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ESTIMATING COSTS AND PERFORMANCE OF SYSTEMS 
FOR MACHINE PROCESSING OF REMOTELY SENSED DATA 

RICHARD J. BALLARD AND LESTER F. EASTWOOD~ JR. 
Washington University 

This paper outlines a method for estimating 
computer processing times and costs incurred in 
producing information products from digital 
remotely sensed data. The method accounts for 
both computation and overhead, and it may be 
applied to any serial computer. We apply the 
method to estimate the cost and computer time 
involved in producing Level II Land Use and 
Vegetative Cover Maps for a five-state, mid­
western region. Our results show that the amount 
of data to be processed overloads some example 
computer systems, but that the processing is 
feasible on others. 

I. INTRODUCTION 

Because individual state agencies typically 
lack the resources for machine processing of 
satellite remote sensing data, satellite data 
might be of widest benefit to states if it were 
processed at a shared processing facility. Our 
research team has studied the feasibility of such 
a facilityl by identifying twenty-seven remote 
sensing-based information products of wide utility 
to state agencies (in Illinois, Iowa, Minnesota, 
Missouri, and Wisconsin); determining from a 
user survey a useful coverage area, update fre­
quency, number of satellite-derivable classes 
contained, and scale for each product; and 
estimating the costs and performance of one, 
regional processing center producing these pro­
ducts. 

This paper concentrates on one element of 
the cost and performance analysis. We present a 
theoretical method for analyzing computer pro­
cessing times and costs for information products 
based on digital, remotely sensed data. The 
method is based on determining the amount of com­
putation required by typical remote sensing data 
processing algorithms. It determines processing 
times and costs as functions of image data para­
meters (number of pixels, and bands per pixel) 
and processing variables (number of classifica­
tion classes, and iterations required to achieve 
acceptable accuracy). 

The method combines two, independent estima­
tion techniques. The first technique estimates 
processing times on an IBM 360/67 by employing 
simple interpolation of results observed by a 
past user of LARSYS.2 This method is accurate, 
in that it takes account of all computation tasks, 
including system overhead. However, it is 
inflexible, because it applies only to four-band 
data and to the IBM 360/67. The second technique 
determines computation times and costs theoreti­
cally by calculating computational loads put on 
any serial computer by a full range of image 
processing algorithms. By contrast with the 
first scheme, it can be applied to any serial 
computer. However, because it fails to account 
for "overhead" (e.g. running the computer's 
operating system), it is inaccurate when used 
alone. Combining the two techniques allows us 
to take overhead into account, as the first scheme 
does, while retaining the second technique's 
flexibility. 

The next section presents the first of 
these two techniques. Section III outlines the 
basis for our "theoretical" method of estimating 
single algorithms, computation times, and costs. 
Total computer times and costs for producing an 
information product from digital remote sensing 
data are determined from the product's algorith­
mic processing sequence in Section IV. We 
estimate processing times and costs on several 
computer systems for two products, vegetative 
Cover Maps and Level II Land Use Maps. We also 
estimate the processing required to produce 
these products annually over our five-state 
region in the quantities desired by state 
agencies. 

II. ESTIMATION USING OBSERVED LARSYS 
TIMES AND COSTS 

A past LARSYS user has supplied us with 
tables of costs he incurred in producing Level 
II Land Use Maps.2 Table I lists these costs. 
Factors affecting these costs include the number 
of pixels processed, the number of classes into 
which data are classified, and the per CPU 
minute processing cost of the LARSYS computer. 
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In 1973, when the costs listed in Table 1 were 
incurred, the LARSYS per CPU minute charge was 
$6.00, while as of May, 1976, it was $4.83. 2,3 

As it is, Table 1 can be used to estimate 
both LARSYS processing costs (based on the old 
$6.00 per CPU minute charge) and processing times 
in CPU minutes. We estimate processing times 
from the costs of Table 1 by assuming that the 
"per run" costs of Table 1 represent input/output 
and other special overhead, while the "per 
million pixel" costs represent CPU processing 
costs. We estimate CPU times by dividing the 
"per million pixel" costs by $6.00 per CPU 
minute, the charge upon which Table l's cost 
equations are based. 

~able 1. LARSYS Processing Costs for 
LANDSAT Data. 

Algorithm Processing Cost* 

LANDSAT/LARSYS Reformat 

Geometric Correction 
(Linear Nearest 
Neighbor) 

Overlay 

Clustering (approximate) 

Max. Likelihood 
Classification 

30 classes 
40 classes 
50 classes 

$ 65. + 8 eMP) ** 

$125 + 525 (MP) 

$600 + 1500 (MP) 

$500+ 

$868 eMP) 
$1157 (MP) 
$1445 (MP) 

*The LARSYS costs presented in this table were 
charged for processing done in December 1973. 2 
The costs are not official figures issued by 
LARS. 

**(MP) ,= per million pixels of four-band data. 

+Por clustering training sets of 11,000 pixels. 

Extrapolating to any other per CPU minute 
charge is simple if we assume that fixed costs 
listed in Table 1 remain unchanged. The total 
cost of an algorithm is then its fixed cost plus 
the product of the number of CPU minutes it 
consumes and the new per CPU minute charge. Por 
example, geometric correction of an entire 
LANDSAT image at the old $6.00/CPU minute rate 
cost $125 + $525 (7.56) or $4100. Under our 
assumptions, the processing time required is 
$525 (7.56/$6.00) or 660 CPU minutes. Thus, if 
the new processing charge is $4.83/CPU minute, 
processing the same data would cost $125 + 660 
($4.83), or $3300. 

III. ANALYTIC ESTIMATION OP PROCESSING 
TIMES AND COSTS 

An alternative to this extrapolative method 
of estimating algorithm processing times and costs 
is to determine the amount of computation (that 
is, the number of adds, multiplies, etc.) required 
to perform each algorithm. These computational 
estimates can then be used to estimate algorithms' 
required processing times and costs on any serial 
computer system. 

A. ESTIMATING ALGORITHM COMPUTATION REQUIREMENTS 

The first analysis step is to develop a 
functional description (e.g., a flowchart) 
illustrating each algorithm's processing sequence. 
Prom these descriptions, we estimate the computa­
tional requirements of each algorithm as functions 
of the number of bands per pixel, the number of 
pixels to be processed, and other image data para­
meters. 

To illustrate how computational requirements 
are derived, consider the algorithm performing 
maximum likelihood classification. The maximum 
likelihood (ML) algorithm computes a measure of 
the likelihood that an observed pixel value comes 
from a particular object class. The pixel is 
assigned to the class for which this measure is 
greatest. 

Por Gaussian-distributed data (a common 
remote-sensing assumption), the likelihood measure 
that a pixel! represents class k is given by 

Lk(!) = In(p(k)) - 1/2 lnl~1 

T -1 
- 1/2(! - !!k) ~k (~- !ik ) (1) 

where p(k) is the probability of object class k, 
M is the mean vector associated with object 
c"fass k, .f:k is the kth class I covariance matrix, 
and I~kl denotes the determinant of this matrix. 

Equation (1) reduces to 

where.f(k) = In p(k) - 1/2 In I~kl, is a kn~wn 
quantlty, for class k, k = 1,2, ... , C. Glven 
the observed brightness values X, the algorithm 
computes Lk(~ for each of C obJect classes and 
assigns the pixel to the class having the largest 
value of Lk (~. 

After generating a functional description 
of the algorithm, each algorithm step is analyzed 
to determine both its computational requirements 
and the number of times the step is executed per 
algorithm run. Par example, one step in the ML 
algorithm might be written ~2(k) = .f:k- l ~l (k) . 
.f:k- l is a B x B element matrlx, where B is the 
number of data bands being processed; Xl(k) is the 
B element vector representing the difference 
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(X - Mk). Computing the product~2(k) requires 
B7multipliis and B(B-l) additions. The step 
~2(k) = Ck- ~(k) is executed C times for each 
pixel. Therefore, when classifying Np pixels 
into one of C .classes, the step X2 (k) = 
fk- l Xl(k) contributes CNpB2 multiplies and 
CNpB(B-1) additions to the algorithm's computa­
tional requirements. After analyzing each 
algorithm step, the algorithm's total computa­
tional requirements are fo.und by summing each 
step's computational requirements. 

B. ESTIMATING ALGORITHM PROCESSING TIMES 

Using published figures4 ,5 listing computer 
instruction execution times, we determine the 
time needed to accomplish the required numbers 
of each instruction. For example, if an algori­
thm requires 106 add operations to process a 
given amount of data, a computer which takes 
5.4 ~sec to fetch data and execute an add 
instruction will require 5.4 seconds to perform 
the adds. The total estimated CPU time to per­
form each algorithm is then the sum. of the times 
needed to perform each algorithm's required 
operations. 

As a check on our algorithm time estimates, 
we estimate algorithm processing times on LARSYS. 
For example, we estimate that to process an 
entire frame of LANDSAT imagery (7.56 million 
pixels) into thirty classes using ML classifica­
tion would require 1030 CPU minutes on the 
IBM 360/67. Similarly we estimate that to geo­
metrically correct an entire LANDSAT frame using 
linear transformation and nearest neighbor 
res amp ling would require eleven CPU minutes on 
the IBM 360/67. 

We then compare these estimates with the 
LARSYS processing times implied by the cost 
figures of Table 1. For example, the cost of 
proceSSing LANDSAT data into thirty classes 
usingML classification is listed as $868 per 
million pixels. At the old $6.00 per CPU minute 
cost, this corresponds to a per-LANDSAT-image 
processing time of 1100 CPU minutes. The cost 
of geometrically correcting LANDSAT data is 
listed in Table 1 as $125 per run plus $525 per 
million pixels. Assuming that the $125 per run 
charge represents special overhead and does not 
represent CPU processing charges, this corres­
ponds to a per-LANDSAT-image correction time of 
660 CPU minutes. 

Our analytic estimates of LARSYS processing 
times are always lower than estimates derived 
from observed LARSYS costs. This is understanda­
ble; the algorithm functional descriptions on 
which our estimates are based do not account for 
the computer's operating system overhead. 

Both methods of estimating algorithm run 
times have faults. Algorithm time estimates 
based on the costs of Table 1 apply only to 
four-band data and to the IBM 360/67, while our 
analytic estimates neglect overhead. We seek 

to combine the strengths of each method by scaling 
our analytic estimates to include overhead. The 
combined estimation method is: 

1) Develop an analytic estimate of the 
number of each type of computer opera­
tion to perform a given algorithm. 

2) Determine the time required to perform 
these operations on the IBM 360/67. 

3) Determine the total time required to 
perform the algorithm on the IBM 360/67 
based upon the observed costs of Table 1. 

4) Compute the algorithm's overhead 
multiplier by dividing the algorithm 
processing time found in 3) by the 
algorithm processing time estimated 
in 2). 

Our scaled estimates of algorithm computa­
tional requirements are listed in Table 2. These 
computational requirements account for overhead 
and may be used to estimate algorithm processing 
times on any serial computer. 

Table 2. 
Requirements 

Task 

Reformat 
CCTS 

Geometric 
Correction 

Cluster 
Analysis 

ML Classi-
fication 

Task 

Reformat 
CeTS 

Geometric 
Correction 

Cluster 
Analysis 

ML Classi­
fication 

Algorithm Computational 

It Moves 
(Memory to 
Memory) 

6.7 [2BNp] 

59[N (4+2B)] 
P 

46[ICN ] 
P 

It Multiplies 

59[4N ] 
P 

46[BI(C+I)N J p 

1.lI(B2+B+I)CN ] 
p 

It Adds 

46[BI(C+3)Np] 

1.l[C(B2+B+I)CN ] 
p 

It Compares 

46[I(C-l)N ] 
P 

1.1 [(C-l)N ] 
P 

Notes: a) B It of bands (4 for current LANDSAn 
b) Np= It of pixels (7.56 x 106 for current 

LANDSAT imagery). 
c) C = It of object classes or clusters. 
d) I = It of iterations (see text). 
e) implies negligible operation count. 

1977 .Machine Processing of Remotely Sensed Data Symposium 

210 



The overlay algorithm was not analyzed and 
is not listed in Table 2. To estimate this 
algorithm's run time on computer's other than the 
IBM 360/67, we define a speed factor for computer 
X by 

I:Est. 
SF(X) - I:Est. 

run times on 
run t~mes on 

Then, for example, the overlay algorithm's pro­
cessing time on another computer is the product 
of the computer's speed factor and the overlay 
algorithm's 360/67 processing time. Based on 
the computations of Section. IV, the speed ractors 
for the Univac 1108 and CDC 7600 are .39 and 
.033 respectively. 

C. ESTIMATING ALGORITHM PROCESSING COSTS 

We estimate each computer's cost per CPU 
minute by assuming that the monthly cost of 
operating a computing facility is equal to twice 
the computer's monthly lease cost (a reasonable 
assumption in costing computing facilities, made 
to allow for salaries of operating personnel and 
for maintenance) and that 140 CPU hours of opera­
tion are realized monthly. Under these assump­
tions, the cost per CPU minute is given by 

Cost CPU minute = 2(computer leased cost/mo) 
per 140 hrs/mo 

hr 
x 60 min (4) 

As a check on the validity of (4), we esti­
mate per CPU minute processing charges for the 
IBM 360/67 computer used in LARSYS. The 360/67 
has a monthly lease cost of $23,000,5 giving an 
estimated per CPU minute processing charge of 
$5.48. This compares well with LARSYS processing 
charges of $6.00 per CPU minute and $4.83 per 
CPU2,3 minute charged in 1973 and 1976, 
respectively. 

IV. ESTIMATING PRODUCT PROCESSING 
TIMES AND COSTS 

To estimate information product processing 
times and costs, we first determine the algori­
thmic sequence required to produce the product. 
In addition to specifying the algorithms to be 
used, the sequence specifies the number of 
required iterations for each algorithm. Some 
algorithms, such as reformatting, need to run 
only once. Cluster analysis, on ·the other hand, 
is an iterative process and we can estimate the 
iterations required as a function of the number of 
clusters sought. Other non-iterative algorithms, 
such as maximum likelihood classification, must be 
by run multiple times to correct errors indicated 
by available ground truth data. 

Our studies of the information needs of state 
agencies in our five state midwestern region 

indicate that the majority of needed satellite­
derivable data is contained in two information pro­
ducts: Level-II Land Use Maps and Vegetative 
Cover Maps.l 

In this section, we specify example algoritn­
m~c sequences for these products, and use the com­
b~ned method of Section III to estimate product pro­
cessing times and costs on three different com­
puters. We also estimate each computer's annual 
processing time and cost to produce these products 
in the quantities desired by state agencies. 

These satellite-derived products will be 
more useful to state agencies in their day-to-day 
activities when the thirty meter spatial resolu­
tion imagery of the proposed LANDSAT Follow-On 
Mission6 becomes available. Thus we use Follow­
On parameters in calculating computation costs. 
Assuming that a frame of Follow-On imagery covers 
the same area as a frame of current LANDSAT 
imagery, a frame of Follow-On imagery would con­
tain 53.6 million pixels. 

A. VEGETATIVE COVER MAPS 

Based on past experience,7 we estimate that 
fifteen classes of vegetation are satellite­
derivable; two additional classes, water and 
other, can account for the map's non-vegetated 
areas. 

Experience has also shown that the current 
LANDSAT's bands 5 and 7 provide the most useful 
~egetative data, and that both spring and summer 
~magery must be included to achieve sufficient 
classification accuracy. Thus, we assume that 
after merging two equivalent bands of Follow-On 
data from spring and summer imagery, the result­
ing four band imagery will allow vegetative cover 
to be adequately identified. To reduce process­
ing costs, only the two data bands used per 
image will actually be geometrically corrected. 

Spectral signature estimates for fifteen 
vegetative cover classes and for water must be 
derived by cluster analysis of selected "training 
areas." We assume the training areas comprise 
11,000 pixels of the four-band merged data. Our 
own experience indicates that an average of 
sixteen clustering iterations will be required 
to estimate spectral signatures. 

The merged data must be classified into 
seventeen classes using maximum likelihood (ML) 
classification, In fact, however, only $ixteen 
object classes must be tested; the seventeenth, 
or "other," class would be chosen only if none 
of the other sixteen classes are likely. 
Between runs of the ML algorithm, analysts would 
compare interpreted imagery with known ground 
truth to locate classification errors, and would 
modify spectral signature estimates to correct 
these errors. We estimate an average of four ML 
runs would be required per product. 
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The algorithmic sequence for producing Vege­
tative Cover Maps is: 1) Reformat spring and 
summer imagery; 2) Geometrically correct each 
image; 3) Overlay spring and summer imagery into 
one, four-band composite image; 4) Cluster analyze 
portions of the composite image, sixteen itera­
tions required; 5) ML classify the composite 
imagery into sixteen classes plus "other", four 
runs required. 

Using the combined method of Section III, we 
estimate the CPU time required to process a frame 
of Follow-On data into a Vegetative Cover Map on 
three computers: the IBM 360/67, the Univac 
1108, and the CDC 7600. Using (4), we estimate 
processing costs for each computer. To process 
the data on the IBM 360/67 would require 662 
CPU hours and would cost $2l8,DOO. 265 CPU hours 
would be required to process the data on the 
Univac 1108, and the processing cost would be 
$170,000. Finally, to process the data on the 
CDC 7600 would require 25.6 CPU hours; the 
processing cost would be $30,000. 

B. LEVEL II LAND USE MAPS 

Level II Land Use Maps display - by 
definition - thirty-seven c1asses. 8 Of these 
twenty-eight are relevant in our five-state 
region. However, only sixteen of the twenty­
eight classes are non-vegetative classes, and 
the twelve vegetative classes are displayed in 
at least as much detail on the Vegetative 
Cover Maps discussed previously. As a result, 
if Vegetative Cover Maps are being produced 
concurrently, to produce Level-II Land Use 
Maps require only that we process the areas 
classified "other" in Vegetative Cover Maps into 
the sixteen non-vegetative land use classes. 

The algorithmic sequence needed to produce 
the nonvegetative sections of Level II Land Use 
Maps is similar to the sequence used to produce 
Vegetative Cover Maps with two exceptions. 
First, Level II Land Use Maps require winter 
imagery to delineate urban and "built-up" land 
classes. Therefore, only one raw image must be 
reformatted and no merging of imagery is 
required. In addition, classification informa­
tion is not concentrated in two spectral bands; 
we assume the best four of Follow-On's imagery 
bands will be used to produce land use maps. 

The algorithmic sequence to produce 
Level-II Land Use Maps is: 1) Reformat the 
raw imagery; 2) Geometrically correct the raw 
imagery; 3) Cluster analyze portions of the 
image into sixteen nonvegetative classes, six­
teen iterations required; 4) ML classify 
appropriate areas of the image into sixteen non­
vegetative land use classes, four runs required. 

For ease of comparison, we estimate pro­
cessing times and costs assuming that an entire 
Follow-On image is to be processed. Savings 
due to processing only nonvegetative areas are 
considered in the next section. 

To process an entire Follow-On image into 
sixteen nonvegetative land use classes would 
require 369 CPU hours on the IBM 360/67; the 
processing cost would be $121,000. 137 CPU 
hours would be required to perform the processing 
on the Univac 1108, and the corresponding pro­
cessing cost is $88,000. Finally, to process the 
image using the CDC 7600 would require 14.3 CPU 
hours and would cost $17,000. 

C. REGIONAL FACILITY PROCESSING TIMES AND COSTS 

A number of factors affect the annual com­
putational load of a regional processing facility. 
The first factor is the area covered by each 
product. In this example, we assume the facility 
produces two products, Vegetative Cover Maps 
and Level II Land Use Maps. Vegetative Cover Maps 
(including the ubiquitous "other" class) must be 
produced over the entire region. Data for Level 
II Land Use Maps, on the other hand, only have 
to be processed over non-vegetative areas; 
vegetative land use classes are taken from the 
Vegetative Cover Haps. Based on Missouri land 
cover statistics, we estimate ten percent of the 
five state region must be processed by non­
vegetative land use classes. 

A second factor affecting computational 
load is each productts update frequency. Our 
analY3is of state agency needs indicates that 
Vegetative Cover Maps must be produced for the 
entire region annually. Level II Land Use Maps, 
on the other hand, must be updated only every 
five years. Thus, a regional center must pro­
duce land use maps for one-fifth of the five 
state region annually. 

Two additional factors affecting computa­
tional load, the number and type of classes each 
product contains and the seasonal imagery each 
product requires, have already been discussed. 

One remaining consideration is the acquisi­
tion of cloud-free imagery. EROS statistics 
show that twenty-five percent of 901 LANDSAT 
images taken over sample areas in each of the 
five states had ten percent cloud cover or less. 
Probability of cloud cover showed no strong 
seasonal dependence. A single Follow-On Mission 
is therefore likely to provide the coverage 
required in winter, spring, and summer without 
excessive mosaicing to produce "cloud-free" 
imagery. If orbital overlap and edge effects 
are included, forty-five LANDSAT images are 
required to cover the five-state region. 

This information allows us to specify a total 
satellite input data for the regional 
center. The 'amount of processing required is 
determined by the products' algorithmic sequences, 
coverage areas, and update frequencies. To pro­
duce Vegetative Cover Maps and Level II Land 
Use Maps over the five-state region, the follow­
ing algorithms must be performed annually: 

19n Machine Processing of Remotely Sensed Data Symposium 

212 



,. 

Reformat 99 images. 
Geometrically correct 2 bands on 90 images. 
Geometrically correct 4 bands on 9 images. 
Overlay 2 bands on 45 pairs of images. 
Cluster Analyze portions of 54 images into 

16 classes, 4 runs per image. 
ML Classify 45 images into 16 classes, 

4 runs per image. 
ML Classify 10 percent of 9 images into 

16 classes, 4 runs per image. 

To calculate the CPU time and cost for 
this processing, we assume that. partitioning 
data requires negligible processing time, e.g., 
the time to ML classify ten percent of nine images 
is equivalent to the time to process ninety 
percent of one image. Using the method of 
Section III, we calculate the center's annual 
processing times and costs. To perform the 
center's annual processing on the IBM 360/67 would 
require 31,000 CPU hours and would cost 
$10,000,000. The Univac 1108 requires 12,000 
hours to perform the required processing at a cost 
of $7,760,000. Finally, 1200 CPU hours are 
required to perform the required processing on 
the CDC 7600. The annual processing cost using 
the CDC 7600 would be $1,440,000. 

Each computer's required annual processing 
time indicates whether the computer is suitable 
for use at the center. Our estimates of cost per 
CPU minute are based on 140 CPU hours of pro­
cessing per month, implying that 1700 processing 
hours are available annually. Of the three 
computers considered, only the CDC 7600 can 
process the center's products in the time 
allotted. 

V. CONCWSIONS 

We have outlined a method to estimate 
comput~r processing times and costs for infor­
mation products based upon digital remotely 
sensed data. The method accounts for image data 
and processing parameters. Furthermore, it 
accounts for operating system overhead and may 
be applied to any serial computer system. 

By analyzing the computational load 
required to produce a given menu of information 
products, the products' required processing 
times and costs on a particular computer system 
may be estimated. This indicates how heavily 
a particular computer system will be utilized in 
product production, and whether the system will 
be overloaded. Thus, the method of this paper 
could be of great utility in designing an 
appropriate processing facility for a given 
menu of information products. 
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