverse probability weighting and kernel-based local averaging, i.e., we propose

τ̂(x1) =

1
nh`1

∑n
i=1

(
DiYi
p̂(Xi)

− (1−Di)Yi
1−p̂(Xi)

)
K1

(
X1i−x1
h1

)
1
nh`1

∑n
i=1K1

(
X1i−x1
h1

) ,

where K1(u) is a kernel function and h1 is a bandwidth (different from K and h).2

2Note that the second stage calls for estimating the propensity score at the sample observations on X.

In the fully nonparametric case we use the “leave-one-out” version of (3) to estimate these quantities.
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As far as econometric theory is concerned, it is the development of the asymptotics

of the fully nonparametric case that is the central contribution of this paper. Though

the asymptotics are less novel and challenging, the semiparametric estimator is easier to

implement and a more robust practical alternative (at the cost of potential misspecification

bias and loss of efficiency).

Even though we work out the asymptotic theory of τ̂(x1) for any ` < k, in our assessment

the most relevant case in practice is ` = 1 (and maybe ` = 2). When X1 is a scalar, τ̂(x1)

can easily be displayed as a two-dimensional graph while for higher dimensional X1 the

presentation and interpretation of the CATE estimator can become rather cumbersome.

2.2 CATE in a linear regression framework

The standard linear regression model for program evaluation combines a weaker version of

the unconfoundedness assumption with the assumption that the conditional expectation of

the potential outcomes is a linear function. As noted by Imbens and Wooldridge (2009),

the treatment effect literature has gradually moved away from this baseline model in the

last fifteen years or so. The main reason is that the estimated average treatment effect can

be severely biased if the linear functional form is not correct. Nevertheless, as the general

CATE parameter introduced in this paper has not yet been in use in the treatment effect

literature, it is useful to develop further intuition by relating it to a standard linear regression

framework.

Given the vector X of covariates, we can, without loss of generality, write

E[Y (d) | X] = µd + rd(X), d = 0, 1,

where µd = E[Y (d)] and rd(·) is some function with E[rd(X)] = 0. Under the uncon-

foundedness assumption, the mean of the observed outcome conditional on D and X can be

represented as

E(Y | X,D) = µ0 + (µ1 − µ0)D + r0(X) + [r1(X)− r0(X)]D. (4)

We examine two benchmark cases.
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Case 1. If one assumes r0(X) = r1(X) = [X−E(X)]′β, then CATE(x1) = E[Y (1)−Y (0) |

X1 = x1] is a constant function whose value is equal to ATE= µ1 − µ0 everywhere. ATE

itself can be estimated as the regression coefficient on D from a linear regression of Y on a

constant, D and X.

Case 2. If one assumes r0(X) = [X−E(X)]′β and r1(X) = [X−E(X)]′(β+δ), then ATE

can be estimated similarly to Case 1—one only needs to include interaction terms between D

and X − X̄ as additional explanatory variables in the regression described above. However,

CATE(X1) is no longer a trivial function of X1; rather, it is given by

CATE(X1) = µ1 − µ0 + E[(X − E(X))′ | X1]δ.

Further assuming that the above conditional expectation w.r.t. X1 is a linear function of X1

gives rise to a three-step parametric estimator of CATE. The first step consists of regressing

Y on a constant, D, X and D · (X − X̄); specifically, we write

Yi = κ̂+ α̂Di +X ′iβ̂ +Di(Xi − X̄)′δ̂ + ε̂i, i = 1, . . . , n. (5)

The second step consists of regressing each component of X − X̄ on a constant and X1:

X
(j)
i − X̄(j) = X̃ ′1iγ̂

(j) + û
(j)
i , i = 1, . . . , n, j = 1, . . . , k, (6)

where X̃1 ≡ (1, X ′1)
′, and X(j) and X̄(j) denote the jth component of X and X̄, respectively.

Finally, for X1 = x1, one takes

α̂ + (x̃′1γ̂)δ̂ (7)

as an estimate of CATE(x1), where γ̂ ≡ (γ̂(1), . . . , γ̂(k)) is an (`+ 1)× k matrix.

Though it requires entirely standard methods, calculating the standard error of (7) is

somewhat cumbersome. Specifically, one can write the k + 1 regressions in (5) and (6) as a

SUR system (see, e.g., Wooldridge 2010, Ch. 7) and estimate the joint variance-covariance

matrix of all regression coefficients. Then one can invoke the multivariate delta method to

obtain the standard error of (7) for any given x1. The construction is described in detail

in Appendix A. Alternatively, one could resample from the empirical distribution of the

residuals and compute bootstrapped standard errors.
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In most real world applications the assumptions underlying the two benchmark cases will

hold, at best, as approximations. Therefore, a nonparametric (or semiparameric) CATE es-

timator may well tease out useful information from the data that would otherwise be masked

by these narrow functional form assumptions. We do not mean to imply that nonparametric

methods are inherently superior—often the curse of dimensionality can only be overcome by

using tightly parameterized models. It is however important to be aware of the limitations

of such models, especially if they are being used for analytical convenience only.

2.3 Asymptotic properties of τ̂(x1): the fully nonparametric case

In the fully nonparametric case we estimate the propensity score by a kernel based nonpara-

metric regression:

Assumption 3 (Estimated propensity score): p̂(Xi) is given by the leave-i-out version

of the estimator in (3).

We derive the asymptotic properties of the resulting CATE estimator under the following

regularity conditions.

Assumption 4 (Distribution of X): The support X of the k-dimensional covariate X is

a Cartesian product of compact intervals, and the density of X, f(x), is bounded away from

0 on X .

Let s and s1 denote positive even integers such that s ≥ k and s1 ≥ k.

Assumption 5 (Conditional moments and smoothness): (i) supx∈X E[Y (j)2|X =

x] < ∞ for j = 0, 1; (ii) the functions mj(x) = E[Y (j) | X = x], j = 0, 1 and f(x) are

s-times continuously differentiable on X .

Assumption 6 (Population propensity score): (i) p(x) is bounded away from 0 and 1

on X ; (ii) p(x) is s-times continuously differentiable on X .

Assumption 7 (Kernels): (i) K(u) is a kernel of order s, is symmetric around zero, is

equal to zero outside
∏k

i=1[−1, 1], integrates to 1 and is continuously differentiable.3

3K : Rk → R is a kernel of order s if
∫
up11 · . . . · u

pk
k K(u)du = 0 for all nonnegative integers p1, . . . , pk

such that 1 ≤
∑
i pi < s.
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(ii) K1(u) is a kernel of order s1, is symmetric around zero, integrates to 1, and is s

times continuously differentiable.

Assumption 8 (Bandwidths): The bandwidths h and h1 satisfy the following conditions

as n→∞:

(i) h→ 0 and log(n)/(nhk+s)→ 0.

(ii) nh2s1+`1 → 0 and nh`1 →∞.

(iii) h2sh−2s−`1 → 0 and nh`1h
2s → 0.

Define the function ψ(x, y, d) as

ψ(x, y, d) ≡ d(y −m1(x))

p(x)
− (1− d)(y −m0(x))

1− p(x)
+m1(x)−m0(x).

The following theorem states our main theoretical result. The proof is given in Appendices

B and C.

Theorem 1 Suppose that Assumptions 1 through 8 are satisfied. Then, for each point x1

in the support of X1,

(a)
√
nh`1(τ̂(x1)− τ(x1)) =

1√
nh`1

1

f1(x1)

n∑
i=1

[ψ(Xi, Yi, Di)− τ(x1)]K1

(X1i − x1
h1

)
+ op(1)

(b)
√
nh`1(τ̂(x1)− τ(x1))

d→ N
(

0,
‖K1‖22σ2

ψ(x1)

f1(x1)

)
,

where f1(x1) is the pdf of X1, ‖K1‖2 ≡ (
∫
K1(u)2du)1/2, and

σ2
ψ(x1) ≡ E[(ψ(X, Y,D)− τ(x1))

2|X1 = x1].

Comments 1. The technical restrictions imposed on the distribution of X and on various

conditional moment functions in Assumptions 4 and 5 are analogous to those in Hirano,

Imbens and Ridder (2003) and are common in the literature on nonparametric estimation.

As pointed out by Khan and Tamer (2010), the assumption that the propensity score is

bounded away from zero and one plays an important role in determining the convergence

rate of inverse probability weighted estimators.
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2. Assumptions 7(i) and 8(i) ensure that p̂(x) − p(x) = op(h
s/2), uniformly in x; see

Lemma 1 part (b) in Appendix B. This is the convergence rate needed to establish the

influence function representation in Theorem 1(a). The influence function itself is analogous

to the influence function that efficient nonparametric estimators of ATE possess; see, e.g.,

Hahn (1998) and Hirano, Imbens and Ridder (2003).

3. The influence function [ψ(Xi, Yi, Di) − τ(x1)]K1

(
X1i−x1
h1

)
does not have mean zero;

rather, it decomposes into a “bias term” that depends on h1 and a mean zero term to

which Lyapunov’s CLT directly applies. Assumptions 7(ii) and 8(ii) ensure the asymptotic

negligibility of the bias term (and the applicability of the CLT). See Appendix C for further

details.

4. Assumption 8(iii) underlies the novel aspects of our asymptotic theory. It controls the

relative and “joint” convergence rates of h (the bandwidth used to estimate the propensity

score) and h1 (the bandwidth used in the integration step). These rates, along with the

kernel orders, are chosen subject to numerous tradeoffs that need to be considered in order

to ensure the asymptotic negligibility of all remainder terms in our expansion of τ̂(x1).

5. More specifically, our asymptotic analysis builds on the expansion of the Hirano,

Imbens and Ridder (2003) ATE estimator by Ichimura and Linton (2005). However, the

integration step causes the factor K1(·/h1) to appear in each term, which has a number

of consequences. First, the leading terms in the expansion converge at the rate of
√
nh`1

rather than
√
n. Second, as the convergence rates of the original remainder terms depend

on h, the presence of K1 and the scaling by
√
nh`1 introduce interactions between h and

h1. These interactions require that h1 converges to zero slower than h. In particular, if one

were to set h1 equal to a constant, then all remainder terms could be made to vanish by

requiring h→ 0 at an appropriate rate as in Ichimura and Linton (2005) or Donald, Hsu and

Lieli (2011). However, the bias in the leading term, described in comment 3 above, would of

course not disappear. Hence, one also needs h1 → 0, but slowly enough to satisfy part two of

Assumption 8(ii) and part one of 8(iii). One can then employ a kernel K1 of sufficiently high

order to satisfy the first part of Assumption 8(ii), and a kernel K of sufficiently high order to

satisfy part two of Assumption 8(iii), which is needed to ensure that the (conditional) bias of
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p̂(x) remains asymptotically negligible when scaled by
√
nh`1. Note however, that increasing

s, the order of K, is not costless—it slows the convergence of h to zero via Assumption 8(i),

which then slows the convergence of h1 to zero via the first part of 8(iii), which again requires

an increase in s1 and possibly s, etc.

6. We have yet to show that there actually exist bandwidth sequences and kernel orders

satisfying all the requirements posed by Assumption 8 (otherwise the asymptotic theory

would be vacuous). We set

h = a · n
−1

k+s+δ , a > 0, δ > 0,

h1 = a1 · n
−1

`+2s1−δ1 , a1 > 0, δ1 > 0,

where δ and δ1 can be made as small as necessary or desired. It is clear that Assumptions

8(i) and (ii) hold with these choices. To satisfy Assumption 8(iii), we further set the kernel

orders as s = k for k even, s = k + 1 for k odd, and s1 = s+ 2.

To verify h2sh−2s−`1 → 0, note that δ and δ1 can be arbitrarily small, so it is sufficient to

check

−2s

k + s
+

2s+ `

2s+ 4 + `
< 0.

This is obviously true because −2s/(k + s) < −1 and (2s + `)/(2s + 4 + `) < 1 under our

selections.

To verify nh`1h
2s → 0, note that by Assumption 8(ii), nh`1h

2s = nh2s1+`1 · h2sh−2s11 → 0

when hsh−s11 → 0, so it is sufficient to check the latter. Again, since δ and δ1 can be

arbitrarily small, we only need

−s
k + s

+
s+ 2

2s+ 4 + `
< 0,

which is obvious because −s/(k + s) < −1/2 and (s + 2)/(2s + 4 + `) < 1/2 under our

selections.

7. To use Theorem 1 for statistical inference, one needs to consistently estimate σ2
ψ(x1)

and f1(x1). The latter is easily accomplished by, say, f̂1(x1) = 1
nh`1

∑n
i=1K1[(X1i−x1)/h1]. It

is more involved to estimate σ2
ψ(x1) because ψ includes unknown functions: m1(x), m0(x) and

p(x). Let m̂1(x) be a uniformly consistent estimator for m1(x) over X in that supx∈X |m̂1(x)−
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m1(x)| = op(1). Similarly, let m̂0(x) and p̂(x) be uniformly consistent estimators for m0(x)

and p(x) over X . In particular, the p̂(x) we use is uniformly consistent for p(x). Also, such

m̂1(x) and m̂0(x) can be obtained by performing kernel regressions of Y on X in the treated

and non-treated subpopulations, respectively. Then, we estimate σ2
ψ(x1) by

σ̂2
ψ(x1) =

[
1

nh`1

n∑
i=1

(
ψ̂(Xi, Yi, Di)− τ̂(x1)

)2
K1

(
X1i − x1

h1

)]/
f̂1(x1), (8)

ψ̂(x, y, d) =
d(y − m̂1(x))

p̂(x)
− (1− d)(y − m̂0(x))

1− p̂(x)
+ m̂1(x)− m̂0(x).

The consistency of σ̂2
ψ(x1) can be shown as follows. First, let σ̃2

ψ(x1) be the (infeasible)

estimator for σ2
ψ(x1) where we replace ψ̂(Xi, Yi, Di)− τ̂(x1) with ψ(Xi, Yi, Di)− τ(x1) in (8).

It is easy to see that σ̃2
ψ(x1) is a consistent estimator for σ2

ψ(x1). Next, note that ψ̂(x, y, d) is

a uniformly consistent estimator for ψ(x, y, d) and τ̂(x1) is a consistent estimator for τ(x1).

Therefore, using ψ̂(Xi, Yi, Di) − τ̂(x1) in (8) is as good as ψ(Xi, Yi, Di) − τ(x1) in that the

estimation error will disappear in the limit.4

8. Assumption 4 does not allow X to have discrete components, which is of course

restrictive in applications. One way to incorporate discrete covariates into the analysis is as

follows. For concreteness, suppose that in addition to some continuous variables, X contains

gender. Let M denote the indicator of the male subpopulation and define p(x,m) = P (D =

1 | X = x,M = m) for m = 0, 1. We can estimate these functions by kernel based regressions

of D on X in each subsample:

p̂(x, 1) =
1
nhk

∑
{i:Mi=1}DiK

(
Xi−x
h

)
1
nhk

∑
{i:Mi=1}K

(
Xi−x
h

) =
1
nhk

∑n
i MiDiK

(
Xi−x
h

)
1
nhk

∑n
i=1MiK

(
Xi−x
h

) ,
and p̂(x, 0) is obtained analogously. We claim that τ(x) can be estimated by

τ̂(x) =

1
nh`1

∑n
i=1

(
DiYi

p̂(Xi,Mi)
− (1−Di)Yi

1−p̂(Xi,Mi)

)
K1

(
X1i−x1
h1

)
1
nh`1

∑n
i=1K1

(
X1i−x1
h1

) . (9)

In particular, as we show in Appendix D, the following influence function representation

4Note that ψ̂ is averaged over data points while τ̂ is evaluated at a fixed point. This is why the first

estimator needs to be uniformly consistent, and it is enough for the second to be pointwise consistent.
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applies to τ̂(x1):√
nh`1(τ̂(x1)− τ(x1))

=
1

f1(x1)
√
nh`1

n∑
i=1

[
ψ(Mi, Xi, Yi, Di)− τ(x1)

]
K1

(
X1i − x1

h1

)
+ op(1), (10)

where

ψ(Mi, Xi, Yi, Di) ≡
Di(Yi −m(Xi,Mi))

p(Xi,Mi)
− (1−Di)(Yi −m0(Xi,Mi))

1− p(Xi,Mi)

+m1(Xi,Mi)−m0(Xi,Mi),

and mj(x,m) ≡ E[Y (j)|X = x,M = m] for j = 0, 1 and m = 0, 1. Therefore, Theorem 1

continues to hold for (9) after replacing ψ(Xi, Yi, Di) with ψ(Mi, Xi, Yi, Di).

9. Kernels satisfying Assumption 7 can be constructed by taking products of higher order

univariate kernels. A general method for obtaining higher order kernels from ‘regular’ ones

is described, for example, by Imbens and Ridder (2009). The ‘support’ condition imposed

on K is for expositional convenience only; we can extend the proof of Theorem 1 to kernels

with exponential tails.

2.4 Asymptotic properties of τ̂(x1): the semiparametric case

The asymptotic theory of estimating CATE simplifies considerably if a parametric model

is postulated for the propensity score. In particular, we replace Assumption 3 with the

following.

Assumption 9 (Parametric propensity score estimator): The estimator θ̂n of the

propensity score model p(x; θ), θ ∈ Θ ⊂ Rd, d < ∞, satisfies supx∈X |p(x; θ̂n) − p(x; θ0)| =

Op(n
−1/2) where θ0 ∈ Θ such that p(x) = p(x; θ0) for all x ∈ X .

Assumption 9 will typically hold for standard parametric estimation methods under rea-

sonably mild regularity conditions. For example, a logit model or a probit model based on

a linear index and estimated by maximum likelihood will satisfy (9) if X is bounded. Ob-

viously, Assumption 9 eliminates the need for those conditions stated in Section 2.3 whose
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role is to govern the behavior of the Nadaraya-Watson regression estimator and the inter-

action between the two bandwidths. Of course, the bandwidth h1 used in the second, local

averaging, stage still needs to be controlled to ensure consistency and asymptotic normality.

Assumption 8(ii) with any s1 ≥ 2 is sufficient in this regard.

To state the result formally, define

ψθ(x, y, d) ≡ dy

p(x)
− (1− d)y

1− p(x)
.

The following theorem corresponds closely to Theorem 1.

Theorem 2 Suppose that Assumptions 1, 2, 8(ii) and 9 are satisfied for some s1 ≥ 2. Then,

under some additional regularity conditions, the following statements hold for each point x1

in the support of X1:

(a)
√
nh`1(τ̂(x1)− τ(x1)) =

1√
nh`1

1

f1(x1)

n∑
i=1

[ψθ(Xi, Yi, Di)− τ(x1)]K1

(X1i − x1
h1

)
+ op(1)

(b)
√
nh`1(τ̂(x1)− τ(x1))

d→ N
(

0,
‖K1‖22σ2

ψθ
(x1)

f1(x1)

)
,

where f1(x1) is the pdf of X1, ‖K1‖2 ≡ (
∫
K1(u)2du)1/2, and

σ2
ψθ

(x1) ≡ E[(ψθ(X, Y,D)− τ(x1))
2|X1 = x1].

The proof of Theorem 2 is given in Appendix E.

Comments 1. The form of the influence function highlights an important difference be-

tween estimating ATE and CATE. If ATE is estimated by inverse probability weighting, then

even a
√
n-consistent parametric estimate of the propensity score will make a nontrivial con-

tribution to the influence function (since the ATE estimator itself converges at the same

rate). In contrast, the CATE estimator converges at a rate slower than
√
n, so employing

a (correctly specified) parametric estimator is asymptotically equivalent to the propensity

score being known.

2. The semiparametric approach offers several practical advantages over the fully non-

parametric estimator: (i) It can help circumvent the curse of dimensionality problem when

X is large. (ii) Discrete and continuous covariates can be treated the same way, i.e., one can
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simply include, say, a gender dummy in a logit or probit regression rather than follow the

partitioning approach described in comment 8 after Theorem 1. This is very useful if one

of the categories has a small number of observations. (iii) Only the bandwidth used in the

integration step needs to be chosen.

3. Of course, the advantages listed above do not come without costs. While the sem-

parametric approach is still reasonably flexible, misspecification of the score function will

generally bias the resulting CATE estimates. Furthermore, the semiparametric CATE esti-

mator is less efficient than the nonparametric one. In particular, we can show that

σ2
ψ(x1) = E

[(
m1(X)−m0(X)− τ(x1)

)2
+
σ2
1(X)

p(X)
+

σ2
0(X)

1− p(X)

∣∣∣X1 = x1

]
,

σ2
ψθ

(x1) = σ2
ψ(x1) + E

[
p(X)(1− p(X))

(m1(X)

p(X)
+

m0(X)

1− p(X)

)2∣∣∣X1 = x1

]
,

where σ2
d(x) = V ar(Y (d)|X = x) for d = 0 and 1. Hence, clearly σ2

ψθ
(x1) ≥ σ2

ψ(x1).

Therefore, for a given choice of h1 and K1 satisfying the conditions in Theorems 1 and 2,

the semiparametric CATE estimator is less efficient. This result is not surprising given that

the influence function of the semiparametric estimator is the same as if p(x) were known

(see comment 1 above). It is well known from the work of Hahn (1998) and Hirano, Imbens

and Ridder (2003) that such estimators of ATE do not attain the semiparametric efficiency

bound constructed with or without the knowledge of p(x).

4. The ‘additional regularity conditions’ mentioned in the theorem are needed to ensure

that (i) Lyapunov’s CLT can be applied to the leading term (29) in the expansion of the

estimator in Appendix E, and (ii) that the remainder term is well behaved in that the second

factor in (30) is Op(1). A set of primitive sufficient conditions could be obtained by suitable

changes to Assumptions 4, 5, 6, and 7(ii).

6. K1 no longer needs to be a higher order kernel in the semiparametric case, but such

kernels could still be used in practice.
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3 Empirical application

3.1 The data set and the identification strategy

We apply our method to study the effect of maternal smoking on birthweight. As documented

by a number of authors, low birth weight is associated with increased health care costs during

infancy as well as adverse health, educational and labor market outcomes later in life; see,

e.g., Abrevaya (2006) or Almond, Chay and Lee (2005) for a set of references. It is generally

accepted that smoking is one of the major modifiable risk factors for low birth weight, and

there are many studies that attempt to estimate its average causal effect. As we point out in

the introduction, our intended contribution in this exercise is not to provide another estimate

of the average effect per se, but rather to illustrate how to explore the heterogeneity of this

effect across subpopulations defined by the values of some continuous covariates.

We use a data set of yearly vital statistics from the North Carolina State Center Health

Services, accessible through the Odum Institute at the University of North Carolina. We

focus on first-time black mothers between 1988 and 2002; these restrictions, which we will

motivate shortly, yield 157,989 observations. An attractive feature of the North Carolina vital

statistics data is that it records the mother’s zip code. The availability of this information

allows us to assign to each mother some zip code level characteristics, such as per capita

income, population density and geographical location (latitude and longitude).5 Per capita

income in the mother’s zip code can be taken as a proxy for family income, a potentially

important covariate typically not recorded in vital statistics data.6 Population density can

help capture further differences between urban, suburban and rural communities and, at

least in the fully nonparametric setting, latitude and longitude can be used as a general

control for residual zip-code level unobserved heterogeneity (‘zip code fixed effects’).7 The

5The zip code level data is from the Census 2000 U.S. Gazetteer files.
6da Veiga and Wilder (2008, p. 197) explicitly state that they consider the lack of observations on income

to be a “main limitation” of their data set.
7Using latitude and longitude in the semiparametric setting is somewhat problematic, as it is clearly not

realistic to restrict the effect of these variables on the likelihood of smoking to be monotonic. Higher powers

as well as interaction terms with other variables are essential. For simplicity, we omit latitude and longitude

in the semiparametric analysis but use it for robustness checks in the fully nonparametric estimation.
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use of zip code level covariates is, to our knowledge, new in the literature.

In accordance with our theory, the key identifying assumption is that the potential birth

weight outcomes are independent of the smoking decision conditional on a sufficiently rich

vector of observables X. Almond, Chay and Lee (2005), da Veiga and Wilder (2008), and

Walker, Tekin and Wallace (2009) also use variants of the unconfoundedness assumption to

identify the average effect of smoking on birth weight. By contrast, Abrevaya (2006) and

Abrevaya and Dahl (2008) attempt to control for unobserved heterogeneity by using a panel

of mothers with multiple births. Nevertheless, their approach still imposes restrictions on the

channels through which unobservables are allowed to operate. In particular, there cannot be

feedback from unobserved factors affecting the birth weight of the first child to the decision

whether or not to smoke during the second pregnancy. This is likely violated in practice.

The presence of such feedback also affects the plausibility of the unconfoundedness as-

sumption. While we have data on how many previous deliveries a mother had, we do not

have information on the birthweight of these children. (We cannot identify mothers giv-

ing birth in multiple years.) This unobserved factor is likely to be related to the decision

whether or not to smoke during the current pregnancy as well as the potential birth weight

outcomes for the current pregnancy even after conditioning on a vector X of observables.

For example, previous birth weights can contain information about birthweight-relevant ge-

netic factors that are not “picked up” by any component of X. Our focus on first births

is an attempt to deal with this problem. In contrast, the decision to restrict attention to

non-white mothers is mostly arbitrary. In estimating the effect of smoking on birth weight,

the literature routinely breaks down results by race. The number of first time white mothers

in our sample is on the order of half a million; we save significant computer time by working

with a smaller number of observations. Of course, we could also use a random subsample of

white mothers, but we do not pursue that exercise here.

The precise selection of the components of X depends on the estimation method em-

ployed. In particular, the fully nonparametric approach limits the number of discrete vari-

ables we can use, as the propensity score needs to be estimated separately for each possible

configuration of these variables (see comment 8 after Theorem 1). Some of these variables in
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question are indicators for relatively rare medical complications or behaviors such as gesta-

tional diabetes, hypertension, alcohol consumption during pregnancy, etc. The intersection

of these categories is rarer still, making nonparametric estimation of the propensity score

conditional on the continuous components of X practically infeasible. The semiparametric

CATE estimator is however able accommodate a large number of such covariates by param-

eterizing the propensity score; specifically, we use a logit model based on a linear index.

(The tradeoff, as discussed in Section 2.4, is that the functional form through which the

components of X are allowed to affect the probability of smoking is restricted.) We then

conduct a sensitivity analysis to determine whether dropping some of the discrete covariates

affects the semiparametric estimation results in a substantial way. We are able to identify

a smaller set of discrete variables that produces very similar results to the larger baseline

specification, and use this smaller set in the fully nonparametric exercise.

More concretely, the baseline specification of X for the semiparametric estimator consists

of the mother’s age, education, month of first prenatal visit8, number of prenatal visits, per

capita income in the mother’s zip code, population density in the mother’s zip code, and

indicators for the baby’s gender, the mother’s marital status, whether or not the father’s age

is missing, gestational diabetes, hypertension, amniocentesis, ultra sound exams, previous

(terminated) pregnancies, and alcohol use. The reduced set of covariates used in the fully

nonparametric estimation contains the first six variables listed above (treated as continuous)

and two indicators (one for the baby’s gender and one for the mother’s marital status). Ad-

mittedly, some of the variables designated as ’continuous’ stretch the limits of the definition.

For example, month of first prenatal visit is clearly not continuous, but it is more convenient

to treat it as such instead of further partitioning the sample according to the ten possible

values this variable can take on.9

To avoid scaling issues arising from using the same bandwidth for all continuous covari-

ates, we standardize them before estimation.

8We set month of first visit to 10 if prenatal care is foregone.
9To avoid technical complications, for the nonparametric estimations we add uniform [−.5, .5] random

numbers to mother’s age, education, month of fist prenatal visit and number of visits. This has little impact

on the results, though it is noticable that there are small differences between replications.
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3.2 Empirical implementation

We estimate the conditional average treatment effect of a mother’s smoking on her firstborn’s

birth weight as a function of (zip-code level) per capita annual income. We evaluate this

function at a grid of income levels, where the lowest gridpoint is one standard deviation

below the mean, the largest is two standard deviations above it, and the step size is .1

standard deviations (the approximate mean and standard deviation are $18, 000 and $5, 000,

respectively).

As is common for nonparametric and semiparametric estimation procedures, the choice of

smoothing parameter(s) turns out to have a substantial impact on the results. Unfortunately,

the first order asymptotic theory presented in Section 2 only pins down convergence rates

and leaves open the question of how to choose the bandwidths for a given sample size.

We use several rules of thumb combined with experimentation to calibrate the bandwidths

in a way that the resulting CATE estimates are ’reasonable’. The two main criteria for

reasonableness are: (i) The ATE value implied by the CATE estimate should not deviate

too much from previous estimates in the literature10; (ii) the range of the CATE function

should not include values that appear extreme in light of prior knowledge. E.g., an estimated

average smoking effect of, say, −1500 grams is simply not credible even in the tails of X1;

similarly, a significantly positive smoking effect for some values of X1 would also contradict

previously accumulated evidence and knowledge.

Bandwidth choice is somewhat simpler for the semiparametric estimator as only h1 needs

to be specified. Furthermore, since logit regressions are quick to run even for very large

samples, we are able to do a direct grid search over various values of h1 and examine the

resulting CATE functions. Not surprisingly, smaller values of h1 produce more variable (non-

monotonic) CATE estimates with wider range, while the implied ATE tends to stay roughly

10By the law of iterated expectations, the average of CATE estimates computed at each sample observation

yields an estimate of ATE. (Given about 160,000 observations, the estimation of the implied ATE is rather

time consuming.) Typical ATE estimates obtained under some form of the unconfoundedness assumption

(OLS, propensity score matching) range from about −200 to −250 grams; see, e.g., Abrevaya (2006), da

Veiga and Wilder (2008). Note, however, that no such study known to us restricts attention to first time

mothers.
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constant. In the fully nonparametric case, we search over combinations of h and h1. Since

the propensity score needs to be estimated nonparametrically at each sample observation,

the search can become very time consuming if the full sample is used. We therefore take

random subsamples of size 30,000 to calibrate bandwidths, and then downscale them to

the full sample size using the bandwidth formulas shown in comment 6 after Theorem 1.11

Similar to the semiparametric case, smaller values of h1 produce more variable estimates

with a wider range, while leaving the implied ATE roughly constant. On the other hand,

decreasing the value of h below a certain level tends to shift the entire function upward in a

roughly parallel manner.

Another implementation issue is the specification of the kernels K and K1. Our esti-

mation results are more robust to bandwidth choice if we use higher order product kernels

derived from the normal kernel (a kernel with unbounded support) rather than from the

Epanechnikov kernel (a kernel with bounded support), and therefore opt for the former.

While our proofs assume that K is zero outside a compact set for expositional convenience,

the theory extends easily to kernels with exponential tails (cf. comment 9 after Theorem 1).

We use a regular kernel K1 in implementing the semiparametric estimator.

3.3 Semiparametric results

Figure 1 depicts a range of point estimates for bandwidth levels h1 = 0.25, 0.5, 1, 1.5, 6.5. As

the bandwidth increases, the estimated CATE function becomes flatter, less variable, and

its range shrinks. The largest bandwidth oversmoothes to such an extent that it forces the

CATE function to be essentially constant; the value of this constant (approx. −210 grams)

can be taken as an estimate of ATE. The implied ATE levels associated with the other CATE

estimates are very similar; specifically, they are equal to −209, −195, −193 and −199 grams

11Let h∗ and h∗1 denote the bandwidth values picked in a subsample of size n. In the baseline specification

for X the number of continuous variables is k = 6, so s = 6 and s1 = 8. Furthermore, ` = 1. We embed

h∗ and h∗1 into a bandwidth sequence suggested by the asymptotic theory. By comment 6 after Theorem 1

we write h∗ = an−1/(12+δ) and h∗1 = a1n
−1/(17−δ1) for some (positive) numbers a, a1, δ and δ1. As the

theory allows δ and δ1 to be arbitrarily small, we simply set them to zero, so that a and a1 are pinned down

unambiguously. In the full sample with N observations we then set h = aN−1/12 and h1 = a1N
−1/17.
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in order of increasing bandwidth. Qualitatively, all the non-constant CATE estimators tell

a similar story—the average causal effect of smoking is predicted to become stronger (more

negative) for per capita income levels one to two standard deviations above the mean (with

a possible turnaround for very high incomes). Furthermore, the effect appears to be lower

than the overall ATE at average income levels. A speculative story consistent with the slope

of the CATE estimates is that higher income smoking mothers are more intense smokers (i.e.,

cigarettes are a normal good). An alternative explanation is that the marginal smoking effect

is smaller at the lower end of the birth weight distribution, which is where low income families

are likely to fall. The Abrevaya and Dahl (2008) quantile regression study is consistent with

this story.

Unfortunately, the numerical CATE estimates vary a lot with h1, especially at higher

incomes. The change in the estimated CATE as one moves from the mean income to 1.5

standard deviations above the mean ranges from under −50 grams to over −500 grams, a

factor of 10. In addition to the uncertainty generated by bandwidth choice, there is further

estimation uncertainty for a given bandwidth. Figures 2 and 3 show the ±2 standard error

bounds for the two ‘extreme’ CATE estimators with h1 = 0.25 and h1 = 6.5, respectively.

In the latter case the bound is roughly constant at about ±60 grams, while in the former it

increases with the level of income from roughly ±100 grams to ±300 grams.

We perform several robustness checks in addition to varying h1. A potential concern is

the decline in smoking incidence during the sample period (more exactly, the fact that this

decline might take place in a non-random fashion even conditional on X). Adding year fixed

effects to X preserves the results in Figure 1 almost exactly; the only noteworthy difference

is that the implied ATEs shift downwards to about −240 grams. Including birth year as a

raw control (to mimic a trend) produces virtually no change relative to baseline.

The Kessner index of prenatal care utilization is another frequently used control in the

literature; nevertheless, including it has no visible effect on the results.12 In fact, dropping

all indicators except baby’s gender and marital status from X has little effect on the CATE

12While the Kessner index is based entirely on the month of the first prenatal visit and the number of

visits, in the semiparametric case these variables enter the propensity score through a restricted functional

form, so the addition of this control is not a priori redundant.
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estimates; most notably, the minimum (most negative) CATE values attained at higher

income levels move slightly upward. (As discussed above, we will employ this smaller set of

covariates to produce fully nonparametric estimates of the smoking effect.) Finally, using

the log of income instead of levels in the baseline specification does not appreciably change

the results.

3.4 Nonparametric results

Based on preliminary bandwidth searches described in Section 3.2, we set up the following

grid for full sample estimation: h ∈ {3.7, 4.8} and h1 ∈ {3.0, 3.7, 5.0, 6.5}.13 In Figure 4 we

present results for all combinations of h and h1 chosen from these sets.

A number of aspects of the bandwidth choice are worth highlighting. As can be seen, we

must employ relatively large bandwidths in estimating the propensity score to obtain sensible

nonparametric CATE estimates. Even for h values in the 2 to 3 range, one frequently obtains

p̂(Xi) values outside of the interval [0, 1] due to K being a higher order kernel. While we

trim the estimates at 0.005 and 0.995, a large proportion of p̂(Xi) concentrated around 0

and 1 can shift the CATE function up to clearly unreasonable levels with implied ATEs on

the order of plus several hundred grams. Larger values of h draw the p̂(Xi) away from the

boundaries at the cost of reducing their variation across observations to a few percentage

points. Similarly to the semiparametric estimator, increasing h1 makes the estimated CATE

function flatter and its range smaller. Nevertheless, the estimate still has a slight negative

slope for h1 as large as 6.5, unlike in the semiparametric case. The asymptotic theory for the

nonparametric estimator seems to put limits on one’s ability to decrease h1 in order to bring

out more detail in the CATE estimates. In particular, the theory requires h/h1 → 0, which

suggests restricting attention to (h, h1) pairs with h < h1, though it is not clear how strictly

one should enforce this in practice. Therefore, in Figure 4 we also display some estimates

with h > h1; these are indeed the estimates with the largest range.

Qualitatively, the nonparametric estimates are consistent with the main features of the

13More specifically, we set h = 10N−1/12, 13.1N−1/12 and h1 = 6N−1/17, 7.5N−1/17, 10N−1/17,

13.1N−1/17, where N is the sample size.
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semiparamateric results; namely, that the effect of smoking is predicted to become more

negative at higher income levels and is below the overall ATE at average incomes. The most

important quantitative difference is that the implied ATEs are clearly smaller in absolute

value than in the semiparametric case. The extent to which the smoking effect becomes

stronger as one moves from average income (≈ 18, 000) to, say, 1.5 standard devations above

average (≈ 25, 500) is comparable with the lower end of the semiparametric estimates. Re-

garding estimation uncertainty for a given bandwidth, Figures 5 and 6 display the estimated

±2 standard error bounds for two of the estimates. In light of comment 3 after Theorem 2,

it is not surprising that the nonparametric standard errors are smaller than the semipara-

metric ones; nonetheless, barely ±15 grams around the point estimate feels like a rather too

optimistic assessment of the estimator’s accuracy.

As in the semiparametric case, we perform a number of robustness checks. Figure 7 shows

that disregarding the asymptotic constraints on the ratio h/h1 and further decreasing h1 can

produce CATE estimates that are qualitatively similar to the undersmoothed semiparametric

estimates.14 As the distribution of births is fairly even across years, we can implement fully

nonparametric year fixed effects estimation by splitting the sample by birth year (in addition

to the gender and marriage indicators). The estimation results, displayed in Figure 8, are

qualitatively very similar to the baseline; there is only a small upward shift in some of the

estimates. Replacing zip code population density with ’zip code fixed effects’ (more precisely,

latitude and longitude), has a more substantial effect on the estimation results; see Figure 9.

(The upward adjustment in the smoothing parameters is due to the fact that X has one

more component than in the baseline case.) While these estimates look similar in shape

and range to Figure 4, they all shift downward, increasing the magnitude of the implied

ATEs by about 25 grams. Finally, using the log of income in place of income does not cause

noteworthy changes in the results.

14We note that some of the subpopulation-specific CATE estimates used in constructing Figure 7 no

longer pass sensibility criteria. For example, for married mothers with baby girls we get CATE≈+400 grams

(siginificant) at mean income minus one standard deviation, and CATE≈-1400 grams at mean plus two

standard deviations.
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4 Theoretical extensions

In this section we discuss several extensions of our theory. First, we define the conditional

average treatment effect for the treated (CATT) and state the analog of Theorem 1 for this

parameter. Second, we allow for selection on unobservables and consider suitable estimands

in an instrumental variable (IV) framework. In particular, if the unconfoundedness assump-

tion is violated, but there exists a valid binary instrument, we define the conditional local

average treatment effect (CLATE) and the conditional local average treatment effect for

the treated (CLATT), and extend our theory to these parameters. Finally, in cases where

the treatment is multi-valued and unconfoundedness holds, we extend our theory to the

conditional marginal average treatment effect (CMATE).

4.1 Conditional Average Treatment Effect of the Treated

The average treatment effect for the treated (ATT) is often more relevant for policy making

than the average effect for the entire population. Of course, individual treatment effects

might be heterogeneous within the treated subpopulation as well. This motivates defining

the conditional average treatment effect (CATT) as

CATT(x1) ≡ τt(x1) ≡ E[Y (1)− Y (0)|D = 1, X1 = x1],

where X1 ∈ R` is a (continuous) subvector of X ∈ Rk. It can be shown that τ(x1) can be

identified as

τt(x1) = E
[
DY − p(X)(1−D)Y

1− p(X)

∣∣X1 = x1

]/
E
[
p(X)

∣∣X1 = x1
]
, (11)

which suggests the estimator

τ̂t(x1) =

1
nh`1

∑n
i=1

(
DiYi − p̂(Xi)(1−Di)Yi

1−p̂(Xi)

)
K1

(
X1i−x1
h1

)
1
nh`1

∑n
i=1 p̂(Xi)K1

(
X1i−x1
h1

) , (12)

where p̂(Xi) is again given by the leave-i-out version of (3).

The following theorem is analogous to Theorem 1 and summarizes the first order asymp-

totics of τ̂t(x1).
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Theorem 3 Suppose that Assumptions 1 through 8 are satisfied. Then, for each point x1

in the support of X1,√
nh`1(τ̂t(x1)− τt(x1))

d→ N
(

0,
‖K1‖22σ2

ψt
(x1)

f1(x1)

)
,

where σ2
ψt

(x1) ≡ E[ψ2
t (X, Y,D)|X1 = x1] with

ψt(x, y, d) ≡ 1

px1

(
d(y −m1(x))− p(x)(1− d)(y −m0(x))

1− p(x)
+ d(m1(x)−m0(x)− τt(x1))

)
,

px1 ≡ E[D = 1|X1 = x1].

Comments 1. The influence function ψt(x, y, d) is analogous to the influence function

that efficient nonparametric estimators of ATT possess; see, e.g., Hahn (1998) and Hirano,

Imbens and Ridder (2003).

2. Some comments about the proof of Theorem 3 are provided in Appendix F. The

details of the derivations are similar to the proof of Theorem 1 and are omitted.

3. The semiparametric results (i.e., Theorem 2) can also be extended in a straightforward

manner. In this case the influence function is analogous to the influence function that Hahn

(1998) and Hirano, Imbens and Ridder (2003) derive for their ATT estimators in the case

when p(x) is known.

4.2 Endogenous Treatment Assignment

We will now relax the unconfoundedness assumption and allow for selection to treatment

based on unobserved confounders. We will therefore need an instrument to control for

selection bias. In a pure nonparametric framework (C)ATE and (C)ATT are no longer

identified by an instrument alone; we will rather extend our theory to the local average

treatment effect (LATE) and the local average treatment effect for the treated (LATT).

The following IV framework, augmented by covariates, is now standard in the treatment

effect literature; see, e.g., Abadie (2003), Frolich (2007), Hong and Nekipelov (2010) and

Donald, Hsu and Lieli (2011). In addition to Y , D and X, we observe the value of a binary

instrument Z ∈ {0, 1} for each individual in the sample. For Z = z, the random variable

D(z) ∈ {0, 1} specifies individuals’ potential treatment status with D(z) = 1 corresponding
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to treatment and D(z) = 0 to no treatment. The actually observed treatment status is

then given by D ≡ D(Z) = D(1)Z + D(0)(1 − Z). The following assumptions, taken from

Donald, Hsu and Lieli (2011) with some modifications, describe the relationships between

the variables defined above.

Assumption 10 (i) (Instrument Validity):
(
Y (0), Y (1), D(1), D(0)

)
⊥ Z

∣∣X.

(ii) (First stage): P [D(1) = 1 | X] > P [D(0) = 1 | X] and 0 < P (Z = 1 | X) < 1.

(iii) (Monotonicity): P [D(1) ≥ D(0)] = 1.

Assumption 10(i) is the analog of the unconfoundedness assumption in the IV framework—

it requires that conditional on X, Z is independent of the potential outcomes and the po-

tential treatment status. Part (ii) postulates that the instrument is (positively) related to

the probability of being treated and implies that the distributions X|Z = 0 and X|Z = 1

have common support. Finally, the monotonicity of D(z) in z, required in part (iii), implies

that there are no defiers [D(0) = 1, D(1) = 0] in the population.

We define the conditional local average treatment effect (CLATE) and the conditional

local average treatment effect of the treated (CLATT) parameters as

CLATE(x1) ≡ E[Y (1)− Y (0) | D(1) = 1, D(0) = 0, X1 = x1]

CLATT (x1) ≡ E[Y (1)− Y (0) | D(1) = 1, D(0) = 0, D = 1, X1 = x1].

Following Donald, Hsu and Lieli (2011), we can show that CLATE(x1) and CLATT (x1)

are identified by

γ(x1) = E

[
ZY

q(X)
− (1− Z)Y

1− q(X)

∣∣X1 = x1

]/
E

[
ZD

q(X)
− (1− Z)D

1− q(X)

∣∣X1 = x1

]
,

γt(x1) = E

[
ZY − q(X)(1− Z)Y

1− q(X)

∣∣X1 = x1

]/
E

[
ZD − q(X)(1− Z)D

1− q(X)

∣∣X1 = x1

]
,

where q(x) ≡ P [Z = 1|X = x]. That is, the CLATE (CLATT) is identified by the CATE

(CATT) of Z on Y over the CATE (CATT) of Z on D. Therefore, we can use the CATE and

CATT estimators developed in previous sections to estimate the numerators and denomina-

tors of CLATE and CLATT. Under regularity conditions similar to those in Theorem 1 and

2, one can obtain the asymptotic properties of the CLATE and CLATT estimators by the

delta method. We omit the formal statements.
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4.3 Multi-valued Treatment

In this section, we consider multi-valued (rather than binary) treatments. For example,

Walker, Tekin and Wallace (2009) and Cattaneo (2010) further divide the smoking indicator

into several groups depending on the intensity of the smoking. In particular, Walker, Tekin

and Wallace (2009) consider four groups: non-smokers, smokers with tobacco use between 1

and 10 cigarettes per day, smokers with tobacco use between 11 and 20 cigarettes per day

and smokers with tobacco use more than 20 cigarettes per day. On the other hand, Cattaneo

(2010) divides smokers into 5 groups depending on the daily tobacco use: 1-5, 6-10, 11-15,

16-20, and 20+. By doing this, one can study the effect of maternal smoking intensity on

birth weight in detail.

We introduce the model and the notation following Cattaneo (2010). Treatment status

(categorical or ordinal) is indexed by t ∈ {0, 1, . . . , J} ≡ T with J ∈ N fixed. For given

t ∈ T , let Y (t) be the potential outcome under treatment level t. Let the random variable

T ∈ T indicate which of the J+1 potential outcomes is observed and let Dt ≡ 1(T = t) for all

t ∈ T , where 1(·) is the indicator function. The observed outcome Y is given by
∑

t∈T DtY (t).

The parameters considered in Cattaneo (2010) are the marginal average treatment effects

(MATE): E[Y (t) − Y (s)] for all t, s ∈ T . Just as before, we can define the conditional

marginal average treatment effect (CMATE) given X1 = x1 as: E[Y (t)− Y (s)|X1 = x1] for

all t, s ∈ T .

Define the generalized propensity score as pt(x) ≡ P (Dt = 1|X = x) for t ∈ T . The

following assumption is the main assumption we need to identify the MATE or CMATE:

Assumption 11 (i) (Unconfoundedness Assumption): For all t ∈ T , Y (t) ⊥ Dt|X. (ii)

(Generalized Propensity Score): For all t ∈ T , pt(x) ≥ δ > 0 on X .

Assumption 11 is similar to the binary treatment case, so we omit the discussion. Under

Assumption 11, E[Y (t)|X1 = x1] is identified as

E[Y (t)|X1 = x1] = E

[
DtY

pt(X)

∣∣X1 = x1

]
,
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and E[Y (t)|X1 = x1] ≡ λt(x1) can be estimated by

λ̂t(x1) =

1
nh`1

∑n
i=1

(
DtiYi
p̂t(Xi)

)
K1

(
X1i−x1
h1

)
1
nh`1

∑n
i=1K1

(
X1i−x1
h1

) ,

where p̂t(Xi) is the leave-i-out Nadaraya-Watson estimator for pt(Xi) as in (3). Under

similar regularity conditions as in Theorem 1, one can obtain the asymptotic properties of

the CMATE estimator and we omit the formal statements. Alternatively, one can model the

generalized propensity score parametrically for each t and extend the semiparametric results

in a straightforward manner.

5 Conclusions

In this paper we study the estimation of conditional average treatment effects (CATE). This

functional parameter is designed to capture the variation in the average treatment effect

conditional on some covariate(s) used in identifying the unconditional average. We propose

inverse probability weighted estimators of this function and provide pointwise first order

asymptotic theory. We also discuss a number of straightforward extensions. The application

consists of estimating the average effect of a first time mother’s smoking on birth weight

conditional on per capita income in the mother’s zip code (intended as a proxy for per capita

family income); in this paper we further restrict attention to non-white mothers. The main

qualitative finding is that smoking has a larger impact (in absolute value) at higher income

levels. Nevertheless, the numerical estimates are rather sensitive to bandwidth choice; the

estimated difference between CATE at mean income and CATE at 1.5 standard deviations

above the mean varies quite a lot. Developing formal criteria for bandwidth choice should

enhance applicability of these methods and it is an important problem for future research.
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Appendix

A. Deriving standard errors for the parametric CATE estimator

Define yi ≡ (Yi, (Xi − X̄)′)′, ûi ≡ (ε̂i, û
(1)
i , . . . , û

(k)
i )′, both (k + 1)× 1 vectors, and

Z ′i ≡


(1, Di, X

′
i, Di(Xi − X̄)′) 0 . . . 0

0 X̃ ′1i . . . 0
...

... . . .
...

0 0 . . . X̃ ′1i

 ,

a (k+ 1)× (2 + 2k+ k(`+ 1)) matrix. Furthermore, collect the OLS coefficient estimates in (5) and (6) into

the (2 + 2k + k(`+ 1))× 1 vector

θ̂ ≡ (ĉ, α̂, β̂′, δ̂′, γ̂(1)′, . . . , γ̂(k)′)′.

With these definitions, (5) and (6) can be represented as the SUR system yi = Z ′iθ̂ + ûi. Furthermore, it is

easy to see that θ̂ coincides with the system OLS estimator, i.e., θ̂ = (
∑n
i=1 ZiZ

′
i)
−1∑n

i=1 Ziyi. By standard

asymptotic results for i.i.d. data (see, e.g., Thm. 7.2 of Wooldridge 2010),

(Â−1B̂Â−1)−1/2
√
n(θ̂ − θ)→d N(0, I), (13)

where θ ≡ plim θ̂, Â ≡ n−1
∑n
i=1 ZiZ

′
i, B̂ ≡ n−1

∑n
i=1 Ziûiû

′
iZ
′
i, and I is the identity matrix conformable

with θ̂. (Note that this result allows for arbitrary correlations between the components of ui = plim ûi as

well as heteroskedasticity.) For x1 fixed, let g(θ̂) ≡ α̂+ (x̃′1γ̂)δ̂ denote the CATE estimator in (7). It is easy

to verify that the gradient of g is given by

∇g(θ̂) = (0(1×1), 1, 0(1×k), x̃
′
1γ̂

(1), . . . , x̃′1γ̂
(k), δ̂1x̃

′
1, . . . , δ̂kx̃

′
1)′.

It follows from (13) and the delta method that for large n, the variance of α̂ + (x̃′1γ̂) is approximately

∇g(θ̂)′Â−1B̂Â−1∇g(θ̂)/n.

B. Properties of p̂(·)
First we establish some properties of the proposed propensity score estimator needed to show Theorem 1.

For i = 1, . . . , n, write

p̂(Xi) =
∑
j:j 6=i

ωijYj , (14)

where

ωij ≡
1
nhkK

(
Xi−Xj

h

)
1
nhk

∑
t:t6=iK

(
Xi−Xt

h

)
depends on X1, . . . , Xn only.
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Lemma 1 Given Assumptions 1 through 8, the propensity score estimator satisfies:

(a) |ωij − ωji| ≤
Cn
nhk

∣∣∣∣K(Xi −Xj

h

)∣∣∣∣ , (15)

where Cn = Op(h) and does not depend on i, j. Furthermore,

(b) sup
x∈X
|p̂(x)− p(x)| = Op

(
hs +

√
log n

nhk

)
, (16)

and, in particular, E[p̂(x) | X1, . . . , Xn]− p(x) = Op(h
s) uniformly in x.

Proof: To see part (a), first note that by Assumption 7(i), ωij = ωji = 0 for ‖Xj −Xi‖∞ > h. Now assume

‖Xj −Xi‖∞ ≤ h. For all i, define

f̂(Xi) ≡
1

nhk

∑
t:t6=i

K
(Xi −Xt

h

)
.

Then

|ωij − ωji| =
1

nhk

∣∣∣∣K (Xi −Xj

h

)∣∣∣∣ · ∣∣∣f̂−1(Xi)− f̂−1(Xj)
∣∣∣

≤ 1

nhk

∣∣∣∣K (Xi −Xj

h

)∣∣∣∣ · {∣∣∣f̂−1(Xi)− f−1(Xi)
∣∣∣

+
∣∣∣f̂−1(Xj)− f−1(Xj)

∣∣∣+
∣∣f−1(Xi)− f−1(Xj)

∣∣} . (17)

We will bound the three terms in the braces, uniformly in i, j. Using standard arguments in nonparametric

estimation (similar to the proof of, e.g., Corollary 1 of Masry (1996)), it is possible to show that, under the

maintained assumptions,

sup
i
|f̂(Xi)− f(Xi)| = Op

(
hs +

√
log n

nhk

)
. (18)

As s ≥ k ≥ 2, Assumption 8(i) implies that the quantity in (18) is op(h). By the mean value theorem,

sup
i
|f̂−1(Xi)− f−1(Xi)| ≤ sup

i

1

f̃2i
sup
i
|f̂(Xi)− f(Xi)|, (19)

where f̃i is a quantity between f̂(Xi) and f(Xi). Since f is bounded away from zero, supi f̃
−2
i = Op(1),

and so the rhs of (19) is op(h). Obviously, the same argument applies to the second term. As for the last

term, the mean value theorem and the fact that f is continuously differentiable on its compact support and

bounded away from zero implies |f−1(x1)− f−1(x2)| ≤M‖x1 − x2‖∞ for all x1, x2 ∈ X and some constant

M > 0. Hence, |f−1(Xi) − f−1(Xj)| = O(h) given ‖Xj −Xi‖∞ ≤ h. Combining these observations yields

(15), where Cn can be taken as Mh plus twice the lhs (or rhs) of (19).

Part (b) is a standard result in kernel based nonparametric regression theory; see, e.g., Pagan and Ullah

(1999) and Su (2011). The term hs is the leading term in the expansion of the bias of p̂(x) and 1/(nhk)

is the leading term in the variance expansion (the log(n) factor arises if one requires uniform convergence).

Note also that the bias of the estimator conditional on X1, . . . , Xn is also of order O(hs) uniformly in x.
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C. The proof of Theorem 1

For purposes of exposition only, we present the proof with ` = 1. All arguments remain valid in the general

case with minimal and straightforward modifications. In this section we use the letter M to denote a generic

positive constant whose value can change from context to context.

Expanding τ̂(x1): We build on the expansion of the Hirano, Imbens and Ridder (2003) estimator by

Ichimura and Linton (2005). We start by establishing notation. Let w = (y, d, x), τ = τ(x1), and

Ψ(w, p) ≡ dy

p
− (1− d)y

1− p
.

The first and second partial derivatives of Ψ w.r.t. the argument p are denoted as Ψp and Ψpp, respectively.

We further define

Sp(Xi) ≡ E[Ψp(Wi, p(Xi))|Xi] = −
(
m1(Xi)

p(Xi)
+

m0(Xi)

1− p(Xi)

)
,

ζi ≡ Ψp(Wi, p(Xi))− Sp(Xi),

εi ≡ Di − p(Xi),

βn(Xi) ≡ E[p̂(Xi)|X1, ..., Xn]− p(Xi) =
∑
j:j 6=i

ωijp(Xj)− p(Xi),

where the last quantity is the bias of the propensity score estimator conditional on X1, . . . , Xn.

We can write the proposed CATE estimator as

√
nh1(τ̂ − τ(x1)) =

1√
nh1

∑n
i=1K1

(
X1i−x1

h1

)
[Ψ(Wi, p̂(Xi)− τ(x1))]

1
nh1

∑n
i=1K1

(
X1i−x1

h1

) ,

where Wi = (Yi, Di, Xi). As

1

nh1

n∑
i=1

K1

(X1i − x1
h1

)
p→ f1(x1)

under the stated assumptions, Theorem 1 part (a) will follow from showing that

1√
nh1

n∑
i=1

K1

(X1i − x1
h

)
[Ψ(Wi, p̂(Xi))− τ(x1)]

=
1√
nh1

n∑
i=1

K1

(X1i − x1
h

)
[ψ(Wi)− τ(x1)] + op(1). (20)

By a Taylor series expansion around p(Xi),

1√
nh1

n∑
i=1

K1

(X1i − x1
h

)
[Ψ(Wi, p̂(Xi))− τ(x1)]
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=
1√
nh1

n∑
i=1

K1

(X1i − x1
h1

)
[Ψ(Wi, p(Xi))− τ(x1)]

+
1√
nh1

n∑
i=1

K1

(X1i − x1
h1

)
Ψp(Wi, p(Xi))(p̂(Xi)− p(Xi))

+
1√
nh1

n∑
i=1

K1

(X1i − x1
h1

)
Ψpp(Wi, p

∗(Xi))(p̂(Xi)− p(Xi))
2

=
1√
nh1

n∑
i=1

K1

(X1i − x1
h1

)
[Ψ(Wi, p(Xi))− τ(x1)]

+
1√
nh1

n∑
i=1

K1

(X1i − x1
h1

)
Sp(Xi)(p̂(Xi)− p(Xi))

+
1√
nh1

n∑
i=1

K1

(X1i − x1
h1

)
ζi(p̂(Xi)− p(Xi))

+
1√
nh1

n∑
i=1

K1

(X1i − x1
h1

)
Ψpp(Wi, p

∗(Xi))(p̂(Xi)− p(Xi))
2

≡J0 + J1 + J2 + J3,

where p∗(Xi) is a value between p̂(Xi) and p(Xi) for all i, and the J terms are defined line by line.

We can further expand J1 as

J1 =
1√
nh1

n∑
i=1

K1

(X1i − x1
h1

)
Sp(Xi)(p̂(Xi)− p(Xi))

=
1√
nh1

n∑
i=1

K1

(X1i − x1
h

)
Sp(Xi)

( ∑
j:j 6=i

ωijDj − p(Xi)
)

=
1√
nh1

n∑
i=1

K1

(X1i − x1
h1

)
Sp(Xi)

( ∑
j:j 6=i

ωij(εj + p(Xj))− p(Xi)
)

=
1√
nh1

n∑
i=1

K1

(X1i − x1
h1

)
Sp(Xi)εi +

1√
nh1

n∑
i=1

K1

(X1i − x1
h1

)
Sp(Xi)

( ∑
j:j 6=i

ωijεj − εi
)

+
1√
nh1

n∑
i=1

K1

(X1i − x1
h1

)
Sp(Xi)

( ∑
j:j 6=i

ωijp(Xj)− p(Xi)
)

=
1√
nh1

n∑
i=1

K1

(X1i − x1
h1

)
Sp(Xi)εi

+
1√
nh1

n∑
i=1

εi

( ∑
j:j 6=i

ωjiK1

(X1j − x1
h1

)
Sp(Xj)−K1

(X1i − x1
h1

)
Sp(Xi)

)
+

1√
nh1

n∑
i=1

K1

(X1i − x1
h1

)
Sp(Xi)βn(Xi)

≡ J11 + J12 + J13,

where the J1· terms are again defined line by line. Note that J0 and J11 can be combined to yield the

expression in (20). Hence, it is sufficient to show that J12, J13, J2, and J3 are all op(1).
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Bounding J12: We start by writing

1√
h1

∑
j:j 6=i

ωjiK1

(X1j − x1
h1

)
Sp(Xj)−K1

(X1i − x1
h1

)
Sp(Xi)


=

1√
h1

∑
j:j 6=i

(ωji − ωij)K1

(X1j − x1
h1

)
Sp(Xj) (21)

+
1√
h1

∑
j:j 6=i

ωijK1

(X1j − x1
h1

)
Sp(Xj)−K1

(X1i − x1
h1

)
Sp(Xi)

 (22)

and bounding (21) and (22) separately.

Turning to (21),

1√
h1

sup
i

∣∣∣∣∣∣
∑
j:j 6=i

(ωji − ωij)K1

(X1j − x1
h1

)
Sp(Xj)

∣∣∣∣∣∣
≤ sup

i

∑
j:j 6=i

|ωji − ωij |
∣∣∣∣K1

(X1j − x1
h1

)
Sp(Xj)

∣∣∣∣
≤MCn

h
· h√

h1
· sup

i

∑
j:j 6=i

1

nhk

∣∣∣∣K(Xj −Xi

h

)∣∣∣∣ = Op(1) · op(1) ·Op(1) = op(1), (23)

where the second inequality follows from Lemma 1 part (a) and the fact that K1(·)Sp(·) is bounded on X by

some constant M > 0 by Assumptions 5, 6 and 7(ii). As for the order of the factors, note that Cn/h = Op(1)

by Lemma 1 part (a), h/
√
h1 = op(1) by Assumption 8(iii), and supi

∑
j:j 6=i

1
nhk

∣∣K(Xj−Xi

h

)∣∣ = Op(1) by

standard nonparametric estimation theory.

Turning to (22), first note that
∑
j:j 6=i ωijK1jSp(Xj) is an estimator of K1iSp(Xi), and (22) can be

regarded as the bias of this estimator conditional on X1, . . . , Xn. One can use standard arguments in the

nonparametric econometrics literature to analyze the order of such conditional bias terms (see, e.g., Pagan

and Ullah (1999), p. 102-103). The novelty is the presence of the factor K1(·/h1), which changes somewhat

the order of the bias term from the usual O(hs) (as in say Lemma 1 part (b)). More specifically, under

Assumptions 8(i) and (ii), we can show that

sup
i

∣∣∣( ∑
j:j 6=i

ωijK1

(X1j − x1
h1

)
Sp(Xj)−K1

(X1i − x1
h1

)
Sp(Xi)

)∣∣∣ = Op

(hs
hs1

)
.

Therefore, by Assumption 8(iii),

sup
i

∣∣∣ 1√
h1

∑
j:j 6=i

ωijK1

(X1j − x1
h1

)
Sp(Xj)−K1

(X1i − x1
h1

)
Sp(Xi)

∣∣∣ = op(1). (24)

Combining (23) and (24) yields

1√
h1

sup
i

∣∣∣ ∑
j:j 6=i

ωjiK1

(X1j − x1
h1

)
Sp(Xj)−K1

(X1i − x1
h1

)
Sp(Xi)

∣∣∣ = op(1).
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As the εi’s are mutually independent conditional on the sample path of the Xi’s, it further follows that

J12 =
1√
n

n∑
i=1

εi

{ 1√
h1

∑
j:j 6=i

ωjiK1

(X1j − x1
h1

)
Sp(Xj)−K1

(X1i − x1
h1

)
Sp(Xi)

}
= op(1),

conditional on the sample path of the Xi’s with probability approaching one.

Bounding J13: Note that βn(x) is the bias of p̂(x), conditional on X1, . . . , Xn, which is Op(h
s

) uniformly

in x (cf. Lemma 1 part (b)). We can then bound J13 as follows:

|J13| =
∣∣∣ 1√
nh1

n∑
i=1

K1

(X1i − x1
h1

)
Sp(Xi)βn(Xi)

∣∣∣
≤
√
nh1 sup

x∈X
|βn(x)| 1

nh1
·
n∑
i=1

∣∣∣K1

(X1i − x1
h1

)∣∣∣|Sp(Xi)|

=
√
nh1Op(h

s) ·Op(1) = op(1) ·Op(1) = op(1),

where the second part of Assumption 8(iii) is used on the last line.

Bounding J2: By Lemma 1(b) and Assumption 8(i), supx∈X |p̂(x) − p(x)| = op(h
s/2). Hence, by

Assumption 8(iii), h
−1/2
1 supx∈X |p̂(x)− p(x)| = op(1). As the {ζi} are mutually independent conditional on

the sample path of the Xi’s, we have J2 = op(1) by the same argument used to show J12 = op(1).

Bounding J3: Note that p∗(Xi) is between p̂(Xi) and p(Xi), so it is uniformly bounded away from zero

and one. Furthermore, by Lemma 1(b) and Assumption 8(i), supx∈X |p̂(x)− p(x)|2 = op(h
s). Therefore, by

Assumption 8(iii),
√
nh1h

s · h−s supi(p̂(Xi)− p(Xi))
2 = op(1) · op(1) = op(1), and the same argument used

to control J13 yields J3 = op(1).

Combining the bounds above establishes (20) and hence Theorem 1 part (a).

Turning to Theorem 1 part (b), we write√
nh1(τ̂(x1)− τ(x1))

=
1√
nh1

1

f1(x1)

n∑
i=1

[ψ(Xi, Yi, Di)− τ(X1i)]K1

(X1i − x1
h1

)
(25)

+
1√
nh1

1

f1(x1)

n∑
i=1

[τ(X1i)− τ(x1)]K1

(X1i − x1
h1

)
(26)

+ op(1)

It is straightforward to show that E([ψ(Xi, Yi, Di) − τ(X1i)]K1in) = 0, where we write K1in = K1((X1i −

x1)/h1) to make it explicit that this quantity depends on n through h1. For each n, the random variables

{[ψ(Xi, Yi, Di)−τ(X1i)]K1in}ni=1 are independent and one can apply Lyapunov’s CLT for triangular arrays to

(25) to obtain the asymptotic distribution shown in part (b) of Theorem 1. The verification of the conditions

of Lyapunov’s CLT mimics exactly the proof of Theorem 3.5 by Pagan and Ullah (1999). The bias term
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given in (26) is op(1) under Assumption 8(ii) and therefore has no bearing on the limit distribution. The

verification of this claim follows, in turn, the proof of Theorem 3.6 by Pagan and Ullah (1999) coupled with

the subsequent discussion about higher order kernels.

D. Handling discrete covariates

Let qm(x1) ≡ P (M = 1|X1 = x1) and τm(x1) ≡ E[Y (1) − Y (0)|X1 = x1,M = 1]. For the female

subpopulation the quantities qf (x1) and τf (x1) are defined analogously. For simplicity only, take again

` = 1. Note that the parameter of interest can be written as τ(x1) = qm(x1)τm(x1) + qf (x1)τf (x1). Then,

we estimate τm(x1), τf (x1), qm(x1), and qm(x1) by

τ̂m(x1) ≡
1
nh`

1

∑
i:Mi=1

(
DiYi

p̂m(Xi)
− (1−Di)Yi

1−p̂m(Xi)

)
K1

(
X1i−x1

h1

)
1
nh`

1

∑
i:Mi=1K1

(
X1i−x1

h1

) ,

τ̂f (x1) ≡
1
nh`

1

∑
i:Mi=0

(
DiYi

p̂f (Xi)
− (1−Di)Yi

1−p̂f (Xi)

)
K1

(
X1i−x1

h1

)
1
nh`

1

∑
i:Mi=0K1

(
X1i−x1

h1

) ,

q̂m(x1) ≡
1
nh`

1

∑n
i=1MiK1

(
X1i−x1

h1

)
1
nh`

1

∑n
i=1K1

(
X1i−x1

h1

) ,

q̂f (x1) ≡ 1− q̂m(x1) =

1
nh`

1

∑n
i=1(1−Mi)K1

(
X1i−x1

h1

)
1
nh`

1

∑n
i=1K1

(
X1i−x1

h1

) . (27)

Last, τ(x1) is estimated by

τ̂(x1) = q̂m(x1)τ̂m(x1) + q̂f (x1)τ̂f (x1). (28)

After we plug in those expressions in (27) into (28), the expression of τ̂(x1) in (28) reduces to that in (9).

Next, we verify the influence function representation displayed in (10). Note that the CATE estimator

for the male group can be written as

√
nmh1

(
τ̂m(x1)− τm(x1)

)
=

1

fm(x1)
√
nmh1

n∑
i=1

(ψi − τm(x1))MiK1i + op(1),

where K1i = K((X1i − x1)/h1) and ψi = ψ(Mi, Xi, Yi, Di). We replace nm with n in the scaling factor by

writing

√
nh1

(
τ̂m(x1)− τm(x1)

)
=

n

nm

1

fm(x1)
√
nh1

n∑
i=1

(ψi − τm(x1))MiK1i + op(1)

=
1

qmfm(x1)
√
nh1

n∑
i=1

ψiMiK1i + op(1),
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where qm ≡ P (M = 1) and fm(x1) is the conditional density of X1 on M = 1. Also, note that

P (X1 = x1,M = 1) = f1(x1)qm(x1) = qmfm(x1).

Therefore,

√
nh1

(
τ̂m(x1)− τm(x1)

)
=

1

f1(x1)qm(x1)
√
nh1

n∑
i=1

(ψi − τm(x1))MiK1i + op(1).

Similarly,

√
nh1

(
τ̂f (x1)− τf (x1)

)
=

1

f1(x1)qf (x1)
√
nh1

n∑
i=1

(ψi − τf (x1))(1−Mi)K1i + op(1).

Furthermore, the estimators q̂m(x1) and q̂f (x1) can be represented as

√
nh1

(
q̂m(x1)− qm(x1)

)
=

1

f1(x1)
√
nh1

n∑
i=1

(
Mi − qm(x1)

)
K1i + op(1),

and

√
nh1

(
q̂f (x1)− qf (x1)

)
=

1

f1(x1)
√
nh1

n∑
i=1

(
1−Mi − qf (x1)

)
K1i + op(1).

We can combine the previous four displays to obtain the representation in (10):

√
nh1(τ̂(x1)− τ(x1))

=
√
nh1

[
q̂m(x1)τ̂m(x1) + q̂f (x1)τ̂f (x1)− qm(x1)τm(x1)− qf (x1)τf (x1)

]
=
√
nh1qm(x1)

(
τ̂m(x1)− τm(x1)

)
+
√
nh1

(
q̂m(x1)− qm(x1)

)
τ̂m(x1)

+
√
nh1qf (x1)

(
τ̂f (x1)− τf (x1)

)
+
√
nh1

(
q̂f (x1)− qf (x1)

)
τ̂f (x1)

=
1

f1(x1)
√
nh1

n∑
i=1

(ψi − τm(x1))MiK1i +
1

f1(x1)
√
nh1

n∑
i=1

(
Mi − qm(x1)

)
τm(x1)K1i

+
1

f1(x1)
√
nh1

n∑
i=1

(ψi − τf (x1))(1−Mi)K1i +
1

f1(x1)
√
nh1

n∑
i=1

(
1−Mi − qf (x1)

)
τf (x1)K1i + op(1)

=
1

f1(x1)
√
nh1

n∑
i=1

(ψi − qm(x1)τm(x1)− qf (x1)τf (x1))K1i + op(1)

=(10),

where the last equality follows from that τ(x1) = qm(x1)τm(x1) + qf (x1)τf (x1).
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E. The proof of Theorem 2

Using the notation introduced in Appendix C, we again expand the numerator of the CATE estimator around

p(Xi) = p(Xi; θ0) as

1√
nh1

n∑
i=1

K1

(X1i − x1
h

)
[Ψ(Wi, p(Xi; θ̂n))− τ(x1)]

=
1√
nh1

n∑
i=1

K1

(X1i − x1
h1

)
[Ψ(Wi, p(Xi))− τ(x1)] (29)

+
1√
nh1

n∑
i=1

K1

(X1i − x1
h1

)
Ψp(Wi, p

∗(Xi))(p̂(Xi; θ̂n)− p(Xi)),

where p∗(Xi) is between p(Xi; θ̂n) and p(Xi). We bound the second term as

1√
nh1

∣∣∣∣∣
n∑
i=1

K1

(X1i − x1
h1

)
Ψp(Wi, p

∗(Xi))(p(Xi; θ̂n)− p(Xi))

∣∣∣∣∣
≤
√
nh1 sup

x∈X
|p(x; θ̂n)− p(x)| · 1

nh1

n∑
i=1

∣∣∣K1

(X1i − x1
h1

)
Ψp(Wi, p

∗(Xi))
∣∣∣, (30)

where the first factor is op(1) by Assumption 9 and the second factor isOp(1) under mild regularity conditions.

Since Ψ(Wi, p(Xi, θ)) = ψθ(Xi, Yi, Di), part (a) of Theorem 2 is proven. The proof of part (b) is identical

to the the proof of Theorem 1(b) and is therefore omitted.

F. Proof of Theorem 3

The proof is based on establishing the following representations:

√
nh`1

 1
nh`

1

∑n
i=1

(
DiYi − p̂(Xi)(1−Di)Yi

1−p̂(Xi)

)
K1

(
X1i−x1

h1

)
1
nh`

1

∑n
i=1K1

(
X1i−x1

h1

) − τt(x1)px1


=

1√
nh`1

1

f1(x1)

n∑
i=1

(
Di(Yi −m1(Xi))−

p(Xi)(1−Di)(Yi −m0(Xi))

1− p(Xi)

+Di(m1(Xi)−m0(Xi))− τt(x1)px1

)
K1

(X1i − x1
h1

)
+ op(1),

√
nh`1

( 1
nh`

1

∑n
i=1DiK1

(
X1i−x1

h1

)
1
nh`

1

∑n
i=1K1

(
X1i−x1

h1

) − px1

)

=
1√
nh`1

1

f1(x1)

n∑
i=1

(Di − px1)K1

(X1i − x1
h1

)
+ op(1).

The second equation suggests that we can replace the denominator of τ̂t(x1) in (12) with
∑n
i=1DiK1

(
(X1i−

x1)/h1
)
/(nh`1) without changing the first order asymptotics of τ̂t(x1).
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Figure 1: CATE as a function of per capita income: semiparametric estimates
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Figure 2: CATE as a function of per capita income: semiparametric estimate with h1 = 0.25

and ±2 standard errors

43



1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

x 10
4

−280

−260

−240

−220

−200

−180

−160

−140

CATE as a function of income with h
1
=6.5

G
ra

m
s

Annual per capita income in mother’s zip code

Figure 3: CATE as a function of per capita income: semiparametric estimate with h1 = 6.5

and ±2 standard errors

44



1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

x 10
4

−240

−220

−200

−180

−160

−140

−120

−100

−80

The average effect of smoking conditional on income:
nonparametric estimates

Annual per capita income in mother’s zip code

G
ra

m
s

 

 

h=3.7, h
1
=3.0

h=3.7, h
1
=3.7

h=3.7, h
1
=5.0

h=3.7, h
1
=6.5

h=4.8, h
1
=3.0

h=4.8, h
1
=3.7

h=4.8, h
1
=5.0

h=4.8, h
1
=6.5

Figure 4: CATE as a function of per capita income: fully nonparametric estimates
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Figure 5: CATE as a function of per capita income: nonparametric estimate with h = 3.7,

h1 = 3 and ±2 standard errors
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h1 = 5 and ±2 standard errors
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Figure 7: CATE as a function of per capita income: nonparametric estimate with h = 3.7,

h1 = 1 and ±2 standard errors
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Figure 8: CATE as a function of per capita income: nonparametric estimates with year fixed

effects
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