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Abstract - A method is described to estimate genetic and environmental covariance
functions for traits measured repeatedly per individual along some continuous scale,
such as time, directly from the data by restricted maximum likelihood. It relies
on the equivalence of a covariance function and a random regression model. By
regressing on random, orthogonal polynomials of the continuous scale variable, the
coefficients of covariance functions can be estimated as the covariances among the

regression coefficients. A parameterisation is described which allows the rank of
estimated covariance matrices and functions to be restricted, thus facilitating a highly
parsimonious description of the covariance structure. The procedure and the type of
results which can be obtained are illustrated with an application to mature weight
records of beef cows. @ Inra/Elsevier, Paris
covariance functions / genetic parameters / longitudinal data / restricted

maximum likelihood / random regression model

Résumé - Estimation des fonctions de covariance de données en séquence à par-
tir d’un modèle à coefficients de régression aléatoires. On décrit une méthode
d’estimation des fonctions de covariance génétique et non génétiques pour des carac-
tères mesurés plusieurs fois par individu le long d’une échelle continue, comme le
temps. Elle s’appuie directement sur les données à partir du maximum de vraisem-
blance restreint, en considérant l’équivalence entre fonction de covariance et modèle de
régression aléatoire. Les coefficients figurant dans les fonctions de covariance peuvent
être estimés comme des covariances entre les coefficients de régression des observa-
tions par rapport à des polynômes orthogonaux de la variable temporelle. On décrit
un paramétrage qui permet de diminuer le rang des matrices et des fonctions de co-
variances, rendant ainsi possible une bonne description de la structure de covariance
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avec peu de paramètres. La procédure et le type de résultats qui peuvent être obtenus
sont illustrés par un exemple concernant les poids vifs adultes de vaches allaitantes.
&copy; Inra/Elsevier, Paris
fonction de covariance / paramètres génétiques / données en séquence / maxi-
mum de vraisemblance restreint / modèle à régression aléatoire

1. INTRODUCTION

Covariance functions have been recognized as a suitable alternative to the
conventional multivariate mixed model to describe genetic and phenotypic vari-
ation for longitudinal data, i.e. typically data with many, ’repeated’ measure-
ments per individual recorded over time. They are especially suited for traits
which are changing with time so that repeated measurements do not completely
represent the same trait. The example considered here forth is growth of an
animal with weights taken at a number of ages, but the concept is readily
applicable to other characters and other continuous scales or ’meta-meters’.

In essence, covariance functions are the ’infinite-dimensional’ equivalent to
covariance matrices in a traditional, ’finite’ multivariate analysis [15]. As the
name indicates, a covariance function (CF) describes the covariance between
records taken at certain ages as a function of these ages. A suitable function
is a higher order polynomial. This implies that when fitting a CF model, we
need to estimate the coefficients of the polynomial instead of the covariance
components in a finite-dimensional analysis. The number of coefficients required
is determined by the order of fit of the polynomials.
A finite-dimensional, multivariate analysis is equivalent to ’full fit’ CF

analysis where the order of fit is equal to the number of ages measured, i.e. the
covariance matrices for the ages in the data generated by the estimated CFs
are equal to the estimates that would have been obtained in a conventional,
multivariate analysis. In practice, however, a reduced order fit often suffices.
This reduces the number of parameters to be estimated and thus sampling
errors, resulting in a smoothing of the estimated covariance structure.

Kirkpatrick et al. [15, 16] modelled CFs using orthogonal polynomials of
age, choosing Legendre polynomials. Let E denote a covariance matrix of size
q x q, and 4i of size q x k the matrix of orthogonal polynomials evaluated at
the given ages with elements !2! _ !!(ti), the jth polynomial for the ith age
ti. The order of fit of the CF is given by k < q. This allows the covariance
matrix to be rewritten as E = 4iK4i’ with K = fkij a matrix of coefficients,
and gives CF

Here, tm are the ages adjusted to the range for which the polynomial is
defined. Let tm with elements tj for i = 0, ... , k - 1 denote the row vector of



powers of tm and A the matrix of polynomial coefficients. This gives the mth
row of 4) as 4!! = tmA. For instance for k = 3 and Legendre polynomials

and

Thus equation (1) can be rewritten as 0(tm, ti) = t!AKA’t! = tmot§, i.e.
the coefficient matrix !2 with elements c!2! is obtained from K by including the
terms of the polynomial chosen.

Kirkpatrick et al. [15] described a generalized least-squares procedure to
determine the coefficients of a CF from an estimated covariance matrix.

Often, however, this is not available or computationally expensive to obtain.
Meyer and Hill [24] showed that the coefficients of CFs can be estimated
directly from the data by restricted maximum likelihood (REML) through a
simple reparameterization of existing, ’finite-dimensional’ multivariate REML
algorithms. For the special case of a simple animal model with equal design
matrices computational requirements were restricted to the order of fit of the
genetic CF. In the general case, however, their approach required a multivariate
mixed model matrix proportional to the number of ages in the data to be set
up and factored, even for a reduced order fit. This severely limited practical
applications, especially for data with records at ’all ages’.

Polynomial regressions have been used to describe the growth of animals
for a long time [35], but only recently has there been interest in random

regression (RR) models. These have by and large been ignored in animal
breeding applications so far, although they are common in other areas; see,
for instance, Longford [19] for a general exposition. RRs in a linear mixed
model context have been considered by Henderson !9!. Jennrich and Schluchter
[12] included the ’random coefficients’ model in their treatment of REML
and maximum likelihood estimation for unbalanced repeated measures models
with structured covariance matrices. Recent applications include the genetic
evaluation of dairy cattle using test day records ([10, 11, 14] Van der Werf
et al. unpublished), and the description of growth curves in pigs [2] and beef
cattle !33!.

This paper describes an alternative procedure for the estimation of covari-
ance functions to that proposed by Meyer and Hill [24], which overcomes the
limitations discussed above. It is shown that the CF model is equivalent to a
RR model with polynomials of age as independent variables, and that REML
estimates of the coefficients of the CF can be obtained as covariances among
the regression coefficients. A mechanism is described to restrict the rank of
the estimated covariance matrices (of regression coefficients) and thus the CFs,
reducing the number of parameters to be estimated. The method is illustrated
with an application to beef cattle data.



2. ESTIMATION OF COVARIANCE FUNCTIONS

2.1. Model of analysis

2.1.1. Finite-dimensional model

Consider an animal model

with y2! the observation for animal i at time j, a2! and rij the corresponding
additive genetic and permanent environmental effects due to the animal,
respectively, Eij the measurement error (or temporary environmental effect)
pertaining to y2! and F some fixed effects. Furthermore, let tij denote the age

(or equivalent) at which y2! is recorded, and assume there are qi records for
animal i and a total of q different ages in the data.

Commonly, under a ’finite-dimensional’ model of analysis, data represented
by equation (2) are analysed either assuming measures at different ages are
different traits, i.e. carrying out a q-dimensional, multivariate analysis, or

fitting the so-called repeatability model, i.e. assuming aij = ai and rij =i for

all j = 1, ... , qi and carrying out a univariate analysis. In the former, fully
parametric case, covariance matrices are taken to be unstructured. Fitting
a covariance function model, however, we impose some structure on the
covariance matrices. This implies the assumption that the series of (up to) q
measurements represents k different ’traits’ or variates, with 1 <_ k <q denoting
the order of fit of the covariance function.

2.1.2. Random regression model

As shown below, the covariance function model is equivalent to a ’random
regression’ model fitting functions of age (or equivalent) as covariables.

. Kirkpatrick et al. [15, 16] used the well-known Legendre polynomials (see,
for instance Abramowitz and Stegun [1]) in fitting covariance functions. These
have a range of &mdash;1 to 1. Let tij denote the jth age for animal i standardized
to this interval, and let 0,(t* ) be the mth Legendre polynomial evaluated for
t!.. We can then rewrite equation (2) as a RR model

with aim and !y2.&dquo;, representing the mth additive genetic and permanent
environmental random regression coefficients for animal i, respectively, and kA
and kR denoting the respective orders of fit.

This formulation (3) implies that the vector of q breeding values in a ’finite-
dimensional’, multivariate analysis is replaced by the vector of kA additive

genetic, random regression coefficients. Note, however, that with kA chosen

appropriately (i.e. the minimum order of fit modelling the data adequately),
there is virtually no loss of information. In other words, equation (3) can be



employed as an effective tool to reduce the number of traits to be handled (and
breeding values to be reported) for ’traits’ measured over a continuous time
scale such as weights (e.g. birth, weaning, yearling, final and mature weight)
in beef cattle or test day records for dairy cows. Moreover, the RR model (3)
yields a description of the animal’s genetic potential for the complete time
period considered, for instance, an estimate of the growth or lactation curve.

2.1.3. Covariance structure

The covariance between two records for the same animal is then

Generally measurement errors are assumed to be i.i.d. with variance QE, so that
Cov(e2!,e2!!) = a2 for j = j’ and 0 otherwise, but other assumptions, such as
heterogeneous variances or autoregressive errors, are readily accommodated.

Clearly, the first two terms in equation (4) are CF with the covariances
between random regression coefficients equal to the coefficients of the corre-
sponding covariance functions (24!, see equation (1) above, i.e. the RR model
is equivalent to a CF model. Conversely, the RR model provides an alternative
strategy to estimate CFs. While the REML algorithm described by Meyer and
Hill [24] required mixed model equations of size proportional to the total num-
ber of ages q to be set up and factored in the general case, requirements under
the equivalent random regression model are proportional to the orders of fit,
kA and kR. Hence, this approach offers considerably more scope to handle data
coming in ’at all ages’ and should be especially advantageous for kA or kR « q.

2.1.4. Fixed effects

In fitting a RR model it is generally assumed that systematic differences
in age are taken into account by the fixed effects in the model of analysis. In
most cases, these include a fixed regression of the same form as the random
regression (e.g. (9, 11, 12!), which can be thought of as modelling the population
trajectory, while the random regressions for each animal represent individuals’
deviations from this curve.

2.2. REML estimation

Considering all animals, equation (3) can be written in matrix form as

with y the vector of N observations measured on ND animals, b the vector
of fixed effects, cc the vector of !;,! x -NIA additive-genetic random regression



coefficients (NA > ND denoting the total number of animals in the analysis,
including parents without records), y the vector of kR x ND permanent
environmental random regression coefficients, e the vector of N measurement
errors, and X, Z* and Z z denoting the corresponding ’design’ matrices.

Here ZD is the non-zero part of Z* (for kA = hR), i.e. the part of Z*
corresponding to animals in the data. The superscript ’*’ marks matrices
incorporating orthogonal polynomial coefficients. Assuming y is ordered for
animals, ZD is blockdiagonal, the block for animal i is of dimension qi x kR,
and has elements øm(tij). Note that each observation gives rise to kR (or kA
for Z*) non-zero elements rather than a single element of 1 in the usual, finite-
dimensional model, i.e. the design matrices are considerably denser than in the
latter case.

Let KA with elements KAmt = Cov(am, al) and KR with elements KRml =
Cov(7,,,,,yi) denote the coefficient matrices for the additive genetic and per-
manent environmental covariance functions A and R, respectively. In terms
of analysis, this is analogous to treating RR coefficients as correlated ’traits’.
Assume that the fixed part of the model accounts for systematic age effects,
so that a N N(0, KA 0 A) and y - N(O, KR 0 IND)’ and that a and y are
uncorrelated. For generality, let V(E) = R, but assume R is blockdiagonal for
animals with blocks equal to submatrices of the q x q matrix Sg. The mixed
model matrix pertaining to equation (5) is then

where A is the numerator relationship matrix between animals, IN is an

identity matrix of size N, and Q9 denotes the direct matrix product. M* has
NF + kANA + kRND + 1 rows and columns (with NF being the total number of
levels of fixed effects fitted), i.e. its size and thus computational requirements
are proportional to the order of fit of the CFs. For R = o, 6 21, o! can be be
factored from M*, resulting in a matrix which can be set up as for a univariate
analysis.

Estimates of the distinct elements of KA and KR and the parameters
determining EE can be obtained by REML, applying existing procedures
for multivariate analyses under a ’finite’ model. This may involve a simple,
derivative-free algorithm !21) or, more efficiently, a method utilizing information
from derivatives of the likelihood, such as Johnson and Thompson’s [13]
’average information’ algorithm; see Madsen et al. [20] or Meyer [22] for a
description of the latter in the multivariate case.

While true measurement errors are generally assumed to be i.i.d., there may
be cases in which we need to allow for heterogeneous variances or correlations
between ’temporary’ environmental effects. This may, to some extent, com-
pensate for suboptimal orders of fit for permanent environmental or genetic
covariance functions. In other cases EE may include parameters, such as the



autocorrelation p for measurement errors following a stationary time series, for
which V(y) is non-linear and for which derivatives are thus not straightforward
to evaluate. In these instances, a two-step procedure combining a derivative-
free search (e.g. a quadratic approximation) for the ’difficult’ parameter(s)
with an average information algorithm to maximize log G with respect to the
’linear’ parameters can be envisaged. A similar strategy has been employed
by Thompson [32] in estimating the regression on maternal phenotype as well
as additive genetic and environmental components of variance. Alternatively,
estimation may be carried out in a Baysian framework using a Monte Carlo
based technique, see Varona et al. [33] for an application in a linear RR model.

Calculation of the log likelihood (G) requires factoring M* to calculate the

log determinant of the coefficient matrix (log [C* [) and the residual sums of
squares (y’P*y) (see Meyer [21] for details). The likelihood is then

For i.i.d. measurement errors, the error variance can be estimated directly
as QE = y’P*y/(N - r(X)), as for univariate analyses.

2.2.1. Extensions to other models

So far only the case of a simple, ’univariate’ animal model has been
considered. More complicated models, however, are readily accommodated
in the framework described. For instance, additional random effects such as
maternal genetic effects or litter effects can be taken into account analogously
by modelling each as a series of random regression coefficients. Correlations
between random effects, e.g. non-zero direct-maternal genetic covariances, can
be modelled by allowing for covariances between the respective regression
coefficients, which then yield a CF describing the covariance between random
effects over time.

Similarly, ’multivariate’ CF [24] for series of measurements for different traits
(e.g. height and weight measured at different times) can be estimated simply
by fitting sets of RR coefficients for each trait and allowing for covariances
between corresponding sets for different traits. An expectation-maximization
type algorithm for a bivariate analysis under a RR model has recently been
described by Shah et al. !30!. As mentioned above, a variety of assumptions
about the structure of the within-individual, temporary environmental covari-
ance matrices can be accommodated; see, for instance, Wolfinger [36] for a

description of some commonly used models.

2.3. Reduced rank covariance functions

For q correlated measurements, the information supplied (or most of it)
can generally be summarized as a set of k G q linear combinations. These
can be determined by a singular value decomposition of the corresponding
covariance matrix. Typically, this yields one or a few (k) large, dominating



eigenvalues with the remainder (q-k) being small or zero. Setting the latter to
zero and backtransforming (by pre- and postmultiplying the diagonal matrix of
eigenvalues with the matrix of eigenvectors and its transpose, respectively) then
yields a modified, reduced rank covariance matrix. In estimating covariance
matrices, this could be used to reduce the number of parameters to be
estimated and thus sampling variation. A parameterization to the elements
of the eigenvalue decomposition and setting eigenvalues k + 1, ... , q and the
corresponding eigenvectors to zero would achieve this but reduce the number
of parameters to be estimated only for k < q/2. Though not perceived for
this explicit purpose, the ’symmetric coefficients’ CF model of [15] provides an
alternative way of estimating reduced rank covariance matrices [22].

As outlined by Kirkpatrick et al. [15], there is an equivalent to the eigen-
value decomposition of covariance matrices for covariance functions, with a
corresponding interpretation. Estimates of the eigenvalues of a CF fitted to
order k are simply the eigenvalues of the corresponding, estimated matrix of
coefficients (K). Similarly, estimates of the eigenfunctions of a CF, the infinite-
dimensional equivalent to eigenvectors, can be obtained from the eigenvectors
of K. Let vi denote the ith eigenvector of K with elements Vij and 0;(t*) the
jth order Legendre polynomial. The ith eigenfunction of the CF is then [15]

Note that 0;(t*) is not evaluated for any particular age, but includes polynomi-
als of the standardized age t*. Hence, *i is a continuous, polynomial function
in t*. As discussed by Kirkpatrick et al. [15], eigenfunctions of genetic CF
are especially of interest, as they represent possible deformations of the mean
(growth) trajectory which can be effected by selection, while the correspond-
ing eigenvalues describe the amount of genetic variation in that direction. In
particular, the eigenfunction associated with the largest eigenvalue gives the
direction in which the mean trajectory will change most rapidly.

Fitting a CF to order k requires k(k + 1)/2 coefficients, i.e. covariances
between random regression coefficients, to be estimated, and gives estimates
of the first k eigenfunctions and eigenvalues of the CF. In some instances,
one or several eigenvalues of the CF may be close to zero or small compared
to the other eigenvalues. This implies that we require a kth order fit to
model the shape of the (growth) curve adequately, but that a subset of m
directions (= eigenfunctions) suffices. In other words, we might obtain a more
parsimonious fit of the CF by estimating a reduced rank coefficient matrix,
forcing k - m eigenvalues of K to be zero.

Consider the Cholesky decomposition of K, pivoting on the largest diagonal

where L is a lower diagonal matrix with diagonal elements of unity, li the ith
column vector of L, and D is a diagonal matrix. For a covariance matrix K, the



ith element of D, di, can be interpreted as the conditional variance of variable
i, given variables 1, ... , i -1. A reparameterization to the non-zero off-diagonal
elements of L and the diagonal elements of D has been advocated for REML
estimation of covariance components to remove constraints on the parameter
space or improve rate of convergence in an iterative estimation scheme [6, 18,
25!. Other parameterizations in this context, based on the eigenstructure of the
covariance matrix, have been considered by Pinheiro and Bates !26!.
An alternative form of the Cholesky decomposition is K = L*L*’ where

L* has diagonal elements 1*i = !2. L* is often interpreted as K1/2. The
eigenvalues of the power of a matrix are equal to the power of the eigenvalues of
the matrix, and the eigenvalues of a triangular matrix are equal to its diagonal
elements (5!. Hence, the estimate of K can be forced to have rank m by assuming
elements d,,,,+1 to dk in equation (9) are zero (elements di are assumed to be
in descending order). This yields a modified matrix

The vectors li corresponding to the zero di are then not needed, i.e. K+ is
described by km &mdash; m(m &mdash; 1)/2 parameters, m elements di and (k - 1)m -
m(m &mdash; 1)/2 elements of lij (j > i) of the li. Clearly, this is not equivalent
to fitting a (full rank) CF to the order m (which would involve m(m + 1)/2
parameters) - for instance for k = 4 and m = 2 we fit a cubic regression
assuming there are only two independent directions in which the trajectory
is likely to change, while for k = m = 2 we fit a linear regression.

Strictly speaking, equation (6) has to be of full rank. Hence, for practical
computations, di are set to a small positive value (e.g. 10-4). Alternatively, a
REML algorithm which allows for a semi positive definite covariance matrix
of random effects could be employed, c.f. Harville [8] or Frayley and Burns !3!.
Obviously, this parameterization can also be used to estimate reduced rank
covariance matrices for finite-dimensional, multivariate analyses.

3. APPLICATION

3.1. Material and methods

Meyer and Hill [24] fitted covariance functions to January weights of 913 beef
cows, weighed from 2 to 6 years of age, 2 795 records in total with up to
five records per cow available. Their analysis used age at weighing in years
and fitted measurement errors and fixed effects for each age separately. These
data were re-analysed using the random regression model and fitting age at
weighing in months. Analyses were carried out using program DxMRR [23],
employing a derivative-free algorithm to maximize log G.

There were a total of 22 ages in the data, ranging from 19 to 70 months.
Figure 1 gives the mean weight and number of records for each age class. Anal-
yses were carried out fitting a separate measurement error variance component
for each year of age (five variances). Fixed effects fitted were year-paddock of



weighing subclasses (86 levels), year of birth effects (16 levels) and a cubic re-
gression on age at weighing. The model for fixed effects was ’univariate’, i.e.
the effects were assumed to be similar for cows of all ages. Additive genetic
and permanent environmental covariance functions were fitted to the same
order throughout (kA = kR = k). Orders of fit considered ranged from 1 to 6.
In addition, the usual ’repeatability model’ was fitted, i.e. a CF model with
k = 1 and a single measurement error variance, assumed to be the same for all
ages.

For each order of fit, the number of non-zero eigenvalues allowed for each
coefficient matrix to be estimated was set to the same value (r) for KA and

KR, considering values of r < k of 1 to 3. In several instances, analyses resulted
in estimates of KR with one small eigenvalue. In these cases, the rank of KR
was reduced by one. In every case, this yielded a further improvement in log
G when continuing the analysis, i.e. earlier convergence had been to a false
maximum as the search procedure had become ’stuck’ at the bounds of the
parameter space.

In general, analyses took a considerable time to converge, markedly longer
for an order of fit of k than for a comparable k-variate, finite-dimensional
analysis. Furthermore, several restarts were required for each analysis before
likelihoods stabilized. Convergence was especially slow when attempting to
estimate ’unnecessary’ parameters, i.e. an order of fit or rank of CF with one
or more eigenvalues close to zero.



3.2. Results

3.2.1. Likelihoods

Maximum likelihood values from all analyses together with eigenvalues of
the estimated coefficient matrices and estimates of the measurement error
variances are summarized in table 7. Clearly, a repeatability model (first line)
was inappropriate in this case, estimates of o,2 (for k = 1) being considerably
higher for older cows than for 2-year-old cows. Forcing the rank r of an
estimated coefficient matrix - and thus CF - to be 1 is equivalent to the
assumption that all corresponding correlations have a value of unity. For r = 1
and k > 1, the higher order coefficients then model heterogeneity of variances.

For all orders of fit, increasing r from 1 to 2 yielded significant increases
in log G. Increasing r further to 3, however, did not raise log G significantly,
increases of 5.33 (k = 5) and 5.75 (k = 6) being outweighed by the number
of additional parameters (6 and 8, respectively). For r = 2, log G increased
significantly until k reached 4. Estimated CFs for this model were

with ti denoting the ith standardized age. When fitting polynomials, however,
we should also examine an order of fit of k + 2, i.e. the next order of fit with
the same type (even versus uneven) of exponent, as an odd-degree polynomial
is likely to contribute little when an even-degree polynomial fits the data

(4!. Indeed, while adding a quartic coefficient (k = 5) did not increase log G
significantly over a cubic polynomial (k = 4), fitting a quintic term (k = 6)
did.

Fitting years rather than months of age as meta-meter for the CFs, Meyer
and Hill [24] found log G not to increase significantly beyond k = 2. As shown in
figure 1, there was only a small spread of ages within each year, i.e. the change
in scale was expected to have little effect on estimates. The model employed by
Meyer and Hill !24!, however, was multivariate, i.e. fitted separate fixed effects
for each year of age. Presumably, the stronger trend in covariances observed in
this analysis can be attributed to less variation being removed by fixed effects.
In addition, likelihood ratio tests were carried out considering full rank CFs
and the associated number of parameters.

3.2.2. Phenotypic variation

Figure 2 shows the estimated phenotypic standard deviations for the ages
in the data. For k = 1, deviations from a horizontal line reflected differences in





estimates of QE over years. Estimates for k > 3 were similar, the cubic term for
k > 4 causing estimates for 6-year-old cows to rise sharply. As shown in table I,
this was accompanied by estimates of a;5 of zero, i.e. presumably to some extent
due to a restriction imposed on the parameter space, forcing QE > 0. Except
for these last age classes, estimates agreed closely with those from a finite-
dimensional multivariate analysis treating records at different years of age as
separate traits, which were 40.0, 60.5, 65.8, 67.3 and 71.0 (kg) for average ages
of 20.3, 32.3, 44.3, 56.2 and 68.2 months, respectively [24].

3.2.3. Eigenfunctions

As for phenotypic standard deviations, estimates of the first eigenvalue
(table I! and corresponding eigenfunction of A (figure 3) were similar for
orders of fit k > 3. Values of the eigenfunction for individual ages were roughly
proportional to the genetic variance for the age, as determined from the

corresponding estimate of genetic CF ,A. Positive values throughout imply
that selection for increased weight at any age is likely to increase weight at
all other ages. Estimates for the second eigenvalue and -function, however,
changed considerably from k = 3, 4 to k = 5, 6, in particular for r = 3. This
was accompanied by a significant increase in log G from k = 4 to k = 5 and
from k = 5 to k = 6 for r = 3 but not r = 2. Eigenvalues of estimates of A and
R up to orders of fit of k = 4 were similar to those reported by Meyer and Hill
!24!, suggesting that the third sizeable eigenvalues appearing or k ) 5 might be
an artefact of the order of the polynomial function and the ’univariate’ fixed
effects part of the model of analysis.



3.2.4. Genetic covariances

Figure 4 shows genetic covariances obtained from estimates of ,A for k = 3, 6
(r = 3), evaluated for the range of ages spanned by data. For k = 3 and k = 4,
the resulting surfaces were very smooth, clearly following a quadratic and cubic
function, while for k > 5 surfaces became ’wiggly’, following the data more
closely. A peak in genetic variance at 4 years of age with a subsequent decline
was consistent with estimates of 672, 1277, 2 221, 722 and 1988 (kg2) for ages 2,
3, 4, 5 and 6 years, respectively, from a finite-dimensional, multivariate analysis
[24].

Corresponding genetic correlations for k = 4 and 6 are shown in figure 5.
For k = 4, the surface was smooth with a ’plateau’ close to unity for ages
from 3 years onwards, and correlations between weights at 2 years and later
ages decreasing with increasing time between measurements. This agrees with
our biological expectations for the trait under consideration. In contrast,
correlations for k = 5 (not shown) and k = 6, fluctuated considerably, especially
at the edges of the surface, greatly magnifying sampling variation in the genetic
covariances for these orders of fit, exhibited in figure lf.

3.2.5. Permanent environmental variation

As shown in figure 6, estimates of 7Z produced permanent environmental
variances which, except for weights at 6 years of age, increased considerably less
over time than their genetic counterparts. Moreover, surfaces were considerably
smoother for higher orders of fit (k > 4). For the last ages in the data,
estimates of the permanent environmental variances increased dramatically,
forcing estimates of the corresponding measurement error variance to zero,



and causing the increase in estimated phenotypic standard deviation observed
above. While observation in the four age classes concerned were more variable
than in the earlier years, this appears to be spurious and can only be attributed
to smaller numbers of records and the large influence data points at the
extremes can have on the estimates of regression coefficients.



4. DISCUSSION

There is a wealth of statistical literature on modelling of ’repeated records’
in general, and structured covariance matrices in particular (see, for instance,
Lindsey [17] or Vonesh and Chinchilli [34] and their extensive bibliographies).
Applications in animal breeding, however, have until recently been limited to
the extremes of a simple repeatability model or an unstructured, multivariate
model. An added complication of quantitative genetic analyses, not shared by
other fields, is the fact that we want to partition the between subject variation
into its genetic and environmental components.

Covariance function and random regression models enable us to model
the covariance structure of such records more adequately, alleviating the
problems associated with an oversimplification (repeatability model) or an over-
parameterization (multivariate model) for traits which change gradually along
some continuous scale, such as time. Moreover, each source of variation, genetic
or environmental, can be modelled. While a regression model is usually thought
of in the context of modelling trends in means, covariance functions have
been perceived to describe and smooth dispersion matrices. When regression
coefficients are treated as random, however, they implicitly impose a covariance
structure among the observations. Thus the two approaches converge and
indeed, as shown, the covariance function model of Kirkpatrick et al. [15] is



equivalent to a special class of random regression models. While not common
practice, covariance functions can be formulated for the sources of variation
modelled by random regression coefficients in any RR model.

Regression models, fixed or random, require some assumptions about the
parametric form of the regression equation. Regressing on orthogonal polyno-
mials of time (or any other meta-meter) in order to fit Kirkpatrick et al.’s [15]
CF model, only invokes the assumption that the trajectory to be modelled can
be described by such polynomials. As shown above, in a maximum likelihood
framework we can let the data determine the order of polynomial fit required
and the rank of the CF which suffices.

Likelihood ratio tests carried out to determine the order of fit of covariance
functions required should account for the fact that we are at the boundary of the
parameter space and thus have ’non-standard’ conditions where the likelihood
ratio test criterion A does not follow a XZ distribution !29!, when testing whether
additional random regression coefficients might have zero variance. Stram and
Lee [31] considered tests of variance components for longitudinal data in a
mixed model. They showed that the large sample distribution of A is a 50:50
mixture of x2 distributions with q and q + 1 degrees of freedom, respectively,
when we test the hypothesis that a matrix D is a q x q positive definite matrix
against the hypothesis that it is a (q + 1) x (q + 1) matrix. Hence ’naive’ tests,
assuming A has a x2 distribution with degrees of freedom equal to the number of
parameters tested (q+1) are too conservative. Stram and Lee [31] argue though
that for such simple tests (of one additional parameter), resulting biases are
likely to be small. In practical applications, the error probability a has been
’doubled’ to account for this conservatism, i.e. A has been contrasted against
X!+1,2Ü’ instead of Xq+,,,,, [27].

Alternatively, we can decide on an order of fit a priori or decide only to
use the first n eigenfunction of the CF to describe the covariance structure.
This choice may depend on the computational resources available, or may be
influenced by the knowledge that higher order polynomials are notorious for
magnifying small sampling errors and producing ’wiggly’ functions. Even if
this choice does not maximize the likelihood, we are likely to obtain more
appropriate estimates than under the simple repeatability model when this
clearly does not apply, both in terms of estimates of genetic parameters and
prediction of breeding values. Further research is required to develop guidelines
as how to choose the ’best’ model for particular situations.

Great care has to be taken when defining and interpreting RR models. As
shown in the numerical example, data points at the extremes of the independent
variable can have a big influence on estimates of regression coefficients, yielding
quite erratic estimates of CF or measurement error variances. Various authors
estimated genetic parameters for test day milk yields of dairy cows fitting a
random regression model. In most cases, resulting heritability estimates were
high at the beginning and end of lactation and low in the middle of lactation,
in marked contrast to previous estimates under a ’finite-dimensional’ model,
and thus regarded with justified scepticism ([10, 14]; Van der Werf et al.,
unpublished). This emphasizes the sensitivity of RR models to the effects and
orders of CFs fitted. It has to be stressed that judicious modelling of fixed
and random effects, careful choice of the orders of fit of CFs, and meticuluous
screening of the data are paramount for successful RR model analyses.



As emphasized by Kirkpatrick et al. !15!, many families of functions can be
employed in the estimation of CF - while the choice of orthogonal function
does not affect the estimate of the CF at the ages in the data, it does
affect interpolation. Following their choice, we have used Legendre polynomials.
These, however, generate a weight function with comparatively heavy emphasis
on records at the outer parts of the interval for which they are defined

(compared to, say, weights following a kernel from a Normal distribution)
(!7!; section 3.3). Other functions might thus be more suitable. Alternatively,
some scaling of the observed ages can be envisaged, for instance, a logarithmic
transformation should reduce the impact of few observations on very old
animals.

5. CONCLUSIONS

Random regression models provide a valuable tool to model repeated records
in animal breeding adequately, especially if traits measured change gradually.
They allow covariance functions to be formulated which describe genetic and
environmental covariances among records over time. Moreover, they impose
a structure on covariance matrices. Fitting regressions on orthogonal polyno-
mials of time (or equivalent) we can estimate genetic covariance functions as
suggested by Kirkpatrick et al. !15!, whose eigenvalues and eigenfunctions pro-
vide an insight into the way selection is likely to affect the mean trajectory
of the records considered and can be used to characterize differences between

populations, e.g. breeds of animals.

6. SOFTWARE

A program is available for the estimation of covariance functions by REML,
fitting a random regression animal model, as described above. ’DxMRR’ is
written in Fortran 90 and is part of the DFREML package, version 3.0; see Meyer
[23] for further details. This is contained on the CD-ROM of the Sixth World
Congress on Genetics Applied to Livestock Production, or can be downloaded
from the DFREML home page at

http: //agbu.une.edu.au/&dquo;kmeyer/dfreml.html.
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