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INVESTIGATION

Estimating Contemporary Effective Population
Size on the Basis of Linkage Disequilibrium

in the Face of Migration
Robin S. Waples*,1 and Phillip R. England†

*National Oceanic and Atmospheric Administration, Northwest Fisheries Science Center, Seattle, Washington 98112, and
†Commonwealth Scientific and Industrial Research Organization Marine and Atmospheric Research and Wealth From Oceans

Flagship, Hobart, TAS 7001, Australia

ABSTRACT Effective population size (Ne) is an important genetic parameter because of its relationship to loss of genetic variation,
increases in inbreeding, accumulation of mutations, and effectiveness of selection. Like most other genetic approaches that estimate
contemporary Ne, the method based on linkage disequilibrium (LD) assumes a closed population and (in the most common applica-
tions) randomly recombining loci. We used analytical and numerical methods to evaluate the absolute and relative consequences of
two potential violations of the closed-population assumption: (1) mixture LD caused by occurrence of more than one gene pool, which
would downwardly bias N̂e, and (2) reductions in drift LD (and hence upward bias in N̂e) caused by an increase in the number of parents
responsible for local samples. The LD method is surprisingly robust to equilibrium migration. Effects of mixture LD are small for all
values of migration rate (m), and effects of additional parents are also small unless m is high in genetic terms. LD estimates of Ne

therefore accurately reflect local (subpopulation) Ne unless m . �5–10%. With higher m, N̂e converges on the global (metapopu-
lation) Ne. Two general exceptions were observed. First, equilibrium migration that is rare and hence episodic can occasionally lead to
substantial mixture LD, especially when sample size is small. Second, nonequilibrium, pulse migration of strongly divergent individuals
can also create strong mixture LD and depress estimates of local Ne. In both cases, assignment tests, Bayesian clustering, and other
methods often will allow identification of recent immigrants that strongly influence results. In simulations involving equilibrium
migration, the standard LD method performed better than a method designed to jointly estimate Ne and m. The above results assume
loci are not physically linked; for tightly linked loci, the LD signal from past migration events can persist for many generations, with
consequences for Ne estimates that remain to be evaluated.

INTEREST in estimating the contemporary effective size
(Ne) of natural populations using genetic methods is grow-

ing apace (reviewed by Leberg 2005; Wang 2005; Luikart
et al. 2010), spurred by several major factors: (1) difficulty
of collecting sufficient demographic information to calculate
Ne directly, (2) rapidly increasing availability (and declining
costs) of polymorphic genetic markers, and (3) increased
development of software implementing new statistical
methods. Until very recently, most genetically based esti-
mates of contemporary Ne have used the temporal method,
which requires at least two samples spaced in time (Nei and
Tajima 1981; Waples 1989; Wang 2001; Anderson 2005).

Notably, a recent review of genetic estimates of Ne (Palstra
and Ruzzante 2008) included only the temporal method
because so few published estimates were available for other
methods. In the last few years, however, considerable inter-
est has focused on estimators that require only a single sam-
ple (Nomura 2008; Tallmon et al. 2008; Waples and Do
2008; Pudovkin et al. 2009; Wang 2009). Underlying mod-
els for the one- and two-sample methods both typically in-
volve a number of simplifying assumptions: selective
neutrality, discrete generations, random samples, closed
populations, and (in most cases) free recombination among
loci. Although it is widely recognized that these assumptions
are rarely completely satisfied, standard models neverthe-
less are routinely used to estimate Ne in nature.

In this article, we evaluate sensitivity of the most widely
used single-sample method [that based on linkage disequi-
librium (LD), defined as nonrandom associations of alleles
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at different gene loci] to violations of the standard assump-
tion that the focal population is closed to immigration.
Difficulties in delineating population boundaries and quan-
tifying contemporary dispersal make it important to consider
the effect of this assumption being violated. Migration poses
an interesting theoretical problem, as gene flow can have
two opposing influences on LD. First, when used with
unlinked markers, the LD method and other single-sample
estimators provide an estimate of the effective number of
parents that produced the cohort from which the sample
was drawn (Waples 2005), and a sample that contains
a number of immigrants is drawn from a larger total pool
of parents than a sample derived only from local breeders.
This suggests that migration could upwardly bias estimates
of local Ne. On the other hand, immigrants that differ genet-
ically from local individuals can create LD due to population
mixture or admixture (Nei and Li 1973; Sinnock 1975), and
this could downwardly bias estimates of local Ne (as sug-
gested by Park 2011). We used both analytical and numer-
ical methods to evaluate the relative importance of these
two potential sources of bias under a variety of equilibrium
and nonequilibrium scenarios (different population sizes,
sample sizes, and migration rates).

Methods

Theory

The magnitude of disequilibrium (D) between alleles at two
gene loci is defined as the difference between the observed
frequency of a two-locus gamete and its expected frequency,
based on population allele frequencies and assuming ran-
dom assortment. D can be estimated directly from gametic
frequencies. For most nonmodel species, however, only ge-
notypic data are available, in which case gametic frequen-
cies cannot be reconstructed with certainty because of
ambiguity related to double heterozygotes. In that case,
the most widely used method for estimating D is Burrows’
composite delta (D) method (Weir 1979, 1996), which is
simple to calculate and does not depend on the assumption
of random mating. Because both D and D are sensitive to
allele frequency, a standardized form of linkage disequilib-
rium (r) is often used, which can be interpreted as a corre-
lation coefficient for alleles at different gene loci. Both D and
r can be either positive or negative, so the squared terms D2

and r2 are often used when one is interested in the magni-
tude, rather than the direction, of linkage disequilibrium.

The premise of the LD method is that the magnitude of
random association of alleles at different gene loci is
determined by three variables: Ne, the number of individuals
sampled (S), and the recombination rate between loci (c).
For monoecious species or dioecious species with random
mating and no permanent pair bonds,

Eðr̂2Þ � ð12cÞ2 þ c2

2Necð22 cÞ þ
1
S

(1)

(Weir and Hill 1980; Hill 1981). For most natural popula-
tions, the recombination fraction will not be known. How-
ever, unless the number of markers is large or the number of
chromosomes is small (e.g., as in Drosophila spp.), it might
be reasonable to assume that the loci are unlinked (c = 0.5).
Under that assumption, Equation 1 simplifies to

Eðr̂2Þ � 1
3Ne

þ 1
S
: (2)

Equation 2 shows that the expectation of r2 has two compo-
nents: one due to drift created by reproduction of a finite
effective number of parents (1/(3Ne)) and one due to sam-
pling a finite number of individuals (1/S).

Equations 1 and 2 assume selective neutrality and a
closed, panmictic population. Many (perhaps most) natural
populations are connected at least sporadically to other
populations through migration. At any point in time,
therefore, a population of interest might contain individuals
derived from more than one gene pool. Such a mixture
creates the well-known Wahlund effect (Wahlund 1928),
which is manifested as a deficiency of heterozygotes in com-
parison to the single-locus Hardy–Weinberg expected fre-
quency. Mixtures also create a kind of two-locus Wahlund
effect that is detectable as linkage disequilibrium (Nei and Li
1973; Sinnock 1975). The magnitudes of both the one-locus
and two-locus Wahlund effects are determined by (a) mix-
ture fraction and (b) allele frequency differences at the loci
under consideration. Whereas the single-locus Wahlund ef-
fect disappears with a single generation of random mating,
LD at unlinked loci decays only asymptotically at a rate
of 50%/generation. Therefore, the two-locus Wahlund effect
encompasses both population mixture in the current genera-
tion and population admixture from recent generations.

Simulated data

In the Appendix, we use analytical approximations to com-
pare the expected magnitude of LD arising from both drift
and population mixture/admixture, and this allows us to
predict the relative influence of these two forces on esti-
mates of local Ne. To test our predictions, we simulated
genetic data for metapopulations of fixed size N = 1000
individuals, divided into either n = 2 subpopulations of
N = 500 or n = 10 subpopulations of N = 100. We used
a Wright–Fisher island model, so each subpopulation had
a constant number N = 100 or 500 ideal individuals and
also local Ne = 100 or 500. Migration rates (m) were sym-
metrical and assumed values of 0, 0.001, 0.01, 0.05, 0.1,
0.25 0.5, and 0.9 (the latter for n = 10 only). EasyPop
(Balloux 2001) was used to simulate genotypic data for 20
loci in a K-allele model with a maximum of 10 allelic states.
This produced data that were “microsat-like” in terms of the
number and frequency of alleles, but we did not attempt to
mimic the stepwise mutation model of microsatellites. Sim-
ulations were initialized with the maximal diversity option,
and populations were followed for 200–300 generations
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before collecting data. This provided ample time to achieve
migration–drift equilibrium and, with a mutation rate of 5 ·
1024, produced a quasi-equilibrium between mutation, mi-
gration, and drift and levels of genetic variability (average
heterozygosity = 0.4–0.8) comparable to those seen in most
natural populations.

We also simulated nonequilibrium migration scenarios,
which could involve sudden infusion of substantial numbers
of genetically divergent individuals into a local population.
This was accomplished by allowing, for the last generation
in the simulation, migration rate to increase by a factor of
either 2 (2· scenario) or 10 (10· scenario). Samples were
taken in the same generation as the migration, so for these
scenarios the samples included mixtures of pure F0 individ-
uals from two or more subpopulations, in addition to any
residual admixture accrued from previous generations at the
equilibrium migration rate. For each parameter set, we sim-
ulated two types of metapopulations with 1000 individuals
each: 10 replicates of (n = 10, local N = 100) and 50
replicates of (n = 2, local N = 500). Each parameter set
thus produced 100 replicate subpopulations for each meta-
population type, and we assessed bias by computing the
harmonic mean N̂e over all replicate subpopulations and
comparing it to the number of ideal individuals in each sub-
population (N). Because the distribution of N̂e can be
strongly skewed with a long tail of high values, and because
the drift signal is an inverse function of Ne, the harmonic
mean is routinely used to evaluate bias in Ne estimators (e.g.,
Nei and Tajima 1981; Waples 1989; Wang 2001, 2009; Jorde
and Ryman 2007; Nomura 2008). For more details on this
topic, see Waples and Do (2010).

Estimating Ne

At the end of each simulation, samples of S individuals were
taken from each subpopulation, and the program LDNe
(Waples and Do 2008) was used to estimate local effective
size. In the derivation of Equations 1 and 2, second-order
terms were ignored, which can lead to substantial bias in N̂e

depending on the ratio S/Ne (England et al. 2006). LDNe
implements the bias correction method of Waples (2006)
and uses the Burrows estimator as described by Weir
(1996). Unless otherwise noted, we set Pcrit in the program
to screen out alleles at frequency ,0.02; Waples and Do
(2010) found that this criterion provides a generally good
balance between maximizing precision and minimizing bias.

One published single-sample method (Vitalis and Couvet
2001) uses both one- and two-locus identity measures to
jointly estimate Ne and m. We evaluated performance of this
method and compared it to LDNe using simulated data as
described above for two migration scenarios: m = 0 and
0.05. For both scenarios, we simulated 10 replicate island-
model metapopulations with with n = 10 and Ne = 100 and
took samples of S = 50 individuals. For each of the 100
sampled subpopulations, we estimated Ne using LDNe and
estimated Ne and m using Vitalis and Couvet’s program
Estim.

Results

Analytical approximations

As discussed in the Appendix, if we ignore effects from
sampling individuals, the expected value of r2 has two
components,

E
�
r2
� ¼ Var ðrÞdrift þ ½EðrÞ�2 mix; (3)

which represent the contributions to r2 from drift and mixture,
respectively. In a closed population at equilibrium with con-
stant N, r will vary randomly in the range [21, 1] (or less,
depending on allele frequencies), so that E(r) = 0 and there is
no mixture LD. In that case, only the drift term is relevant and

E
�
r2
� ¼ VarðrÞ � 1

3Ne
;

on the basis of Weir and Hill (1980) and Hill (1981). We use
this standard-model expectation as a point of reference for
evaluating the effects of migration on r2 and N̂e.

Migration changes both the drift and mixture terms in
Equation 1, in contrasting ways. First, migration expands
the total number of parents that contribute to a local
population, and this reduces the drift term. We quantify
this effect by calculating how the effective pool of parents
(EPP) changes as a function of m, n, and N: EPP = N/
[(12m)2 +m2/(n2 1)] (Equation A1). The expected mag-
nitude of reduction in drift LD due to migration is calculated
as Dr2drift = 1/(3 EPP) 2 1/(3N). At the same time, migra-
tion brings together in the local population individuals that
are progeny of parents with (potentially very) different
suites of allele frequencies. This creates mixture disequilib-
rium, which will tend to increase overall LD. We quantify
this effect by the term Dr2mix (Equation A10). Two primary
factors determine the magnitude of mixture LD (Equation
A6): population differentiation (all else being equal, genet-
ically divergent populations create more mixture LD) and
mixture fraction (LD is highest with equal mixture frac-
tions). In an equilibrium model, these two factors act in
opposing ways, as higher migration rates reduce levels of
genetic divergence. As a result, under equilibrium conditions
mixture LD is expected to be largest at relatively low levels
of migration (Figure A1).

Table 1 summarizes results of applying the formulas de-
veloped in the Appendix to the two general metapopulation
scenarios. Some general patterns can be noted. First, in all
cases the expected contribution to overall r2 from popula-
tion mixture [Dr2mix] is at least an order of magnitude
smaller than the expected reduction in drift LD from recruit-
ing additional parents [Dr2drift]. This occurs because, under
the equilibrium model assumed, the population mixture
never involves large fractions of genetically divergent indi-
viduals; as population divergence increases (and with it the
opportunity for creating large mixture LD), migration rate
also drops sharply. As a consequence, we expect that in all
cases the reductions in LD due to equilibrium migration will
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outweigh any additional mixture LD. Second, the EPP rises
only slowly with low levels of migration, so substantial up-
ward biases in local N̂e are not expected until migration
rates are fairly high in genetic terms (m . 5–10%). Third,
the two metapopulation scenarios are expected to produce
generally similar results (indexed by the ratio N̂e/N) for low
and moderate migration, but for m . 0.1 upward bias is
expected to rise faster for n = 10, N = 100. This is expected
because with high migration rates, N̂e for both scenarios
should converge on the overall metapopulation Ne �
1000, which is a larger multiple of local Ne for the scenario
with N = 100.

Empirical results from simulations
Equilibrium migration: The main simulation results for
equilibrium migration are plotted in Figures 1 and 2. Al-
though our analyses here focus on bias (for an evaluation
of precision of the LD method, see Waples and Do 2010), we
have plotted empirical confidence intervals (C.I.’s) in Figure
1, and some general patterns are worth noting: (1) C.I.’s are
tighter for the [10, 100] scenario because the variance of N̂e

increases with true Ne (Hill 1981); (2) C.I.’s are wider for
mN , 1 because those scenarios have low genetic diversity
in local populations and fewer allelic comparisons for calcu-
lating r2; and (3) C.I.’s are tighter for moderate migration
(mN = 1–10), because this level of migration is sufficient to
maintain high levels of allelic diversity but not so high that
N̂e becomes substantially biased upward.

The simulation results generally agreed with the analyt-
ical predictions. For both metapopulation scenarios, the
shape of the relationship between N̂e/N and m was similar
to that predicted. Little bias to local N̂e was found for either
scenario for low or moderate m, while m $ 0.1 produced
more substantial upward bias. As expected, this latter effect
was stronger for N = 100 than N = 500. As also expected,
for N = 500 we found no evidence for downward bias in N̂e

that could be attributed to population mixture (see below

for discussion of results for N = 100). It appears that migra-
tion rate (m) is a more reliable indicator than the effective
number of migrants (mNe) of the likely consequences of
migration on N̂e (compare Figure 1A and 1B).

Two important deviations from the predicted patterns are
also evident. First, although theoretical derivations in the
Appendix capture the general pattern of the relationship be-
tween N̂e and m, empirical results showed more upward
bias than predicted under high migration rates (Figure 2).
The second deviation is that for the scenario with N = 100,
n = 10, we observed a downward bias in N̂e at low migra-
tion rates (harmonic mean N̂e = 92.9 for m = 0.01 and 80.2
for m = 0.001). With N = 100, m = 0.01 means that a local
population on average receives one immigrant per genera-
tion from the metapopulation as a whole, and the rate is one
immigrant every 10 generations for m = 0.001. Since mi-
gration was stochastic, some generations can by chance re-
ceive an unusually large number of immigrants. Similarly, if
one or a few migrants are unusually successful at reproduc-
ing, their offspring can contribute substantial admixture LD
to the population for several generations before the associ-
ations decay through recombination. Furthermore, because
the harmonic mean is strongly affected by occasional low
values, and because of the nonlinear effects of m on mixture
LD, we expect that the observed reduction in N̂e for low
migration rates was due to a few low values rather than
a general across-the-board reduction in N̂e. This is supported
by results shown in Figure 3, which compares the distribu-
tion of N̂e for m = 0.001 with that under complete isolation.
The distributions are generally similar, except that the sce-
nario with rare migration produced four estimates with
N̂e , 40 compared to none for m = 0. If those four values
are omitted, harmonic mean N̂e becomes 98.0, nearly iden-
tical to the value (N̂e = 98.3) for the scenario with no
migration. In the rare-migration scenario, the frequency of
relatively high estimates was also reduced slightly (Figure 3),

Table 1 Theoretical expectations for contributions to r2 and N̂e from drift and population mixture, based on material in the Appendix

N m Eðr N
2 Þa EPPb Dr2drift

c Dr2mix
d Eðr2TotalÞe EðN̂eÞf EðN̂e=NÞ

500 0.001 0.00067 501.0 20.000001 ,0.000001 0.000666 500.9 1.002
500 0.01 0.00067 510.1 20.000013 ,0.000001 0.000654 509.9 1.020
500 0.05 0.00067 552.5 20.000063 ,0.000001 0.000604 552.3 1.105
500 0.1 0.00067 609.8 20.000120 ,0.000001 0.000547 609.5 1.219
500 0.25 0.00067 800.0 20.000250 ,0.000001 0.000417 799.7 1.599
500 0.5 0.00067 1000.0 20.000333 ,0.000001 0.000333 999.8 2.000
100 0.001 0.00333 100.2 20.000007 0.000002 0.003328 100.1 1.001
100 0.01 0.00333 102.0 20.000066 0.000011 0.003278 101.7 1.017
100 0.05 0.00333 110.8 20.000324 0.000013 0.003023 110.3 1.103
100 0.1 0.00333 123.3 20.000630 0.000012 0.002716 122.7 1.227
100 0.25 0.00333 175.6 20.001435 0.000009 0.001907 174.8 1.748
100 0.5 0.00333 360.0 20.002407 0.000004 0.000930 358.5 3.585

An equilibrium island model is assumed, with either n ¼ 2 subpopulations with N ¼ 500 ideal individuals each or n ¼ 10, N ¼ 100.
aEðr N

2 Þ ¼ 1=ð3NÞ (cf. Equation 2).
bEPP ¼ effective pool of parents ¼ N=½ð12mÞ2 þm2=ðn21Þ� (Equation A1).
cDr2drift ¼ 1=ð3  EPPÞ21=ð3NÞ (Equation A3).
dDr2mix is from Equation A9.
eEðr2TotalÞ ¼ Eðr2NÞ þ Dr2drift þ Dr2mix.
f EðN̂eÞ ¼ 1=½3Eðr2TotalÞ�.
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which could be due to a small amount of residual disequi-
librium from migrants in previous generations.

To explore this issue further, we examined results for one
of the metapopulations that produced one very low estimate
(N̂e = 13.8 for population 10). We used Rannala and Moun-
tain’s (1997) method as implemented in GeneClass2 (Piry
et al. 2004) to search for first-generation migrants in the
entire metapopulation (N = 1000). Three migrants were
identified at the P , 0.001 level (one each in populations
1, 5, and 9) and were detected with high certainty because
the low migration rate produced very strong divergence
(FST = 0.48) and essentially nonoverlapping sets of alleles
in different populations. Surprisingly, no first-generation
migrants were detected in population 10. However, when
simulations were used to generate a “likely” range of multi-
locus genotypes that would be produced by each population
(Paetkau et al. 2004), seven individuals from population
10 were estimated to have multilocus genotypes with a
,1/1000 probability of being produced by a population
with allele frequencies observed in population 10. Inspec-
tion of these seven individuals showed that in most cases
they carried one allele that was rare and one that was

common in population 10—the pattern that would be ex-
pected for F1 or backcross progeny of first-generation im-
migrants. We concluded, therefore, that the low N̂e for
population 10 could be traced to one or a few immigrants
in a recent generation that produced a number of
descendants.

Figure 2 Comparison of observed N̂e /N from simulations (same data that
are plotted in Figure 1) with expected values based on theoretical con-
siderations (from Table 1).Figure 1 Bias in estimates of local Ne (indicated by the ratio N̂e /N) as

a function of amount of migration among subpopulations. Migration is
scaled by migration rate (m) (A) or number of migrants per generation
(mN) (B). Local subpopulation size (N) was 100 or 500 ideal individuals.
Values shown are based on harmonic mean N̂e calculated using data for
20 loci assayed in S = 100 individuals. Vertical lines in B show the central
90% of the empirical distribution of N̂e.

Figure 3 Distribution of N̂e estimates for scenarios with true Ne = 100 in
each local subpopulation and either metapopulations of n = 10 subpo-
pulations connected by rare migration events (m = 0.001, solid bars) or
completely isolated subpopulations (open bars). In both cases, each sam-
ple of S = 100 individuals was taken from a single subpopulation, and 20
loci were used for the estimate. The bin with the asterisk includes all
estimates .300.
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Why did first-generation migrants in population 10 pro-
duce low estimates of Ne while those in populations 1, 5,
and 9 did not? (N̂e = 88.0, 84.7, and 60.3, respectively, for
the latter three populations—lower than average but well
within the range expected). The primary reason appears to
be an interaction with the criterion used for screening out
rare alleles. We used PCRIT = 0.02, which excludes alleles at
frequency ,0.02. Figure 4 shows how N̂e for each of the 10
populations in the metapopulation varied as a function of
PCRIT. For 6 of the populations (Figure 4, black lines), N̂e

showed little variation for PCRIT in the range [0.01–0.05].
The three populations with identified first-generation
migrants (Figure 4, blue lines) all had “typical” N̂e values
for PCRIT = 0.02–0.05 but sharply reduced values for PCRIT =
0.01 (N̂e # 22). “Foreign” alleles that occur in only a single
first-generation migrant cannot exceed frequency 0.01 in
a sample of S = 100 individuals, so effects of lone migrants
are screened out when PCRIT . 0.01 is used. The red line in
Figure 4 is for population 10, which shows a different pat-
tern: high estimates (N̂e � 150–170) for PCRIT $ 0.03 and
very low estimates (N̂e = 11–14) for PCRIT = 0.02 or 0.01.
When the seven individuals with highly unlikely genotypes
were excluded from population 10, estimated effective size
jumped dramatically to a value (N̂e = 179 using the PCRIT =
0.02 criterion) comparable to the estimates found when rare
(presumably mostly recent immigrant) alleles were
screened out.

Results discussed so far used relatively large sample sizes
(S = 100 individuals). Figure 5 shows that the biases dis-
cussed above are magnified with smaller samples: for low
migration (m # 0.01), N̂e is a smaller fraction of N as S
decreases, and for high migration (m $ 0.1) N̂e rises more
sharply compared to N for smaller S. It is worth noting that
with S= 50, alleles carried in a homozygous state by a single

immigrant will not be screened out at PCRIT = 0.02, and
with S = 25 the same criterion would include any allele that
occurs in even a single copy in the sampled individuals.
Waples and Do (2010) found that inclusion of singleton
alleles was associated with upwardly biased estimates of
Ne and suggested adjusting PCRIT according to sample size
to exclude alleles found in only a single copy. Application of
this rule would reduce some of the biases seen in Figure 5.

Nonequilibrium migration: Pulse migration at 10 times the
equilibrium rate led to substantial biases in N̂e, with the
direction of bias depending on whether immigrants were
genetically divergent (Figure 6). When background (equilib-
rium) migration was low enough to lead to strong genetic
differences between populations, 10· pulse migration de-
pressed N̂e to a fraction of the local Ne. Conversely, when
genetic differentiation was low due to high background mi-
gration, a sudden influx of large numbers of immigrants
inflated the estimate of local Ne, reflecting the reality that
parents from throughout the metapopulation contributed
offspring to the sample. Pulse migration at twice the equi-
librium rate had parallel but much more modest effects
(Figure 6).

Joint estimates of m and Ne: With equilibrium migration at
m = 0.05 in a n = 10, Ne = 100 metapopulation and sample
sizes of S = 50, N̂e from Estim was downwardly biased
(harmonic mean N̂e = 68) and had a multimodal distribu-
tion, with 25% of the estimates below 50, 13% between 125
and 225, and 26% infinite (Figure 7). In contrast, LDNe
estimates had a unimodal distribution with a moderate up-
ward bias (harmonic mean N̂e = 121, range 62–790, 73% of
estimates between 50 and 150). Simulations using the same
parameters but allowing up to 40 alleles per locus and run-
ning for 2000 generations before collecting data produced
nearly identical Estim results: harmonic mean N̂e = 72, 24%
of estimates below 50, and 28% infinite. LDNe performed

Figure 4 Changes in N̂e as a function of the criterion for excluding rare
alleles (PCrit). Each line shows data for a sample of S ¼ 100 from one of
the 10 subpopulations in a single metapopulation connected by rare
migration (m = 0.001, as shown in Figure 3). The three dashed blue lines
are the populations in which exactly one first-generation immigrant was
detected (N̂e depressed only for PCrit ¼ 0.01). The red line is a population
that appears to include a number of descendants of recent immigrants.

Figure 5 The ratio N̂e /N as a function of the migration rate (m) among
subpopulations. Local subpopulation size (N) was 100 ideal individuals.
Values shown are based on harmonic mean N̂e calculated using data for
20 loci assayed in S = 25–100 individuals.
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better with the 40-allele data sets, whose greater number of
allelic comparisons provided enhanced precision: harmonic
mean N̂e = 116, and 100% of estimates fell in the range
[50–300] (data not shown). When the subpopulations were
completely isolated (m = 0), the Estim estimates of Ne were
strongly upwardly biased and sensitive to assumed mutation
rate: harmonic mean N̂e = 149 assuming u = 5 · 1024 (the
value used in the simulations) and harmonic mean N̂e = 360
assuming u= 1026 (default value in Estim) (data not shown).

Estim also provides estimates of migration rate, which are
not sensitive to assumed mutation rate. Mean m̂ was 0.01
for the isolation scenario and 0.11 for the m = 0.05 sce-
nario. These mean values omitted replicates for which m
could not be estimated because N̂e was infinite (this ex-
cluded 51% of the replicates for true m = 0 and 26% of
the replicates for true m = 0.05) (data not shown).

Discussion

The LD method appears to be fairly robust to violations of
the closed-population assumption: estimates are largely
unbiased with respect to the local, subpopulation Ne unless
equilibrium migration rates are high in genetic terms (m $

5–10%). In addition, performance of the LD method in es-
timating Ne for populations connected by migration com-
pared favorably to results for a method that jointly
estimates effective size and migration rate (Figure 7). The-
oretical and numerical results presented here agree on two
major points:

1. The two contrasting effects of migration on linkage dis-
equilibrium (reduced LD due to additional parents and
increased LD due to population mixture/admixture) will
both be small for m , 0.05.

2. For higher equilibrium m, mixture LD is negligible but
reductions in LD due to a larger total pool of parents

become increasingly important. As m increases, N̂e con-
verges on a value that represents the global (metapopu-
lation) effective size.

For high migration rates (m . 0.1), empirical N̂e from the
simulations was somewhat higher than predicted from the-
ory. Some discrepancy is not surprising, given that a number
of rough approximations were used in the theoretical deri-
vations (see Appendix). In particular, the algorithm to calcu-
late the EPP might underestimate how this pool increases
with migration, because Equation A1 considers only effects
in the parental generation, whereas equilibrium levels of LD
also reflect the number of parents in several previous gen-
erations (Sved 1971).

It should be noted that conclusions about the degree to
which migration biases estimates of effective size depend on
one’s perspective and objectives. We have assumed that the
goal is to estimate N̂e in a local subpopulation, where sam-
pling occurs, so bias has been assessed from that perspec-
tive. This is a common application, for example, for those
interested in conservation or in studying evolutionary pro-
cesses in small populations or demes. However, if one were
primarily interested in estimating Ne for an entire metapo-
pulation from samples taken in only a local area, conclusions
about bias would be different: this approach would lead to
a substantial underestimate of metapopulation Ne unless
migration were very high in genetic terms.

Although we found little overall effect on harmonic mean
N̂e of low-level, equilibrium migration, if rates of gene flow
are low (mNe , 1), migration events are rare and episodic,
and when immigrants do arrive they can be quite divergent
genetically. When this occurs, immigrants can contribute
substantial mixture LD that depresses N̂e (see Figures 3
and 4). This effect is exacerbated by small samples, within

Figure 6 Effects of nonequilibrium (pulse) migration on estimates of local
Ne for simulated “island model” metapopulations with n ¼ 10 and true
local Ne ¼ 100. After simulations reached migration–drift equilibrium,
a single generation of pulse migration occurred at a level 2 or 10 times
the equilibrium rate m, after which samples of S ¼ 50 individuals were
taken for genetic analysis. Values shown are harmonic mean N̂e across
100 replicate subpopulations.

Figure 7 Distribution of N̂e for simulated data using LDNe and Estim
(Vitalis and Couvet 2001). An island model of equilibrium migration
was simulated, with n ¼ 10, local Ne ¼ 100, m ¼ 0.05, S ¼ 50, and
20 loci. The Estim estimates assumed that the mutation rate was 5 ·1024,
the value used in the simulations. The last bin on the right includes all
estimates .400. The arrows indicate harmonic mean N̂e for the two
methods.
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which the occasional immigrant has a proportionally larger
genetic effect (Figure 5). Fortunately, a variety of methods
are available to help identify recent, genetically divergent
immigrants (Rannala and Mountain 1997; Pritchard et al.
2000; Wilson and Rannala 2003; Paetkau et al. 2004),
which could be removed from the analysis if one is inter-
ested in estimating local Ne (as was done above for popula-
tion 10 in Figure 4). In addition, Figure 4 shows that
adjusting the criterion for screening out rare alleles can ef-
fectively remove bias associated with recent immigrants.

In contrast to results for equilibrium migration, pulse
migration can substantially bias estimates of local Ne. In
particular, N̂e can be biased downward if a substantial frac-
tion of genetically divergent individuals suddenly enters the
focal population (Figure 6). Note that actual migration
might not be required: the same effect could occur if indi-
viduals from more than one local population are acciden-
tally included in a single sample. This could happen, for
example, if population boundaries are difficult to discern
or if samples are collected on feeding grounds or migratory
routes, where individuals from more than one breeding pop-
ulation regularly mix. These results emphasize the impor-
tance of understanding the biology of the target species (to
develop an effective sampling design) and screening result-
ing samples for evidence that they contain individuals from
more than one gene pool.

Our results appear to be consistent with those for the
temporal method for estimating Ne: equilibrium migration
has relatively little effect on estimates of local Ne unless m.
�5–10% (Wang and Whitlock 2003; G. Luikart, unpub-
lished data). What about effects of migration on other single-
sample estimators? In the approximate Bayesian computa-
tion method proposed by Tallmon et al. (2008), a variety of
genetic metrics are used, but the strongest signal comes
from r2. Therefore, we expect that migration would have
similar effects on this method. Although the heterozygote
excess and LD methods have some similarities (focusing on
one- and two-locus disequilibria, respectively), we expect
that effects of migration on Ne estimates would be qualita-
tively different. In the former, the signal is an excess of
heterozygotes caused by random allele frequency differ-
ences between males and females, whereas the Wahlund
effect associated with population mixture creates a deficit
of heterozygotes. Thus, immigration would tend to erase
the signal of small local Ne and should cause an upward
bias in the heterozygote excess method. It would be inter-
esting to examine this quantitatively. Unlike linkage dis-
equilibrium, Hardy–Weinberg equilibrium is restored after
a single generation of random mating, so migration in pre-
vious generations would not complicate estimates based on
the heterozygote excess method.

We expect that the consequences of migration on esti-
mates of Ne from the sibship-reconstruction method of Wang
(2009) or the parentage-analysis-without-parents method of
Waples and Waples (2011) would depend on the objectives.
Presumably, immigrants would be determined to be unrelated

to local individuals, which would tend to increase N̂e for both
methods. This might accurately reflect the larger number of
parents producing the sampled individuals, but could be mis-
leading if the primary interest was local Ne.

Our simulations produced data with numbers and fre-
quencies of alleles comparable to those found for micro-
satellite studies of many natural populations. A detailed
analysis of performance of the LD method with highly
polymorphic markers, including consideration of numbers
of loci and alleles, number of individuals sampled, true Ne,
and effects of rare alleles, can be found in Waples and Do
(2010). The LD method uses only information on allelic
state and does not consider evolutionary relationships
among alleles, and this has advantages as well as disadvan-
tages. This enhances flexibility of the method, and we found
no evidence that results depend on the mutation model used
to generate the data (our unpublished data). On the other
hand, the method does not take full advantage of informa-
tion about Ne contained in allelic relationships. One single-
sample Ne estimator does explicitly assume a stepwise
mutation model and uses allele-size information (OneSamp)
(Tallmon et al. 2008).

Like other methods for estimating Ne, the LD method
makes a number of assumptions besides closed populations
that are unlikely to be met entirely in nature. A brief sum-
mary of these assumptions follows, along with references to
places where interested readers can find additional
information.

Stable population size: With stable N, LD stabilizes when
new disequilibria are generated each generation by drift
at the same rate that existing disequilibria break down by
recombination. With unlinked loci, the approach to quasi-
equilibrium is rapid (only a few generations), although
effects of strong bottlenecks might persist a bit longer (Sved
1971; Waples 2005, 2006).

Discrete generations: Age structure can affect most population-
genetic estimators. Waples and Yokota (2007) evaluated
effects of overlapping generations on temporal estimates of
Ne, but comparable analyses have not been conducted for any
single-sample estimator. LD estimates from single cohorts pri-
marily estimate the effective number of breeders that repro-
duced in that year (Waples 2005). Waples and Do (2010)
speculated that for the LD method, a mixed-age sample with
the number of age classes approximately equal to the gener-
ation length might produce an estimate approximately equal
to Ne per generation, but that conjecture remains to be eval-
uated quantitatively.

Unlinked loci: We assumed unlinked loci because linkage
relationships are seldom known for nonmodel species, and it
might be reasonable to assume that randomly chosen
markers are unlinked. That assumption would become more
tenuous if very large numbers of markers are used or if the
target species has only a few chromosomes and sex-limited
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recombination. Linked markers actually provide more pre-
cision for estimating Ne, provided the recombination proba-
bility is known (Hill 1981). Linked markers also provide
greater temporal dimension to inferences about historic pop-
ulation size. If next-generation sequencing technology
becomes routine for nonmodel species, it might be feasible
to resolve ambiguous haplotypes and gain more detailed
information about a population’s demographic history. Two
recent studies that have used the LD method with human
HapMap data demonstrate some of the possibilities. Park
(2011) used data for SNPs on different chromosomes to
estimate Ne in several human populations. Because the anal-
ysis was restricted to unlinked markers, resulting estimates
provided information primarily about effective size in the
recent past and (the author noted) could have been affected
by recent migrations. In contrast, Tenesa et al. (2007) fo-
cused on pairs of SNPs on the same chromosome, separated
by no more than 100 kb, and used a coalescent-based
method to estimate recombination rates. Because more
tightly linked markers retain historical signals of LD for lon-
ger periods of time, use of linked SNPs allowed Tenesa et al.
to generate a temporal spectrum of estimates that show how
human effective size has changed over the last �5000 gen-
erations. Their data suggested a relatively constant Ne of
�2500–7000 for most of that time period, followed by a re-
cent rapid expansion.
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Appendix

We are interested in the magnitude of LD in a single focal
subpopulation that is connected by migration to other
supopulations. The metapopulation conforms to a finite
island model at migration–drift equilibrium, with n subpo-
pulations each having N ideal individuals (so local Ne = N).
In the present case, n and N can take the values [2500] or
[10,100], so the total metapopulation size is always nN =
1000. Here, we usem to represent the fraction of individuals
that are born in one subpopulation and migrate to another
subpopulation before reproduction.

A rough idea of the joint effects of drift and migration on
LD can be obtained by considering analytical approxima-
tions for the effects of finite population size and population
mixture/admixture on expected values for r and r2. On the
basis of the simple relationship

E
�
r2
� ¼ VarðrÞ þ ½EðrÞ�2

we see that E(r2) has two components: the variance of r
[Var(r)] and the square of the expected value of r. As dis-
cussed below, these two components represent the contribu-
tions to r2 from drift and mixture, respectively.

Drift

In a closed population at equilibrium with constant N
and no evolutionary forces except drift, the correlation of
allele frequencies among loci (r) will vary randomly in
the range [21, 1], so that E(r) = 0. However, under drift
E(r2) = Var(r) will be greater than zero, with its magnitude
being an inverse function of effective size and the recombi-
nation fraction between loci. Assuming the loci are indepen-
dent, and ignoring sampling and considering only
population parameters in a closed, ideal, random mating
population, Var(r) = E(r2drift) � 1/(3Ne) = 1/(3N) (Hill
1981). [This approximation is biased because it ignores sec-

ond-order terms in Ne (England et al. 2006; Waples 2006),
but the effect is relatively small compared to other factors
considered here.] In a metapopulation with m . 0, the total
pool of parents is larger than the local size N, which should
tend to reduce drift variance in r. We want an expression for
how the effective pool of parents (EPP) and hence E(r2drift)
change as a function of m, n, and N.

Intuitively, EPP should reach a maximum when each
parent in the metapopulation is equally likely to contribute
to the N current individuals in the focal population; this
occurs when m = (n 2 1)/n—that is, when the entire meta-
population is panmictic. Conversely, EPP should reach
a minimum when only the local subpopulation is a potential
source of parents (m = 0). An analogous situation occurs
with respect to effective size of a single population: Ne = N
when each parent has an equal opportunity to contribute to
the next generation, and Ne is reduced if successful repro-
duction is dominated by a small number of parents. In the
present case, for a given N and n, we are interested in how
EPP changes as m increases from 0 (maximum skewness in
contributions by the different subpopulations) to (n 2 1)/n
(equality of contributions by each subpopulation). For a sin-
gle population, inbreeding Ne is related to the inverse of f,
where f is the probability that two randomly chosen genes in
the progeny generation are identical by descent. For a meta-
population, with respect to the current census of N individ-
uals in a single focal subpopulation, an analogous measure is
the probability (P) that two randomly chosen individuals
were born in the same subpopulation the previous genera-
tion. Our simulated data involve migration of individuals,
not gametes, so Pmust be the sum of two mutually exclusive
probabilities: (1) the probability that both individuals were
born in the local subpopulation [probability = (1 2 m)2]
and (2) the probability that both individuals are migrants
and migrated from the same subpopulation [probability =
m2/(n 2 1)]. Putting these together leads to
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P ¼ ð12mÞ2 þ m2

n2 1

and

EPP ¼ N
P
¼ Nh

ð12mÞ2þm2=ðn2 1Þ
i: (A1)

It is easy to verify that Equation A1 produces the expected
result for some simple cases. With m = 0, the system
collapses to a series of completely isolated populations of
size N, and Equation A1 yields N as expected. With panmixia
(m = (n 2 1)/n), P = 1/n and EPP = nN, the size of the
entire metapopulation. Finally, with m = 1, P = 1/(n 2 1)
and EPP = (n 2 1)N = nN – N. In this case, everyone
migrates away from the local population each generation,
so the pool of parents is the remaining (n 2 1)N individuals
in the metapopulation. This is only an approximation be-
cause in calculating EPP we have considered only the paren-
tal generation, whereas drift LD is also influenced by the
effective number of parents in preceding generations. How-
ever, for unlinked loci (as considered here), drift LD decays
rapidly so that r2drift is determined primarily by the effective
number in the parental generation (Waples 2005, 2006), so
the approximation should be fairly good.

After accounting for migration, the expected magnitude
of LD due to drift is

E
�
r2drift

�
� 1

3  EPP
¼

h
ð12mÞ2þm2=ðn2 1Þ

i

3N
: (A2)

The expected change in r2 in a focal subpopulation that
arises from contributions by other parents in the metapopu-
lation can be expressed as

Dr2drift ¼
1

3  EPP
2

1
3N

¼
h
ð12mÞ2 þm2=ðn21Þ21

i

3N
: (A3)

It is apparent that Dr2drift is 0 for m = 0 and negative if m .
0; that is, all else being equal, migration should reduce LD
due to drift and hence increase N̂e.

Migration

Nei and Li (1973) studied LD generated by population
mixture and showed that the amount of mixture disequilib-
rium is a function of the mixture fraction and the magnitude
of allele frequency difference between populations. On the
basis of this work, Waples and Smouse (1990) and P.
Smouse (personal communication) developed the following
expression for r for a two-population mixture,

rmix ¼ mð12mÞðP12 P2ÞðQ12Q2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Pwð12 �PwÞ�Qwð12 �QwÞ

p ;

where m is the fraction of the mixture derived from popu-
lation 2, P1 and P2 are frequencies of an allele at locus A in

populations 1 and 2, respectively, Q1 and Q2 are comparable
frequencies for locus B, and �Pw and �Qw are weighted mean
frequencies in the mixture [�Pw = mP1 + (1 2 m)P2, and �Qw

is defined similarly]. We are interested in the squared
correlation coefficient, r2, which has expectation E(r2) =
Var(r) + [E(r)]2. In the previous section we focused on
the drift term Var(r); here, we are interested in the non-
random component of E(r2), which is captured by directional
deviations of r from 0 caused by migration. Therefore, ignor-
ing the drift term,

Eðr2mixÞ � ½EðrmixÞ�2 � ½mð12mÞ�2ðP12P2Þ2ðQ12Q2Þ2
�Pwð12 �PwÞ�Qwð12 �QwÞ

¼ ½mð12mÞ�2 ðP12P2Þ2
�Pwð12 �PwÞ

ðQ12Q2Þ2
�Qwð12 �QwÞ

:

(A4)

Note that the two quantities on the right are similar to the
standardized variance of allele frequency between popula-
tions, FST:

FST ¼ VarðPÞ
�Pð12 �PÞ: (A5)

For a two-population model, ðP12P2Þ2 ¼ 4  VarðPÞ; more
generally, as n becomes large, EðPi2PjÞ2 ⇒ 2  VarðPÞ, where
Pi and Pj are allele frequencies in two subpopulations. Con-
sidering the two metapopulation scenarios considered here,
therefore, Equation A4 can be written as

Eðr2mixÞn¼2 � ½mð12mÞ�2 4  VarðPÞ
�Pwð12 �PwÞ

4  VarðQÞ
�Qwð12 �QwÞ

Eðr2mixÞn¼10 � ½mð12mÞ�2 2  VarðPÞ
�Pwð12 �PwÞ

2  VarðQÞ
�Qwð12 �QwÞ

: (A6)

Figure A1 Relationship between mixture LD (r2mix) and migration rate
for the two metapopulation scenarios considered here. Max(r2mix) is the
maximum value of r2mix over the range 0 # m # 1, based on Equation
A9.
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For n. 2,m can be interpreted as the fraction of immigrants
from all other populations combined into the focal subpop-
ulation (population 1). If we ignore for the moment that the
mean allele frequencies in the denominator of Equation A4
are weighted by a mixture fraction while those in Equation
A5 are unweighted, Equation A4 can be rewritten as a func-
tion of FST,

Eðr2mixÞ � ½mð12mÞ�2aFSTðAÞaFSTðBÞ;

where a = 4 for n = 2 and a � 2 for n = 10. For neutral
alleles at unlinked loci, E(FST) is the same for both loci,
leading to

Eðr2mixÞn¼2 � ½mð12mÞ�216F2ST;
Eðr2mixÞn¼10 � ½mð12mÞ�24F2ST:

(A7)

Now assume that the mixture process leading to Equation
A3 continues until migration–drift equilibrium, with individ-
uals in each population having a constant probability m of
migrating to another population each generation. In any
given generation, then, after migration the individuals in
focal population 1 can be viewed as a mixture composed
of a fraction m of individuals that migrated in the current
generation from other populations and a fraction (1 2 m) of
individuals that were born in population 1. We want to
find the amount of mixture disequilibrium in population 1
attributable to current generation migrants from other
populations.

In Wright’s finite island model (as considered here), the
expectation of FST is also a function of migration rate,

EðFSTÞ � 1
1þ 4NmX

;

where X = [n/(n 2 1)]2 (Crow and Aoki 1984). Our exam-
ples involve n = 2 or 10, leading to

EðFSTÞn¼2 � 1
1þ 16Nm

EðFSTÞn¼10 � 1
1þ 5Nm

:

(A8)

Substituting the expected values from Equation A8 into
Equation A7 yields

Eðr2mixÞn¼2 � 16½mð12mÞ�2
½1þ 16mN�2 ;

Eðr2mixÞn¼10 � 4½mð12mÞ�2
½1þ 5mN�2 :

(A9)

A plot of the relationships described in Equation A9 (Figure
A1) shows that we expect mixture LD to be largest at in-
termediate migration rates. At higher migration rates, the
contribution from a larger mixture fraction is outweighed by
a reduction in the genetic distinctiveness of the immigrants.

Putting the two components (Equations A2 and A9)
together leads to the following expectations for r2 in an
island-model metapopulation:

Eðr2Þðn¼2Þ �
ð12mÞ2 þm2

3N
ðdriftÞ þ 16½mð12mÞ�2

½1þ 16mN�2 ðmixÞ;

Eðr2Þðn¼10Þ �
ð12mÞ2 þm2=9

3N
ðdriftÞ þ 4½mð12mÞ�2

½1þ 5mN�2 ðmixÞ:

(A10)

These formulas should be regarded as only rough approx-
imations, as they involved many simplifying assumptions.
However, the relative importance of the drift and mixture
terms is apparent from the form of the equations. The
maximum possible value of r2mix is ,1/N2, so the contribu-
tion of mixture to r2 will be small unless N is very small.
Conversely, regardless what N is, high levels of migration
substantially reduce r2drift compared to the value that would
occur (1/(3N)) in a single isolated subpopulation.
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