
Estimating Corpus Size via Queries

Andrei Broder∗ Marcus Fontura∗ Vanja Josifovski∗

Ravi Kumar∗ Rajeev Motwani† Shubha Nabar†

Rina Panigrahy† Andrew Tomkins∗ Ying Xu†

∗Yahoo! Research, 701 First Avenue, Sunnyvale, CA 94089.
{broder,marcusf,vanjaj,ravikumar,atomkins}@yahoo-inc.com

†Dept. of Computer Science, Stanford University, Stanford, CA 94305.
{rajeev,sunabar,rinap,xuying}@cs.stanford.edu

ABSTRACT
We consider the problem of estimating the size of a collec-
tion of documents using only a standard query interface.
Our main idea is to construct an unbiased and low-variance
estimator that can closely approximate the size of any set
of documents defined by certain conditions, including that
each document in the set must match at least one query
from a uniformly sampleable query pool of known size, fixed
in advance.

Using this basic estimator, we propose two approaches to
estimating corpus size. The first approach requires a uni-
form random sample of documents from the corpus. The
second approach avoids this notoriously difficult sample gen-
eration problem, and instead uses two fairly uncorrelated
sets of terms as query pools; the accuracy of the second ap-
proach depends on the degree of correlation among the two
sets of terms.

Experiments on a large TREC collection and on three
major search engines demonstrates the effectiveness of our
algorithms.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Experimentation, Measurements

Keywords
Corpus Size, Random Sampling, Estimator

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’06, November 5–11, 2006, Arlington, Virginia, USA.
Copyright 2006 ACM 1-59593-433-2/06/0011 ...$5.00.

1. INTRODUCTION
The overall quality of a web search engine is determined

not only by the prowess of its ranking algorithm, but also
by the caliber of its corpus, both in terms of comprehen-
siveness (e.g. coverage of topics, language, etc) and refine-
ment (e.g. freshness, avoidance of spam, etc). Obviously,
comprehensiveness is not the same as size — for instance
as suggested in [8] one can easily build a public server for
100 billion pages each representing a random combination of
Nostradamus prophecies and a dedicated search engine can
as easily index them, in a feat of utter insignificance. See
also http://searchenginewatch.com/searchday/article.

php/3527636 for a more serious discussion of comprehensive-
ness versus size.

Nevertheless, the ability to produce accurate measure-
ments of the size of a web search engine’s corpus, and of
the size of slices of the corpus such as “all pages in Chinese
indexed in Yahoo! from US-registered servers,” is an impor-
tant part of understanding the overall quality of a corpus.
In the last ten years both the scientific literature and the
popular press dealt at length with methodologies and esti-
mates for the size of the various public web search engines
and indirectly, the “size of the web”. (See Section 2.)

Perhaps surprisingly, the problem of estimating the size of
a corpus slice is also important for the owners of search en-
gines themselves. For example, even the simple problem of
efficiently counting the size of a result set raises non-trivial
problems. In fact, Anagnostopoulos, Broder, and Carmel
[1] show a Google example using the queries george and
washington where the identity |A ∪B| = |A|+ |B|−|A ∩B|
is off by 25%. (They present an algorithm that enables effi-
cient sampling of search results, but to our knowledge, the
required data structures have not been implemented in any
web search engine.)

Further, the problems worsen when the goal is to esti-
mate the effective size of a corpus slice; that is, the size
of the slice discounted for pages that no longer exist, have
been redirected, do not actually match the query, etc. In
this case, even for a one term query, counting the number
of documents in the term posting list gives only an upper
bound of the effective size of the matching set.

An approach initiated by Bharat and Broder [6] is to pro-
duce only relative sizes, that is, to estimate the ratio be-
tween the sizes of several engines. Their approach is based
on pseudo-uniform sampling from each engine index, first by
sampling a query pool of English words, and then by sam-

pling the results of the chosen query, followed by a capture-
recapture estimates (that is, sample one engine, test contain-
ment in the other); however their method is heavily biased
in favor of “content rich” documents and thus the ultimate
results are problematic. This has been recently corrected by
Bar-Yossef and Gurevich [4], who present a truly uniform
sampling method that at least in principle should yield ac-
curate ratios, but their method still needs to test contain-
ment, a non trivial procedure that introduces biases of its
own. Note also that both the Broder and Bharat algorithm,
as well as the Bar-Yossef and Gurevich algorithm yield only
documents that match at least one query from their query
pool, so in fact they only estimate the relative sizes of a
certain subset of the corpus.

Estimating absolute corpus sizes appears to be a more
difficult task. Previous work [13, 6] has had to fall back on
sources other than public query interfaces, such as http://

searchenginewatch.com/reports/article.php/2156481 and
http://searchengineshowdown.com/stats, or has had to
trust the corpus size reported by search engines themselves.
In this paper we propose a technique for estimating absolute
corpus sizes without such additional sources.

1.1 Why corpus size matters
As we stated earlier, the ability to estimate the size of the

corpus and of its various slices is important in understand-
ing different characteristics and the overall quality of the
corpus. A method for estimating absolute corpus size using
a standard query interface can lead to methods for estimat-
ing the corpus freshness (i.e., fraction of up-to-date pages in
the corpus), identifying over/under-represented topics in the
corpus, measuring the prevalence of spam/trojans/viruses in
the corpus, studying the comprehensiveness of the crawler
that generated the corpus, and measuring the ability of the
corpus to ably answer narrow-topic and rare queries [4]. Fi-
nally, relative corpus size estimates offers competitive mar-
keting advantage and bragging rights in the context of the
web search engines.

1.2 Our methods and results
Our method has two parts. First, we give a technique to

count the size of specific broad subsets of the entire docu-
ment corpus. Second, we show how to use this technique to
generate an estimate of the size of the entire corpus.

1.2.1 Counting specific subsets
We begin our discussion of the method with an example.

Assume that we wish to count the number of pages that con-
tain an eight-digit number. A natural approach would be
to produce a random sample of, say, 1 out of every 100,000
such numbers. One could then submit a query to a search
engine for each number in the sample, count up the number
of resulting documents, and multiply by 100,000. Unfor-
tunately, some documents could contain many eight-digit
numbers, and might therefore be counted multiple times by
this procedure.

Let us modify the scheme as follows. Any document con-
taining at least one eight-digit number should contribute 1
to the total count of documents in the set. But if a cer-
tain document d contains k different eight-digit numbers,
we will allocate its total count of 1 by distributing 1/k to
each of the eight-digit numbers it contains. In the previous
scheme, when d is returned in response to a certain query,

it contributes 1 to the overall count; in the new scheme it
will contribute 1/k, which is the reciprocal of the number of
eight-digit numbers on the page.

Under the new scheme, we again take a sample of eight-
digit numbers and submit each as a query. We then add
up for each result document the reciprocal of the number
of eight-digit numbers in that result document, and again
multiply the final sum by 100,000. This new value is easily
seen to be an unbiased estimator of the total number of
documents; we provide a formal proof in Section 3.

More generally, our basic estimator allows us to count
many different subsets DA of the entire corpus D. The
scheme will apply whenever DA has two properties: first,
a query pool A can be defined such that DA is the union of
the results of all queries in the pool A. And second, for any
document, it is possible to determine efficiently how many
queries from the query pool would have produced the docu-
ment as a result.

We have seen eight-digit numbers as an example query
pool. One could also employ queries chosen carefully from
a query log. We will also consider approaches to modifying
the query pool on the fly in order to reduce the variance
of the estimator. Finally, the techniques also allow us to
filter the results of each query on the fly, for example, by
entirely removing documents that contain more than max-
imum threshold number of query terms from the pool, or
that do not conform to a certain target length, specified as
a range of bytes. The flexibility of the estimator is key to
its power, as many issues that arise in the real world may
be addressed by modifying the definition of DA.

1.2.2 Employing the basic estimator
We have now defined a basic estimator to count the size

of a subset DA of the total corpus. This estimator may be
used in many ways to perform counts of corpus sizes. The
first method involves a random sample of the documents in
a corpus, and an efficient function to determine whether a
particular document belongs to DA. Given this, we may
simply estimate from the random sample the probability
pA that a document from the corpus belongs to DA, and
estimate the overall corpus size as |DA|/pA. We show in our
experiments that this approach can provide very accurate
measurements with quite reasonable sample sizes.

Nonetheless, it is quite difficult to generate a random sam-
ple of pages on the web, despite the efforts of many authors.
Worse yet, when a technique is chosen and applied, there are
no clean approaches to estimating the quality of the result-
ing sample, and so the sample bias cannot be understood.
Even worse, because the problem of evaluating the quality
of a random sample is so difficult, there has been very little
academic work even to understand the extent to which tech-
niques for generating random samples deviate from uniform.

Our basic estimator may also be applied in a second way
to estimate the size of a corpus, without the presence of
a random sample. We must resort to another assumption
about the corpus, but one that is quite different from the
assumption that a particular technique generates a uniform
random sample. We assume that there are two query pools
A and B that produce independent subsets DA and DB of
the corpus. Note that independence here is different from
disjointness. DA and DB may share documents, but the
fraction of documents that belong to DA should be the same
whether we consider the entire corpus, or just DB . If this

is true, we may estimate the size of the corpus as |DA| ·
|DB |/|DA ∩DB |.

The accuracy of this method depends heavily on the inde-
pendence assumption, a crucial question in all probabilistic
IR models. If the terms are correlated then we can only
produce bounds based on their correlation. The following
example might help build the reader’s intuition for this is-
sue. Assume that we apply our method using two sets of
perfectly independent English terms and get a very accu-
rate estimate of corpus size. Now the engine owners double
its size by adding a large number of Chinese pages. If we
repeat our experiments we will report the same number as
before (since we will never or seldom see a Chinese page),
even though the engine size has doubled. What happened?
Well, our term sets used to be independent in the old corpus
but now they are correlated: if we choose a page from DA,
it is now more likely to belong also to DB just by dint of
being in English.

This might seem as a limitation of our method, but in fact
all query based estimation methods proposed so far suffer
from this query vocabulary bias, and the contribution of
our paper is to give a methodology where this bias can be
correctly quantified by relating it to a fundamental concept
in probabilistic information retrieval [16].

In some ways, the meaning of uncorrelated sets is a philo-
sophical one. The estimator may be viewed as returning an
estimate of that part of the corpus in which A and B are
uncorrelated. While we do not advocate this perspective, we
observe that if the sets are chosen appropriately, this may
be the part of the engine of most interest from a measure-
ment standpoint or it can be used to infer the relative sizes
of search engines.

1.2.3 Experimental results
We first apply our methods to a large TREC collection

consisting of over 1.2 million documents. Since we know the
exact corpus size, these experiments are designed to demon-
strate the effectiveness of our methods. We choose the query
pool to be the set of all five-digit numbers. For the approach
using random document samples, we obtain fairly high accu-
racies even with small number of samples. The error is sig-
nificantly reduced when we modify the query pool to discard
the most frequent terms in the query pool. We also estimate
the corpus size using two uncorrelated query pools: set of
five-digit numbers and a set of medium frequency words.

We then apply our methods to the Web by estimating
what we call the “visible” corpus size of three major search
engines. We choose the query pool to be the set of all eight-
digit numbers and use this to estimate the visible corpus size.
We also apply the two uncorrelated query pools approach:
set of eight-digit numbers and a set of medium frequency
words.

1.3 Organization
The paper is organized as follows. Section 2 discusses the

related work on corpus size estimation and sampling random
documents from a corpus. Section 3 presents the basic esti-
mator and a variance reduction method. Section 4 presents
our two approaches for corpus size estimation using the ba-
sic estimator. Section 5 contains the experimental results
for a large TREC collection and Section 6 contains the ex-
perimental results for three major search engines. Section 7
concludes the paper.

2. RELATED WORK
Bharat and Broder [6] sampled the content of search en-

gines using conjunctive and disjunctive queries composed of
terms extracted from pages of the Yahoo! Directory. From a
lexicon of 400K words, terms were combined to form around
35K queries. The sample consisted of one random URL cho-
sen from the first 100 results returned by each queries. The
fraction of the sampled pages from one search engine that
are also present in the index of another search engine gives
an estimate of the overlap between the two. The paper also
estimates a search engine’s coverage of the whole web from
overlaps of pairs of search engines. A known problem with
this technique is that it is biased toward content-rich pages
with high rank.

The same year, Lawrence and Giles [13] reported size esti-
mates using random queries based on a log of queries submit-
ted to a search engine. To avoid bias toward highly ranked
pages they use only queries for which the search engine re-
trieves all the results. However such query sampling does
not provide a uniform random sample of the pages in the
corpus. Later in [12], the authors extend the results and
provide some other interesting statistics about search engine
corpora and the accessible web. A big problem associated
with directly comparing query results is that the approach
is highly dependent on the underlying IR techniques used
by the search engine to answer queries.

Guli and Signorini [10] repeated Bharat and Broder’s ex-
periments using Open Directory (www.dmoz.org) as source
of keywords. They also used a modified technique to com-
bine more than 2M terms into queries.

A core primitive in search engine size estimation is a way
to obtain a uniform sample from its corpus using the query
interface. Several papers report techniques to uniformly
sample a search engine corpus using only the public query in-
terface [3, 11, 13, 15, 4]. Many of them are based on random
walks. A good survey of the methodologies and techniques
used for the Web size and search engine size estimation is in
[2].

Recently, Bar-Yossef and Gurevich [4] propose two new
methods to obtain an unbiased sample of a search engine cor-
pus. The first method is based on sampling, where queries
are generated as word phrases from a corpus of documents
and queries that return too many results are rejected. At a
very high level, the analytic ideas in this method are simi-
lar to ours. The second method is based on random walks
on documents and terms, but suitably unbiased using sta-
tistical techniques in order to produce a provably uniform
document sample.

An interesting related issue is the study of mirrored hosts
or duplicate pages and there has been much work done in
this area; see, for instance, [5, 7]. Duplication is an impor-
tant issue affecting the search quality of search engines, but
the focus of this paper will be on size estimates.

Liu, Yu, and Meng [14] propose a method for estimating
the corpus size based on the idea of two independent sets.
Let D1 and D2 be two independent random sample of doc-
uments and let D3 = D1 ∩ D2. The search engine size is
then estimated to be |D1||D2|/|D3|. This idea is somewhat
related to our method of uncorrelated query pools.

Callan and Connell [9] proposed query-based sampling in
the context of distributed information retrieval for acquiring
“resource descriptions” that accurately represent the con-
tents of each database without relying on their internals.

This work is related to ours since we try to estimate cor-
pus size based only on the search engine’s public API. Wu,
Gibb, and Crestani [17] propose methods for estimating and
maintaining archive size information.

3. BASIC METHODS
In this section we discuss the basic estimator that will be

the backbone of all our approaches. The mean of this unbi-
ased estimator can be related to the corpus size. We assume
that the index supports the basic query interface: given a
query, return all the documents that match the query.

The first naive idea would be to use random queries and
construct an estimator based on the number of documents
returned for such queries. Unfortunately, this does not work,
the difficulty being that there is no way of knowing the uni-
verse of all queries. Without this knowledge, it may not be
possible to obtain an unbiased estimator.

We circumvent this difficulty by working with a known
and fixed set of queries, called a query pool. For simplicity
of exposition, we assume that each query is just one term.
However, our methods will apply to any query pool that
satisfies two conditions: first, the size of the pool should be
known, and second, it should be possible to determine for
any document how many queries in the pool match this doc-
ument. We show (Lemma 1) how to construct an estimator
whose mean is the number of documents in the corpus that
match at least one query from this query pool.

Notation. Let D be the set of documents. We treat doc-
uments as a set of terms and use the notation “a ∈ d” to
indicate that a term of query a occurs in the document d.

A query pool is a set of terms. For a query pool A, let
DA ⊆ D be the set of documents such that every document
in DA contains at least one term in A. Define the weight of
a document d ∈ DA with respect to A to be the inverse of
the number of terms in A that occur in the document, i.e.,

wA
d =

1

|d ∩A| . (1)

The definition of DA guarantees that all weights are finite.
The weight of a query a with respect to A is simply the
weight of all documents containing the query, defined as
follows:

wA
a =

X
d∈DA:

d3a

wA
d . (2)

3.1 Basic estimator
Intuitively, if we encounter a document d which contains

many query terms, each term should be given only partial
credit for the document. Thus, we define our basic estimator
as follows:

WA,D = Ea∼A[wA
a], (3)

i.e., the average weight of a query with respect to A.
We now show that this quantity times |A| is an unbiased

estimator of the number of documents containing at least
one term in A.

Lemma 1.

WA,D =
|DA|
|A| .

Proof.

|A| ·WA,D
(3)
= |A| · Ea∈A

2664 X
d∈DA:

d3a

wA
d

3775
=

X
a∈A

X
d∈DA,d3a

wA
d

swap
=

X
d∈DA

X
a∈A,a∈d

wA
d

=
X

d∈DA

wA
d

0@ X
a∈A,a∈d

1

1A
(2)
=

X
d∈DA

1

= |DA|.

Thus, Lemma 1 guarantees an unbiased estimator whose
mean is |DA|/|A|. By sampling the query pool uniformly at
random, |DA| can be estimated. We now discuss the issues
in sampling.

3.2 Sampling
All the estimators such as WA,D can be estimated by the

usual sampling techniques. We will illustrate the method
to estimate WA,D. Let X be the random variable given byP

d∈DA,d3a wA
d , where the query a is chosen uniformly at

random from the query pool A. Clearly E[X] = WA,D. We
pick k terms a1, . . . , ak independently and uniformly at ran-
dom from A and estimate the quantity Xi =

P
d∈DA,d3ai

wA
d

for each of the ai’s. We then compute an averaged esti-
mator X by averaging X1, . . . , Xk. It is easy to see that
E[X] = E[X] = WA,D. Using Chebyshev’s inequality, it
follows that

Pr[|X − E[X]| ≥ εE[X]] ≤ 1

k

„
var[X]

ε2E2[X]

«
.

Using this expression, if k ≥ (10/ε2)var[X]/E2[X] for in-
stance, then with probability at least 0.1, the averaged es-
timator X approximates WA,D to within factor (1± ε). To
boost the probability of success from 0.1 to 1−δ for an arbi-
trary δ, we can compute O(log 1/δ) such averaged estimators
and take their median value.

Ideally, we wish to make k as small as possible. To be able
to do this, we need to make sure that E[X] is not too small.
For instance, this means that we cannot pick the query pool
A to be terms that occur very rarely, since this will make the
estimation of pA harder. The second point to note is that if
the variance var[X] is large, then it implies that k has to be
large. We address the second issue in greater detail in the
next section.

3.3 Variance reduction
The variance of the random variable X can be very large.

As an example, consider the following extreme scenario. The
query pool A decomposes into A1 and A2 so that |A1| � |A2|
but each a1 ∈ A1 occurs in a large number of documents
in DA and each such document contains only terms in A1.
Consequently, the contribution to WA,D by a1 ∈ A1 is large.
However, few random samples from A will hit A1, owing to

its small cardinality. Therefore, the number of samples need
to be high. In other words, the distribution corresponding
to X can have a heavy tail and we need a lot of samples to
hit the tail (we give some evidence of this in Figure 1).

We now illustrate a generic method to ameliorate the
problem: identify the tail and truncate it. Let A′ ⊂ A
be those queries whose weights contribute to the tail of X
of mass β; random sampling of documents in D, once again,
can be used to identify candidate queries in A′. We then re-
define a new query pool Ã such that Ã = A \A′. The hope
is that the random variable WÃ,D has lower variance than
WA,D. We now proceed to formalize this and analyze con-
ditions under which truncation of a random variable causes
its variance to reduce.

Notation. Let f be a probability distribution on an ordered
domain U and let the random variable X ∼ f . Consider
the conditional random variable Y = X | X < τ , i.e., its
distribution f |<τ is given by truncating f at τ and rescaling
by the conditional mass PrX∼f [X < τ]. We would like to
study var[Y] vs. var[X].

If f can be arbitrary, then there can be no relationship
between var[X] and var[Y]. It is straightforward to con-
struct an f such that var[Y] < var[X]. With little effort,
we can also construct an f such that var[Y] > var[X].
Let f be a distribution with support of size three given
by f(−ε) = f(ε) = δ/2 and f(1) = 1 − δ, for parameters
0 < ε, δ < 1 to be specified later. Let τ = 1 be the thresh-
old. Let X ∼ f and let Y = X | X < τ . Now, it is easy to
see that E[X] = 1− δ and E[X2] = (1− δ) + δε2 and so

var[X] = (1− δ) + δε2 − (1− δ)2 = δ(1− δ + ε2).

On the other hand, E[Y] = 0 and var[Y] = E[Y 2] = ε2.

Hence, if ε >
√

δ, we can achieve var[Y] > var[X].
However, if f is monotonically non-increasing, then we

show that var[Y] ≤ var[X], i.e., truncation helps to reduce
variance. In fact, in the extreme case, truncation can turn
infinite variance into finite variance. When the distribution
is a power law, we show a quantitative bound of the reduc-
tion in variance.

3.3.1 Monotone distributions
For simplicity, let us assume f is a discrete monotonically

non-increasing distribution. Without loss of generality, let
the support of f be [n] with f(1) ≥ · · · ≥ f(n) and without
loss of generality, let τ = n. Let g = f |<τ , and X ∼ f, Y ∼
g. Notice that for i = 1, . . . , n − 1, g(i) = f(i)/(1 − f(n)).
Let µ = E[f].

Lemma 2. f(n)(n− µ)2 ≥
Pn−1

i=1 (g(i)− f(i))(i− µ)2.

Proof. First, we show that for 1 ≤ i ≤ n,

(n− µ)2 ≥ (i− µ)2, (4)

or equivalently, µ ≤ (1 + n)/2. Without loss of generality,
assume n is odd and let n′ = n/2. Let a1 = mini<n′ f(i) =
f(bn′c) and let a2 = maxi>n′ f(i) = f(dn′e). Thus, a1 ≥ a2.

Observe that µ = n′ −
P

i(n
′ − i)f(i) andX

i

(n′ − i)f(i) =
X
i>n′

(n′ − i)f(i)−
X
i<n′

(i− n′)f(i)

≥
X
i>n′

(n′ − i)a2 −
X
i≤n′

(i− n′)a1

= (a2 − a1)
X
i<n′

(n′ − i)

≥ 0,

and thus, µ ≤ n′ = n/2, establishing (4). Finally,

n−1X
i=1

(g(i)− f(i))(i− µ)2

(4)

≤
n−1X
i=1

(g(i)− f(i))(n− µ)2

= (n− µ)2
n−1X
i=1

(g(i)− f(i))

= (n− µ)2f(n).

Lemma 3. var[Y] ≤ var[X].

Proof.

var[X] =

nX
i=1

f(i)(i− µ)2

=

n−1X
i=1

f(i)(i− µ)2
!

+ f(n)(n− µ)2

Lemma 2

≥
n−1X
i=1

f(i)(i− µ)2 +

n−1X
i=1

(g(i)− f(i))(i− µ)2

=

n−1X
i=1

g(i)(i− µ)2

(∗)
≥

n−1X
i=1

g(i)(i− E[g])2

= var[Y],

where (*) follows since the convex function
P

i g(i)(i − y)2

is minimized at y = E[g].

3.3.2 Power law distributions
We consider the important case when f is given by a

power law. In this case we obtain a quantitative bound
on the reduction of the variance. For simplicity, we assume
that f is a continuous distribution defined on [1,∞). Let
f(x) = Pr[X = x] = αx−α−1 for some α > 1; the cumula-
tive distribution function of X is then Pr[X ≤ x] = 1−x−α.

Suppose we discard the β fraction of the mass in the tail
of of X, i.e., let x0 be such thatZ ∞

x0

αx−αdx = β.

Since β = Pr[X > x0] = x−α
0 by definition, we get

x0 = β−1/α. (5)

Let Y be the random variable truncated at x0 and rescaled
by 1/(1− β). We first show the following useful inequality.

Lemma 4. (1− β)(1− β1−2/α) ≤ (1− β1−1/α)2.

Proof.

(1− β)(1− β1−2/α) = 1− β − β1−2/α + β2−2/α

am−gm

≤ 1− 2
p

β · β1−2/α + β2−2/α

= 1− 2β1−1/α + β2−2/α

= (1− β1−1/α)2.

Lemma 5. If α ≤ 3, then var[X] = ∞ � var[Y]. If α > 3,

then var[Y] ≤ ((1− β1−1/α)/(1− β))2var[X] ≤ var[X].

Proof. The easy case is when α ∈ (2, 3], in which case
var[X] = ∞ � var[Y]. For the rest, we will assume α > 3.

E[X] = α/(α− 1) and E[X2] = α/(α− 2) and so,

var[X] =
α

(α− 2)(α− 1)2
. (6)

By integrating the pdf of Y from 0 to x0 and using the
value of x0 from (5), we obtain

E[Y] =
α

(1− β)(α− 1)
(β1−1/α − 1),

and

E[Y 2] =
α

(1− β)(α− 2)
(β1−2/α − 1),

from which,

var[Y] =
α

(1− β)(α− 2)
(β1−2/α − 1)

− α2

(1− β)2(α− 1)2
(β1−1/α − 1)2. (7)

Finally, using (6) and (7),

var[Y]

var[X]

=
(α− 2)(α− 1)2

(1− β)

1− β1−2/α

α− 2
−

α(1− β1−1/α)2

(1− β)(α− 1)2

!

=
(α− 1)2(1− β)(1− β1−2/α)− α(α− 2)(1− β1−1/α)2

(1− β)2

Lemma 4
≤

(1− β1−1/α)2

(1− β)2
· ((α− 1)2 − α(α− 2))

=

1− β1−1/α

1− β

!2

.

Notice that since 0 < β < 1 and α > 0, we have 0 < β ≤
β1−1/α < 1.

4. APPLICATIONS OF THE BASIC ESTI-
MATOR

Recall that our goal is to devise a method to estimate
the corpus size, i.e., the number of documents in a search
engine corpus. In this section we present two algorithms that
achieve this goal. The two algorithms are based on different
assumptions about the capabilities of the index. In the first
algorithm, we assume that a uniform random document can
be obtained from the corpus. In the second algorithm, we do
away with the uniform document sampleability assumption,
but instead use a different assumption, which will be evident
from the description below.

4.1 Corpus size via random documents
Suppose we can obtain a uniform random sample of doc-

uments in D. Then, using such a sample, we can estimate
the fraction of documents in D that are also in DA. Then,
using DA and Lemma 1, we can estimate the corpus size.

Corollary 6. If pA = |DA|/|D|, then

|D| = |A|
pA

·WA,D.

Thus, by estimating pA via the random sample of docu-
ments, we can estimate the corpus size.

4.2 Corpus size via uncorrelated query pools
Second, suppose uniform random sampling of documents

in the corpus is not possible. We show that even under this
constraint, the corpus size can be estimated provided we
make assumptions about the query pool. The core idea is
to use an additional query pool B with the property that
B is reasonably uncorrelated with respect to A in terms of
occurrence in the corpus (Corollary 8). In other words, we
use the independence of the query pools A and B.

Let A, B be two query pools. Let DAB ⊆ D be the set
of documents that contain at least one term in A and one
term in B. Then, from Lemma 1, we have

Corollary 7.

|DAB |
|A| = WAB,D = Ea∈A

2664 X
d∈DAB

d3a

wA
d

3775
Here, notice that the summation is over all documents d that
contain a and at least one term in B, i.e., the documents
are “filtered” by the query pool B. Thus, Corollary 7 can
be used to estimate |DAB |.

The significance of Corollary 7 is that it lets us estimate
|D| without using any random access to documents in D,
modulo appropriate assumptions on A and B. Suppose A
and B are uncorrelated, i.e., Pr[d ∈ DA | d ∈ DB] = Pr[d ∈
DA] = pA, then it is easy to see

Corollary 8. If A and B are uncorrelated set of terms,
then

|D| = |DA| · |DB |
|DAB |

.

Thus, Corollary 8 can be used to estimate the corpus size
without resorting to sampling documents in the corpus uni-
formly at random.

While Corollary 8 is very attractive if the query pool A
and B are perfectly uncorrelated, in practice it may be hard
to construct or obtain such sets. However, we observe even
if the set of terms A and B are correlated, the measure
of correlation directly translates to the quality of approxi-
mation of the corpus size. More precisely, let pA|B denote
Prd∈D[d ∈ DA | d ∈ DB]. If c1pA ≤ pA|B ≤ c2pA for some
non-zero constants c1 ≤ c2, then it follows along the lines of
Corollary 8 that

c1
|DA| · |DB |
|DAB |

≤ |D| ≤ c2
|DA| · |DB |
|DAB |

.

4.3 Size of subsets of the corpus
In a straightforward way, our algorithm in Section 4.1

can be modified to estimate the size of various interesting
subsets of the corpus. Subsets may be, for instance, the set
of all Chinese documents, the set of documents that have no
hyperlinks, or the set of documents that are at least 10K in
size. Also note that even more generally, our basic estimator
can be used to estimate any weighted sum of the documents,
where every document has a weight that can be computed
by looking at the document.

4.4 Random sample of subsets of the corpus
Given a subset of the corpus defined by a query pool, our

basic estimator in Section 3 can be adapted to produce a
uniform random sample from this subset of the corpus. This
is done by applying a version of rejection sampling that takes
into account the weight of a document. Thus, this method
can be used to generate a uniform random document that,
for instance, contains at least one US zipcode. Being able to
generate a uniform random sample of a subset of the corpus
is a powerful primitive and has numerous applications. We
leave the details to the full version of the paper.

5. EXPERIMENTS ON TREC
In this section we present our experiments on the TREC

collection.

5.1 Data and methodology
The document set D consists of 1,246,390 HTML files

from the TREC .gov test collection; this crawl is from early
2002 (ir.dcs.gla.ac.uk/test collections/govinfo.html).
Our methodology is to first define a query pool, pick suffi-
ciently many sample terms from this query pool, query the
index for these sample terms, and then compute the weight
of the sample query terms according to (3). All our sam-
pling is done with replacement. For all the experiments, we
compute 11 averaged estimators as discussed in Section 3.2
and the final estimate is the median of these 11 averaged
estimators. We preprocess the entire data by applying lynx

on each of the files to process the HTML page and output
a detagged textual version. This is so that the meta-data
information in the HTML files is not used in the indexing
phase. Moreover, this also serves as a data cleaning phase.
We tokenize the documents using whitespace as the separa-
tor.

An important point to keep in mind is a consistent in-
terpretation of a term “occurring” in a document. This
plays a role in two different cases. First, in the answers re-
turned by the index — the index should return all and only
documents in which the given query term occurs. Second,
in the computation of weight of a term in (1) — we need
to know how many terms from A occur in the document.
The first of these cases can be handled easily by having a
very “strict” definition of “occurring” and checking to see
if each document returned by the index for a given query
term actually contains the term according to the definition
of “occurring”. The second case is trickier, unless we have a
reasonable understanding of the way the indexer operates.
For sake of this experiment, we adopt the safe approach by
hand-constructing a straight-forward indexer.

5.2 Corpus size via random documents
We illustrate the performance of our methods using two

different query pools and random documents from the cor-
pus. For both the query pools A and B, we estimate pA

and pB by examining random TREC documents. The ex-
periment in this case has been constructed to remove any
systematic bias from the estimate of pA and pB in order to
evaluate how well the techniques perform when the random
samples are good.

5.2.1 A = set of five-digit numbers
We choose the first query pool A to be the set of all five-

digit numbers, including numbers with leading zeros. Thus,
|A| = 105. Our notion of a term occurring in a document
is governed by the regular expression /^\d{5}$/. This will,
for instance, ensure that 12, 345 or 12345.67 are not valid
matches for the term 12345 ∈ A. Under these definitions,
we have |DA| = 234, 014 and so pA = 0.1877 and 94,918
terms in |A| actually occur in some document in D.

The following table shows the error of results of our ex-
periments with set A. Here, error is measured relative to
|D|, which we know (|D| = 1, 246, 390), as a function of the
number of samples used for each averaged estimator.

Samples 100 500 1000 2000 5000
Error (%) 48.50 37.56 13.31 16.12 6.44

As we see, the error of the method is quite low.

Variance reduction. We next investigate whether the per-
formance of this method can be improved by applying the
variance reduction techniques presented in Section 3.3. To
understand this further, we compute the weights of all terms
in A to see if it indeed has a heavy tail. Figure 1 shows the
distribution of weights of terms in the set |A|. From the
figure, it is easy to see that the distribution conforms to a
power law (the exponent of the pdf is ∼ -1.05). So, there

Figure 1: Distribution of weights of terms in |A|.

is hope of improving the performance of the method by the
variance reduction method outlined in Section 3.3. To iden-
tify the candidate elements in A′ — the terms with highest
weights — we resort to sampling once again. We randomly
sample documents from the corpus, and for each term a ∈ A
that occur in a document d, we maintain a histogram of its
weight according to wA

d as in (1); note that these weights

are in fact approximations to their actual weights wA
a as in

(2). We finally sort the terms in decreasing order of their
accumulated weights and declare the terms that contribute
to the top 75% of the weights to be present in A′.

This operation defines a new query pool A\A′, upon which
our methods apply as before. Thus, the correctness of this
approach is not dependent on the exact determination of the
most frequent terms, or even upon uniform sampling. The
method is always correct, but the variance will only benefit
from a more accurate determination. The results are shown
below.

Samples 100 500 1000 2000 5000
Error (%) 14.39 16.77 19.75 11.68 0.39

We can see that overall this method obtains estimates
with significantly lower error, even with few samples.

5.2.2 B = set of medium frequency words
We repeat the same experiments with a different set B of

terms. This time we want to choose B with two properties:
none of the terms in B matches too many documents and
B is reasonably large. The former property will reduce the
variance of the sampling steps if the occurrence of terms is
correlated positively with the weights. We provide some ev-
idence towards this. See Figure 2. We first extract all terms

Figure 2: Correlation of weights and number of oc-
currences of terms in A.

in the document set D using whitespace separated tokeniza-
tion and then we sort the terms according to their frequency
of occurrence. We then pick B to be the terms (that are not
purely numbers) that occur from position 100,000 to posi-
tion 200,000 in this list. Thus, |B| = 100,000. Under these
definitions, we obtain |DB | = 396, 423 and so pB = 0.3180.

Samples 100 500 1000 2000 5000
Error (%) 3.51 3.66 1.24 0.95 1.80

We see that the method performs extremely well and this
can be attributed to our careful choice of the set B. In
fact, our experiments showed no appreciable improvement
when we applied the variance reduction method to the set
B. This is to be expected, as B is specifically constructed so
that no term occurs significantly more often than any other
term, and so no term will introduce substantial skew into
the measurement.

5.3 Corpus size via uncorrelated query pools
We need to construct query pools A and B that are rea-

sonably uncorrelated. To do this, we first try A and B as
defined before. Since we have the corpus available, we can
actually measure the amount of dependence between the sets
A and B. We explicitly calculate pA|B and pA. The values
are pA = 0.1877 whereas pA|B = 0.2628 indicating some cor-
relation between the term sets. To reduce the correlation,
we modify the sets DA and DB to be slightly different.

We set D′
A to be the set of documents that contain exactly

one term from A; D′
B is defined analogously. We do this in

order to reduce the potential correlation caused by large
documents. Using this, we calculate p′A = 0.1219, p′B =
0.1437, and p′A|B = 0.1455, indicating a significant reduction
in correlation.

Modifying Lemma 1, we can estimate |D′
A| and |D′

B |. We
use Corollary 7 to estimate |DAB |. We proceed as before,
except that in computing the weight of a sample term from
B, we discard documents that do not contain any term from
A. The following table shows the error of the method.

Samples 1000 2000 5000
Error (%) 27.64 23.01 21.32

As we see from the results, the method obtain a reasonable
estimate of the corpus size, without using any random sam-
ple of documents. Obviously, the accuracy of this method
can be improved if we work with even less correlated query
pools.

6. EXPERIMENTS ON THE WEB
In this section we present our experiments on the Web.

We used the public interface of three of the most prominent
search engines, which we refer to as SE1, SE2, and SE3.
We present three series of results for the Web. First we
use the basic estimator defined in Section 3.1 to compute
the relative sizes of the three engines. We then use the
random document approach and the uncorrelated query pool
approach defined in Section 4 to compute absolute sizes of
the “visible” portion of the engines. (See below.)

6.1 Method
Our methodology for the Web is similar to the one we

used for TREC. We first define a query pool, sample suffi-
ciently many terms from the query pool, and compute the
weights as defined in (3). We postprocess the results us-
ing lynx to remove the HTML markup of on each of result
pages. Then we compute the weights based on this cleaned
version of the result pages, using whitespace tokenization.
We use the same definition of a term “occurring” in a doc-
ument as in the TREC experiment — the cleaned version
of the document must contain the queried term. This elim-
inates documents in which the query term does not appear
in the document, including documents in which the query
term appears only in anchor text, dead pages (404), and
pages that match stemmed versions of the query term. Fur-
thermore, since the capabilities of lynx as an HTML parser
are limited, many pages are “invisible” to our method, in
particular most pages containing Java script, frames, Flash,
etc. Thus the absolute sizes that we are reporting, are only
estimates for the sets “visible” to our methodology. Assum-
ing that each search engine carries the same proportion of
“visible” pages, we can obtain relative sizes of the search
engines, but absolute estimates are still an elusive goal.

6.2 Results
We first compute the relative sizes of engines SE1, SE2,

and SE3, using the our basic estimator. We define A to be
the set of all eight-digit numbers, including numbers with
leading zeros, thus, |A| = 108, and follow the approach de-
tailed for the TREC experiments. The following table shows
the results of our experiments with query pool A.

Engine SE1 SE2 SE3

Samples 3486 3529 3433
WA,D 0.29 0.51 0.08

If we assume that pA is the same for all the three search
engines, i.e., that the three engines index the same propor-
tion of pages with eight-digit numbers, the above values pro-
vide the relative sizes of the engines corpus. However, pA

varies from engine to engine. We used a random sample of
pages provided to us by Bar-Yossef and Gurevich produced
according to the random walk approach described in their
work [4]. The following table shows pA for the three engines
and the sample sizes.

Engine SE1 SE2 SE3

Samples 199 137 342
pA 0.020 0.051 0.008

Using these values, we can easily compute the absolute
sizes of the “visible” portion of the three search engines (in
billions) as below.

Engine SE1 SE2 SE3

Size 1.5 1.0 0.95

Next, we used the uncorrelated query pool approach to
estimate the absolute corpus sizes. The query pool A is
again the set of all eight-digit numbers, and as for TREC, we
chose the query pool B to be the medium frequency words,
which was determined from a histogram of term counts from
the index of one of the search engines. We assume that these
words are also the medium frequency words on the other two
engines. Furthermore, we also verified that when queried,
all three engines always returned less than 1000 results for
all our samples from pool B. However, for the Web there
is no straightforward way to verify that pool A and pool B
are indeed independent or to estimate their correlation.

The following table shows the resulting estimates for the
“visible” portion of the three search engines (in billions)
using uncorrelated query pools.

Engine SE1 SE2 SE3

Size 2.8 1.9 1.1

As can be readily seen, the estimates are now larger al-
though still much less than published values for the entire
corpus of these engines while the relative sizes are fairly con-
sistent. The next section explains why this happens.

6.3 Discussion and caveats
Even though our methods are intended to produce abso-

lute estimates for the corpus size, they are still affected by
many idiosyncracies that exist in web documents. Here we
list some of the caveats while drawing conclusions from the
results above.

1. Even though our methods are fairly generic, they end
up measuring only a large slice of the corpus (rather
than the corpus in its entirety), what we call the “vis-
ible” corpus. In particular, our methods exclude doc-
uments in the so-called frontier. These documents
are not indexed in full, nevertheless the search en-
gine is aware of their existence through anchortext
and might return these documents as results to queries
(especially when these queries match the anchortext).
Our method might end up discarding these documents
since the query term may not explicitly occur in the
document. Hence, our method will underestimate the
corpus size. A similar comment to the many types of
documents that are not parsed by our HTML parser
(lynx). Although lynx has the advantage of being very
consistent, in future work we intend to use a more so-
phisticated parser.

2. Even though we chose our query pools carefully, for
about 3% of the queries in the numbers query pool,
the search engines return more than 1000 results. For
such queries, we do not have access to the result doc-
uments after the first 1000. Thus in this cases we end
up underestimating the weight of the query, and con-
sequently, the corpus size.

3. Even though the search engine may return fewer than
1000 results for a given query, to promote diversity,
it might restrict the number of results from a single
host/domain. For the engines we tested this limit is
set to two results per host/domain.

4. The number of samples used to estimate pA is fairly
small, since these samples were graciously provided by
the authors of [4] and their generation method is fairly
laborious. These samples are uniformly random over
a large portion of the underlying corpus restricted to
English documents, namely those pages that match at
least one query from the pool used in [4]. Thus what
we estimate using these samples, is the number of “vis-
ible” pages that match at least one query from the pool
used in [4], which is restricted to English only. This ex-
plain why these estimates are substantially lower than
the second set of estimates, while the relative sizes are
fairly consistent.

5. In the uncorrelated query pool approach, our choice
of the query pool B has a natural bias against non-
English documents. In other words, the pools A and
B are presumably uncorrelated only with respect to
the English portion of the corpus. Once again, this
will result an underestimate of the actual corpus size.
For instance the addition of one billion pages in Chi-
nese that do not contain contiguous eight digit strings
would be invisible to our approach.

7. CONCLUSIONS
We addressed the problem of estimating the size of a cor-

pus using only black-box access. We constructed a basic es-
timator that can estimate the number of documents in the
corpus that contain at least one term from a given query
pool. Using this estimator, we compute the corpus size us-
ing two different algorithms, depending on whether or not
it is possible to obtain random documents from the corpus.

While the ability to randomly sample the corpus makes the
problem easier, we show that by using two query pools that
are reasonably uncorrelated, it is possible to obviate the need
for random document samples. En route, we also obtain a
novel way to provably reduce the variance of a random vari-
able where the distribution of the random variable is mono-
tonically decreasing; this technique may be of independent
interest.

We applied our algorithms on the TREC collection to
measure their performance. The algorithms that uses ran-
dom document samples perform quite well as expected. More
surprisingly, by carefully constructing query pools that are
reasonably uncorrelated, we show that it possible to esti-
mate the corpus size to modest accuracies. We also apply
our algorithms to estimate the “visible” corpus size of major
web search engines.

Acknowledgments
We thank Ziv Bar-Yossef and Maxim Gurevich for their in-
valuable help. We thank Anna Patterson for helpful com-
ments, suggestions, and criticisms.

8. REFERENCES
[1] A. Anagnostopoulos, A. Z. Broder, and D. Carmel.

Sampling search-engine results. In Proc. 14th
International Conference on World Wide Web, pages
245–256, 2005.

[2] J. Bar-Ilan. Size of the web, search engine coverage
and overlap – methodological issues. Unpublished,
2006.

[3] Z. Bar-Yossef, A. Berg, S. Chien, J. Fakcharoenphol,
and D. Weitz. Approximating aggregate queries about
web pages via random walks. In Proc. 26th
International Conference on Very Large Data Bases,
pages 535–544, 2000.

[4] Z. Bar-Yossef and M. Gurevich. Random sampling
from a search engine’s index. Proc. 15th International
World Wide Web Conference, pages 367–376, 2006.

[5] K. Bharat and A. Broder. Mirror and mirror and on
the web: A study of host pairs with replicated content.
Computer Networks, 31(11-16):1579–1590, 1999.

[6] K. Bharat and A. Z. Broder. A technique for

measuring the relative size and overlap of public web
search engines. Computer Networks, 30(1-7):379–388,
1998.

[7] K. Bharat, A. Z. Broder, J. Dean, and M. R.
Henzinger. A comparison of techniques to find
mirrored hosts on the WWW. Journal of the
American Society for Information Science,
51(12):1114–1122, 2000.

[8] A. Z. Broder. Web measurements via random queries.
Presentation at the Workshop on Web Measurement,
Metrics, and Mathematical Models (WWW10
Conference), 2000.

[9] J. Callan and M. Connell. Query-based sampling of
text databases. ACM Transactions on Information
Systems, 19(2):97–130, 2001.

[10] A. Gulli and A. Signorini. The indexable web is more
than 11.5 billion pages. In Proc. 14th International
Conference on World Wide Web (Special interest
tracks & posters), pages 902–903, 2005.

[11] M. R. Henzinger, A. Heydon, M. Mitzenmacher, and
M. Najork. On near-uniform URL sampling.
Computer Networks, 33(1-6):295–308, 2000.

[12] S. Lawrence and C. Giles. Accessibility of information
on the web. Intelligence, 11(1):32–39, 2000.

[13] S. Lawrence and C. L. Giles. Searching the world wide
web. Science, 280(5360):98–100, 1998.

[14] K.-L. Liu, C. Yu, and W. Meng. Discovering the
representative of a search engine. In Proc. 11th
International Conference on Information and
Knowledge Management, pages 652–654, 2002.

[15] P. Rusmevichientong, D. M. Pennock, S. Lawrence,
and C. L. Giles. Methods for sampling pages
uniformly from the world wide web. In AAAI Fall
Symposium on Using Uncertainty Within
Computation, pages 121–128, 2001.

[16] C. J. van Rijsbergen. Information Retrieval.
Butterworth-Heinemann, 1979.

[17] S. Wu, F. Gibb, and F. Crestani. Experiments with
document archive size detection. In Proc. 25th
European Conference on IR Research, volume 2633 of
Lecture Notes in Computer Science, pages 294–304.
Springer, 2003.

