
Estimating Dependency Structure as a Hidden

Variable

Marina Meill and Michael I. Jordan
{mmp, jordan}@ai.mit.edu

Center for Biological & Computational Learning

Massachusetts Institute of Technology

45 Carleton St. E25-201

Cambridge, MA 02142

Abstract

This paper introduces a probability model, the mixture of trees that can

account for sparse, dynamically changing dependence relationships. We

present a family of efficient algorithms that use EM and the Minimum

Spanning Tree algorithm to find the ML and MAP mixture of trees for a

variety of priors, including the Dirichlet and the MDL priors.

1 INTRODUCTION
A fundamental feature of a good model is the ability to uncover and exploit independencies

in the data it is presented with. For many commonly used models, such as neural nets and

belief networks, the dependency structure encoded in the model is fixed, in the sense that it

is not allowed to vary depending on actual values of the variables or with the current case.

However, dependency structures that are conditional on values of variables abound in the

world around us. Consider for example bitmaps of handwritten digits . They obviously

contain many dependencies between pixels; however, the pattern of these dependencies

will vary across digits. Imagine a medical database recording the body weight and other

data for each patient. The body weight could be a function of age and height for a healthy
person, but it would depend on other conditions if the patient suffered from a disease or

was an athlete.

Models that are able to represent data conditioned dependencies are decision trees and

mixture models, including the soft counterpart of the decision tree, the mixture of experts.

Decision trees however can only represent certain patterns of dependecy, and in particular

are designed to represent a set of conditional probability tables and not a joint probability

distribution. Mixtures are more flexible and the rest of this paper will be focusing on one

special case called the mixtures of trees.

We will consider domains where the observed variables are related by pairwise dependencies

only and these dependencies are sparse enough to contain no cycles. Therefore they can

Estimating Dependency Structure as a Hidden Variable 585

be represented graphically as a tree. The structure of the dependencies may vary from
one instance to the next. We index the set of possible dependecy structures by a discrete

structure variable z (that can be observed or hidden) thereby obtaining a mixture.

In the framework of graphical probability models, tree distributions enjoy many properties

that make them attractive as modelling tools: they have a flexible topology, are intuitively

appealing, sampling and computing likelihoods are linear time, simple efficient algorithms

for marginalizing and conditioning (O(1V12) or less) exist. Fitting the best tree to a given
distribution can be done exactly and efficiently (Chow and Liu, 1968). Trees can capture

simple pairwise interactions between variables but they can prove insufficient for more
complex distributions. Mixtures of trees enjoy most of the computational advantages of

trees and, in addition, they are universal approximators over the space of all distributions.

Therefore, they are fit for domains where the dependency patterns become tree like when a
possibly hidden variable is instantiated.

Mixture models have been extensively used in the statistics and neural network literature.

Of relevance to the present work are the mixtures of Gaussians, whose distribution space, in
the case of continuous variables overlaps with the space of mixtures of trees. Work on fitting

a tree to a distribution in a Maximum-Likelihood (ML) framework has been pioneered by

(Chow and Liu, 1968) and was extended to poly trees by (Pearl, 1988) and to mixtures
of trees with observed structure variable by (Geiger, 1992; Friedman and Goldszmidt,

1996). Mixtures of factorial distributions were studied by (Kontkanen et al., 1996) whereas

(Thiesson et aI., 1997) discusses mixtures of general belief nets. Multinets (Geiger, 1996)
which are essentially mixtures of Bayes nets include mixtures of trees as a special case.

It is however worth studying mixtures of trees separately for their special computational

advantages.

This work presents efficient algorithms for learning mixture of trees models with unknown
or hidden structure variable. The following section introduces the model; section 3 develops
the basic algorithm for its estimation from data in the ML framework. Section 4 discusses

the introduction of priors over mixtures of trees models and presents several realistic

factorized priors for which the MAP estimate can be computed by a modified versions of
the basic algorithm. The properties of the model are verified by simulation in section 5 and

section 6 concludes the paper.

2 THE MIXTURE OF TREES MODEL
In this section we will introduce the mixture of trees model and the notation that will be

used throughout the paper. Let V denote the set of variables of interest. According to the
graphical model paradigm, each variable is viewed as a vertex of a graph. Let Tv denote

the number of values of variable v E V, XV a particular value of V, XA an assignment to the
variables in the subset A of V. To simplify notation Xv will be denoted by x.

We use trees as graphical representations for families of probability distributions over V
that satisfy a common set of independence relationships encoded in the tree topology. In

this representation, an edge of the tree shows a direct dependence, or, more precisely, the

absence of an edge between two variables signifies that they are independent, conditioned
on all the other variables in V. We shall call a graph that has no cycles a tree I and shall
denote by E the set of its (undirected) edges. A probability distribution T that is conformal

with the tree (V, E) is a distribution that can be factorized as:

()
IT(u,v)EE Tuv (xu, xv)

T X =
IT T, (x)degv-l

vEV v v

(1)

Here deg v denotes the degree of v, e.g. the number of edges incident to node v E V. The

l In the graph theory literature, our definition corresponds to a forest. The connected components
of a forest are called trees.

586 M. MeillJ and M. I. Jordan

factors Tuv and Tv are the marginal distributions under T:

Tuv(xu,xv) = 2: T(xu , xv,XV-{u ,v}), Tv(xv) = 2: T(xv,xv-{v}) ' (2)

XV-{u.v} Xv-tv}

The distribution itself will be called a tree when no confusion is possible. Note that a tree

distribution has for each edge (u, v) E E a factor depending on xu, Xv onlyl If the tree is

connected, e.g. it spans all the nodes in V , it is often called a spanning tree.

An equivalent representation for T in terms of conditional probabilities is

T(x) = II Tvlpa(v)(xvlxpa(v»)
vEV

(3)

The form (3) can be obtained from (1) by choosing an arbitrary root in each connected

component and recursively substituting Tvt';V) by Tvlpa(v) starting from the root. pa(v)

represents the parent of v in the thus directed tree or the empty set if v is the root of

a connected component. The directed tree representation has the advantage of having

independent parameters. The total number of free parameters in either representation is

E(u,v)EET rurv - EVEv(degv - l)rv .

Now we define a mixture of trees to be a distribution of the form

m

Q(X) = 2: AkTk(x); Ak 2: 0, k = 1, . .. , m; (4)
k=1

From the graphical models perspecti ve, a mixture of trees can be viewed as a containing an

unobserved choice variable z, taking value k E {I, ... m} with probability Ak. Conditioned

on the value of z the distribution of the visible variables X is a tree. The m trees may have
different structures and different parameters. Note that because of the structure variable,

a mixture of trees is not properly a belief network, but most of the results here owe to the

belief network perspective.

3 THE BASIC ALGORITHM: ML FITIING OF MIXTURES OF
TREES
This section will show how a mixture of trees can be fit to an observed dataset in the Maxi

mum Likelihood paradigm via the EM algorithm (Dempster et al., 1977). The observations
are denoted by {xl , x2 , ... , xN}; the corresponding values of the structure variable are
{zi,i=I, ... N}.

Following a usual EM procedure for mixtures, the Expectation (E) step consists in estimating
the posterior probability of each tree to generate datapoint xi

Pr[zi = klxl , .. . ,N, model] = 'Yk(i) = AkTk(x:).
Lkl AklTk (x')

(5)

Then the expected complete log-likelihood to be maximized by the M step of the algorithm
is

m N

E[Ic Ixl , ... N , model] L rk[log Ak + L pk(xi) 10gTk(xi)] (6)
k=1 i=1

N

rk = 2: 'Yk(X i), (7)

i=1

The maximizing values for the parameters A are Akew = rk/ N. To obtain the new

distributions Tk, we have to maximize for each k the expression that is the negative of the

Estimating Dependency Structure as a Hidden Variable

Figure 1: The Basic Algorithm: ML Fitting of a Mixture of Trees
Input:Dataset {xl, ... xN}

Initial model m, Tk, ,\k, k = I, . .. m

Procedure MST(weights) that fits a maximum weight spanning tree over V
Iterate until convergence

Estep: compute'Y~, pk(X') fork = I, . .. m, i= 1, . . . Nby(5),(7)
Mstep:

Ml.

M2.

MJ.

M4.

M5.

'\k +- rk/N, k = I, ... m

compute marginals P:, p!v, U, v E V, k = I , ... m

compute mutual information I!v u, v E V, k = I , ... m

call MST({ I!v }) to generate ETk for k = I, ... m

T!v +- p!v, ; T: +- P: for (u, v) E ETk, k = I, ... m

crossentropy between pk and Tk.

N

L pk(xi) 10gTk(xi)

i=l

587

(8)

This problem can be solved exactly as shown in (Chow and Liu, 1968). Here we will

give a brief description of the procedure. First, one has to compute the mutual information
between each pair of variables in V under the target distribution P

'"" () PUtl(xu , Xtl)
JUti = Jvu = L.J Puv Xu, Xv log Pu(xu)PtI(xv)' u, v E V, u f=v .

X",X v

(9)

Second, the optimal tree structure is found by a Maximum Spanning Tree (MST) algorithm

using JUti as the weight for edge (u, v), \lu, v E V.Once the tree is found, its marginals Tutl

(or Tul v), (u, v) E ET are exactly equal to the corresponding marginals PUti of the target

distribution P. They are already computed as an intermediate step in the computation of

the mutual informations JUti (9).

In our case, the target distribution for Tk is represented by the posterior sample distribution
pk. Note that although each tree fit to pk is optimal, for the encompassing problem of

fitting a mixture of trees to a sample distribution only a local optimum is guaranteed to be

reached. The algorithm is summarized in figure 1.

This procedure is based on one important assumption that should be made explicit now. It

is the Parameter independence assumption: The distribution T:1pa(tI) for any k, v and

value of pa(v) is a multinomial with rv - 1 free parameters that are independent of any

other parameters of the mixture.

It is possible to constrain the m trees to share the same structure, thus constructing a truly

Bayesian network. To achieve this, it is sufficient to replace the weights in step M4 by

Lk J~tI and run the MST algorithm only once to obtain the common structure ET. The

tree stuctures obtained by the basic algorithm are connected. The following section will

give reasons and ways to obtain disconnected tree structures.

4 MAP MIXTURES OF TREES
In this section we extend the basic algorithm to the problem of finding the Maximum a

Posteriori (MAP) probability mixture of trees for a given dataset. In other words, we will

consider a nonuniform prior P[mode/] and will be searching for the mixture of trees that

maximizes

log P[model\x1 , .. . N] = 10gP[xl, ... N\model] + log P[model] + constant. (10)

Factorized priors The present maximization problem differs from the ML problem solved

in the previous section only by the addition of the term log P[model]. We can as well

588 M. Meilii and M. l. Jordan

approach it from the EM point of view, by iteratively maximizing

E [logP[modelJxl , ... N, ZI, . .. NJ] = E[lc{xl , ... N, zl , ... NJmodel)] + 10gP[model] (11)

It is easy to see that the added term does not have any influence on the E step,which

will proceed exactly as before. However, in the M step, we must be able to successfully

maximize the r.h.s. of (11). Therefore, we look for priors of the form

m

P[model] = P[AI, .. . m] II P[Tkl (12)

k=1

This class of priors is in agreement with the parameter independence assumption and

includes the conjugate prior for the multinomial distribution which is the Dirichlet prior. A

Dirichlet prior over a tree can be represented as a table of fictitious marginal probabilities
P~~ for each pair u , v of variables plus an equivalent sample size Nt that gives the strength

of the prior (Heckerman et al., 1995). However, for Dirichlet priors, the maximization over

tree structures (corresponding to step M4) can only be performed iteratively (Meilli et al.,

1997).

MDL (Minimum Description Length) priors are less informative priors. They attempt

to balance the number of parameters that are estimated with the amount of data available,
usually by introducing a penalty on model complexity. For the experiments in section 5

we used edge pruning. More smoothing methods are presented in (Meilli et al., 1997). To

penalize the number of parameters in each component we introduce a prior that penalizes
each edge that is added to a tree, thus encouraging the algorithm to produce disconnected

trees. The edge pruning prior is P [T] <X exp [-(3 L:utJ E ET L\utJ] . We choose a uniform

penalty L\utJ = 1. Another possible choice is L\utJ = (r u - 1)(rtJ - 1) which is the number
of parameters introduced by the presence of edge (u , v) w.r.t. a factorized distribution.

Using this prior is equivalent to maximizing the following expression in step M4 of the

Basic Algorithm (the index k being dropped for simplicity)

argmax L: max[O, r1utJ - (3 ~tJ] = argmax L: WutJ

ET utJEET ET utJEET

(13)

5 EMPIRICAL RESULTS
We have tested our model and algorithms for their ability to retrieve the dependency
structure in the data, as classifiers and as density estimators.

For the first objective, we sampled 30,000 datapoints from a mixture of 5 trees over 30

variables with rtJ = 4 for all vertices. All the other parameters of the generating model
and the initial points for the algorithm were picked at random. The results on retrieving

the original trees were excellent: out of 10 trials, the algorithm failed to retrieve correctly

only 1 tree in 1 trial. This bad result can be accounted for by sampling noise. The tree that
wasn't recovered had a A of only 0.02. The difference between the log likelihood of the

samples of the generating tree and the approximating tree was 0.41 bits per example.

For classification, we investigated the performance of mixtures of trees on a the Australian
Credit dataset from the UCI repository2. The data set has 690 instances of 14-dimensional

attribute vectors. Nine attributes are discrete (2 - 14 values) and 5 are continuous. The

class variable has 6 values. The continuous variables were discretized in 3 - 5 uniform bins
each. We tested mixtures with different values for m and for the edge pruning parameter (3.

For comparison we tried also mixtures of factorial distributions of different sizes. One tenth

of the data, picked randomly at each trial, was used for testing and the rest for training. In
the training phase, we learned a MT model of the joint distribution of all the 15 variables.

2 http://www.ics . uci.edu/-mlearn/MLRepository.html

Estimating Dependency Structure as a Hidden Variable 589

Figure 2: Performance of different algorithms on the Australian Credit dataset. - is mixture
of trees with j3 = 10, - - is mixture of trees with beta = 11m, -.- is mixture of factorial
distributions.

88

87

86

(385
C1)

584
u

~83
'?

82 I

81

800

I

I'

I '

.. -
I

5 10

...

15
m

,
, ,

-, , ,
~ 'i

t7
~

..,

20 25 30

Table 1: a) Mixture of trees compression rates [log lte&t! Nte&t1. b) Compression rates
(bits/digit) for the single digit (Digit) and double digit (Pairs) datasets. MST is mixtures of

trees, MF is a mixture of factorial distributions, BR is base rate model, H-WS is Helmholtz
Machine trained with the wake-sleep algorithm (Frey et aI., 1996), H-MF is Helmholtz
Machine trained with the Mean Field approximation, FV is a fully visible bayes net.
(*=best)

(a) (b)

Algorithm Digits Pairs

m Digits Pairs

16 *34.72 79.25
32 34.48 *78.99
64 34.84 79.70

128 34.88 81 .26

gzip 44.3 89.2

BR 59.2 118.4
MF 37.5 92.7
H-MF 39.5 80.7
H-WS 39.1 80.4
FV 35.9 *72.9

MT *34.7 79.0

In the testing phase, the output of our classifier was chosen to be the class value with the

largest posterior probability given the inputs. Figure 2 shows that the results obtained for

mixtures of trees are superior to those obtained for mixtures of factorial distributions.For
comparison, correct classification rates obtained and cited in (Kontkanen et aI., 1996) on
training/test sets of the same size are: 87.2next best model (a decision tree called CaI50).

We also tested the basic algorithm as a density estimator by running it on a subset of
binary vector representations of handwritten digits and measuring the compression rate.

One dataset contained images of single digits in 64 dimensions, the second contained 128
dimensional vectors representing randomly paired digit images. The training, validation and
test set contained 6000, 2000, and 5000 exemplars respectively. The data sets, the training

conditions and the algorithms we compared with are described in (Frey et aI., 1996). We

tried mixtures of 16, 32, 64 and 128 trees, fitted by the basic algorithm. The results (shown
in table1 averaged over 3 runs) are very encouraging: the mixture of trees is the absolute

winner for compressing the simple digits and comes in second as a model for pairs of digits.

This suggests that our model (just like the mixture of factorized distributions) is able to
perform good compression of the digit data but is unable to discover the independency in
the double digit set.

590 M. Meilli and M. I. Jordan

6 CONCLUSIONS
This paper has shown a method of modeling and exploiting sparse dependency structure

that is conditioned on values of the data. By using trees, our method avoids the exponential

computation demands that plague both inference and structure finding in wider classes of

belief nets. The algorithms presented here are linear in m and N and quadratic in I V I.
Each M step is performing exact maximization over the space of all the tree structures and

parameters. The possibility of pruning the edges of the components of a mixture of trees

can playa role in classification, as a means of automatically selecting the variables that are

relevant for the task.

The importance of using the right priors in constructing models for real-world problems
can hardly be understated. In this context, the present paper has presented a broad class of
priors that are efficiently handled in the framework of our algorithm and it has shown that

this class includes important priors like the MDL prior and the Dirichlet prior.

Acknowledgements

Thanks to Quaid Morris for running the digits and structure finding experiments and to

Brendan Frey for providing the digits datasets.

References

Chow, C. K. and Liu, C. N. (1968). Approximating discrete probability distributions with dependence

trees. "IEEE Transactions on Information Theory ", IT-14(3):462-467.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data

via the EM algorithm. Journal of the Royal Statistical Society, B, 39: 1-38.

Frey, B. J., Hinton, G. E., and Dayan, P. (1996). Does the wake-sleep algorithm produce good density

estimators? In Touretsky, D., Mozer, M., and Hasselmo, M., editors, Neural Information

Processing Systems, number 8, pages 661-667. MIT Press.

Friedman, N. and Goldszmidt, M. (1996). Building classifiers using Bayesian networks. In Proceed
ings of the National Conference on Artificial Intelligence (AAAI 96), pages 1277-1284, Menlo

Park, CA. AAAI Press.

Geiger, D. (1992). An entropy-based learning algorithm of bayesian conditional trees. In Proceedings
of the 8th Conferenceon Uncertainty in AI, pages 92-97. Morgan Kaufmann Publishers.

Geiger, D. (1996). Knowledge representation and inference in similarity networks and bayesian

multinets. "Artificial Intelligence", 82:45-74.

Heckerman, D., Geiger, D., and Chickering, D. M. (1995). Learning Bayesian networks: the

combination of knowledge and statistical data. Machine Learining, 20(3): 197-243.

Kontkanen, P., Myllymaki, P., and Tirri, H. (1996). Constructing bayesian finite mixture models by the

EM algorithm. Technical Report C-1996-9, Univeristy of Helsinky. Department of Computer

Science.

Meilli, M., Jordan, M. I., and Morris, Q. D. (1997). Estimating dependency structure as a hidden

variable. Technical Report AIM-1611 ,CBCL-151, Massachusetts Institute of Technology,

Artificial Intelligence Laboratory.

Pearl, 1. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufman Publishers, San Mateo, CA.

Thiesson, B., Meek, C., Chickering, D. M., and Heckerman, D. (1997). Learning mixtures of Bayes

networks. Technical Report MSR-POR-97-30, Microsoft Research.

