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Abstract

This paper addresses the pointwise estimation of differential properties of a smooth manifold S —a curve in the

plane or a surface in 3D— assuming a point cloud sampled over S is provided. The method consists of fitting

the local representation of the manifold using a jet, by either interpolating or approximating. A jet is a truncated

Taylor expansion, and the incentive for using jets is that they encode all local geometric quantities —such as

normal or curvatures.

On the way to using jets, the question of estimating differential properties is recasted into the more general frame-

work of multivariate interpolation/approximation, a well-studied problem in numerical analysis. On a theoretical

perspective, we prove several convergence results when the samples get denser. For curves and surfaces, these

results involve asymptotic estimates with convergence rates depending upon the degree of the jet used. For the

particular case of curves, an error bound is also derived. To the best of our knowledge, these results are among

the first ones providing accurate estimates for differential quantities of order three and more. On the algorithmic

side, we solve the interpolation/approximation problem using Vandermonde systems. Experimental results for sur-

faces of R
3 are reported. These experiments illustrate the asymptotic convergence results, but also the robustness

of the methods on general Computer Graphics models.

Keywords. Meshes, Point Clouds, Differential Geometry,

Interpolation, Approximation.

1. Introduction

1.1. Estimating differential quantities

Several applications from Computer Vision, Computer

Graphics, Computer Aided Design or Computational Ge-

ometry requires estimating local differential quantities. Ex-

ample such applications are surface segmentation, surface

smoothing / denoising, surface reconstruction, shape design.

In any case, the input consists of a point cloud or a mesh.

Most of the time, estimating first and second order differ-

ential quantities, that is the tangent plane and curvature-

related quantities, is sufficient. However, applications in-

volving shape analysis 16, 26 require estimating third order

differential quantities.
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For first to third order differential quantities, a wealth of

different estimators can be found in the vast literature of

applied geometry 24. Most of these are adaptations to the

discrete setting of smooth differential geometry results. For

example, several definitions of normals, principal directions

and curvatures over a mesh can be found in 32, 9. Ridges of

polyhedral surfaces as well as cuspidal edges of the focal

sets are computed in 33. Geodesics and discrete versions of

the Gauss-Bonnet theorem are considered in 25.

A striking fact about estimation of second order differ-

ential quantities —using conics and quadrics—- is that the

classification of Euclidean conics/quadrics is never men-

tioned. Another prominent feature is that few contributions

address the question of the accuracy of these estimates or

that of their convergence when the mesh or the sample points

get denser. The question of convergence is one prime impor-

tance since estimates do not always asymptotically behave

as one would expect. For example, it is proved in4 that the

angular defect of triangulations does not in general provide

information on the Gauss curvature of the underlying smooth

surface.

The following are provably good approximation results.
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In 1, an error bound is proved on the normal estimate to a

smooth surface sampled according to a criterion involving

the skeleton. The surface area of a mesh and its normal vec-

tor field versus those of a smooth surface are considered in
23. Asymptotic estimates for the normal and the Gauss cur-

vature of a sampled surface for several methods are given

in 22. In particular, a degree two interpolation is analyzed.

Based upon the normal cycle and restricted Delaunay trian-

gulations, an estimate for the second fundamental form of a

surface is developed in 8.

Deriving provably good differential operators is the goal

pursued in this paper. To motivate our guideline and before

presenting our contributions, we raise the following ques-

tion. Second order differential properties for plane curves are

almost always investigated using the osculating circle, while

principal curvatures of surfaces are almost always computed

using osculating paraboloids. Why not osculating parabolas

for curves and osculating ellipsoids or hyperboloids for sur-

faces? Before answering this question and to clarify the pre-

sentation, we recall some fundamentals.

1.2. Curves and surfaces, height functions and jets

It is well known 10, 31 that any regular embedded smooth

curve or surface can be locally written as the graph of a uni-

variate or bivariate function with respect to any z direction

that does not belong to the tangent space. We shall call such

a function a height function. Taking an order n Taylor expan-

sion of the height function over a curve yields:

f (x) = JB,n(x)+O(xn+1), (1)

with

JB,n(x) = B0 +B1x+B2x
2 +B3x

3 + . . .+Bnx
n. (2)

Similarly for a surface:

f (x,y) = JB,n(x,y)+O(||(x,y)||n+1), (3)

with

JB,n(x,y) =
n

∑
k=1

HB,k(x,y), HB,k(x,y) =
k

∑
j=0

Bk− j, jx
k− j

y
j.

(4)

Borrowing to the jargon of singularity theory 5 , the trun-

cated Taylor expansion JB,n(x) or JB,n(x,y) is called a de-

gree n jet, or n-jet. Since the differential properties of a n-

jet matches those of its defining curve/surface up to order

n, the jet is said to have a n order contact with its defining

curve or surface. This also accounts for the term osculating

jet —although osculating was initially meant for 2-jets. The

degree n-jet of a curve involves n + 1 terms. For a surface,

since there are i+1 monomials of degree i, the n-jet involves

Nn = 1+2+ · · ·+(n+1) = (n+1)(n+2)/2 terms. Notice

that when z direction used is aligned with the normal vec-

tor to the curve/surface, one has B1 = 0 or B10 = B01 = 0.

The osculating n-jet encloses differential properties of the

curve/surface up to order n, that is any differential quantity

of order n can be computed from the n-jet. In particular, the

tangent space can be computed from the 1-jet, the curvature

related information can be obtained from the 2-jet, locating

ridges require coefficients of the 3-jet, and so on. To clarify

the presentation, we summarize as follows:

Definition. 1 For a curve or surface:

• given a coordinate system, the osculating n-jet is the Tay-

lor expansion of the height function truncated at order n,

• the osculating n-jet is principal if the linear terms van-

ish in this coordinate system (i.e. the ordinate axis is the

normal direction of the manifold),

• an osculating conic/quadric is a conic/quadric whose 2-

jet matches that of the curve/surface (independently of a

given coordinate system),

• an osculating conic/quadric is degenerate if it is the graph

of its 2-jet,

• an osculating conic/quadric is principal if its 2-jet is prin-

cipal.

Degenerate osculating conics/quadrics are specific curves

and surfaces since:

Theorem. 1 2Chapter 15 There are 9 Euclidean conics and

17 Euclidean quadrics.

Observation. 1 The degenerate osculating conics to a

smooth curve are parabola or lines. The degenerate oscu-

lating quadrics to a smooth surface are either paraboloids

(elliptic, hyperbolic), parabolic cylinders, or planes.

Principal degenerate osculating conics and quadrics are

therefore respectively 2 out of 9 conics and 4 out of 17

quadrics. Degenerate stands for the fact that the quadratic

forms these conics/quadrics are defined with do not have full

ranks.

Principal degenerate osculating conics and quadrics are

related to the so-called Monge form of the curve or surface,

that is the local Taylor expansion of the curve/surface in the

Monge coordinate system. The Monge coordinate system of

a curve is defined by its tangent and normal vectors. For a

surface, the Monge coordinate system is such that the z axis

is aligned with the normal and the x,y axis are aligned with

the principal directions. In this particular system, the height

function is called the Monge form, and letting k1,k2 stand

for the principal curvatures, one has —with hot standing for

higher order terms:

f (x,y) =
1

2
(k1x

2 + k2y
2)+hot (5)

From these observations, the question we ended para-

graph 1.1 with can now be answered. By theorem 1 and

observation 1, using a general conic/quadric or a principal

degenerate one to approximate a curve or a surface does not
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make any difference. In both case and up to order two, the

local differential properties of the curve/surface, degenerate

conic/quadric, or full rank conic/quadric are identical. As

an example, consider Figure 1(a,b,c). Figure 1(a) features a

curve and its osculating circle. In (b), the osculating circle is

replaced by the principal osculating parabola —whose sym-

metry axis is the normal to C and whose curvature matches

that of C. At last, in (c) a general parabola locally approxi-

mates C. Its symmetry axis is not aligned with the normal to

C.

Summarizing our discussions so far, the rationale for fit-

ting the n-jet of a curve/surface is that this polynomial con-

tains all the differential information up to order n.

1.3. Interpolation, approximation and related variations

Our methodology to retrieve differential quantities consists

of fitting the osculating jet. The following variations need

to be discussed in order to state our contributions precisely.

The case of curves and surfaces being tantamount, our de-

scription focuses on surfaces. Assume we are given a set of

N points pi(xi,yi,zi), i = 1, . . . ,N in the neighborhood of a

given point p on the surface processed. Point p itself may

or may not be one of the N samples, and one can assume

without loss of generality that p is located at the origin of

the coordinate system used.

Interpolation versus approximation. Interpolating con-

sists of finding a polynomial that fits exactly a set of data

points. In our case and following Equation (3), let B index

a coefficient of the jet of the surface, and A index a coeffi-

cient of the jet sought. We aim at finding a n-jet JA,n such

that ∀i = 1, . . . ,N

f (xi,yi) = JB,n(xi,yi)+O(||(xi,yi)||
n+1) = JA,n(xi,yi). (6)

As a mnemonic, the reader may want to remind that index A

stands for the Answer to the fitting problem.

Approximation, on the other hand, gives up on exactness,

that is the graph of the jet sought may not contain the sample

points. We shall focus on least-square approximation, which

consists of minimizing the sum of the square errors between

the value of the jet and that of the function. The quantity to

be minimized is therefore

N

∑
i=1

(JA,n(xi,yi)− f (xi,yi))
2. (7)

The two problems can actually be written in the same ma-

trix form. To see why, let us write the jets in the polynomial

basis consisting of monomials xiy j . Example other basis that

could be used are the Bezier-Bernstein basis or the Newton

basis. We use the monomials since this basis is convenient

for the asymptotic analysis but also the design of effective

algorithms. Denote A be the Nn-vector of the coefficients of

the jet sought, that is

A = (A0,0,A1,0,A0,1, . . . ,A0,n)
t .

Denote B the N-vector of the ordinates, i.e. with zi =
f (xi,yi),

B = (z1,z2, . . . ,zN)t = (JB,n(xi,yi)+O(||(xi,yi)||
n+1))i=1,...,N .

Equations (6) and (7) yield the following N × Nn Vander-

monde matrix

M = (1,xi, yi, x
2
i , . . . , xiy

n−1

i , y
n
i )i=1,...,N . (8)

For the interpolation case, the number of points matches the

number of parameters, so that matrix M is square and Eq. (6)

can be written as MA = B. For the approximation case, M is

a rectangular N ×Nn matrix, and Eq. (7) is summarized as

min ||MA−B||2.

Choosing between interpolation and approximation de-

pends upon the problem tackled. For noisy datasets, approx-

imation is the method of choice. Otherwise, the alternative

depends of the relative values of the number of model pa-

rameters versus the number of available points. If the two

match one-another, a natural choice is interpolation. In any

case, fitting yields a linear system, so that numerical issues

arise. Facing these difficulties is the topic of section 2.

Mesh or meshless methods. An important difference be-

tween local geometry estimation algorithms is whether or

not they require some topological information —typically

the connectivity of a mesh. Mesh-based methods are usu-

ally faster. Meshless techniques are more general and better

suited for noisy datasets. A difficulty of the latter methods,

however, is to select the relevant points used to perform the

estimates. While one can always resort to heuristics of the

k-nearest-neighbors type, user defined parameters should be

avoided. This issue is addressed in section 5.

One or two stages methods. Fitting a 2-jet requires esti-

mating the tangent plane and the curvature related informa-

tion. These steps can be carried out sequentially or simul-

taneously. Following the guideline of 27, most of the meth-

ods already mentioned proceed sequentially. The provably

good algorithm we propose proceeds simultaneously. Along

its analysis, we also provide theoretical results on the accu-

racy of sequential methods13.

1.4. Contributions

Jet interpolation and approximation. Consider Eqs. (6)

and (7). We expect JA,n and JB,n to be equivalent in some

sense. To specify this, we shall study the convergence prop-

erties of the coefficients of JA,n when the points pis converge

to p. More precisely, assume that the coordinates of the pis

are given by pi(xi = aih,yi = bih,zi = f (xi,yi)). Parameters

ai and bi are arbitrary real numbers, while h specifies that
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(a) (b) (c)

Figure 1: A curve and (a)its (principal) osculating circle (b)Its principal osculating parabola (c)An osculating parabola

the pis uniformly tend to the origin. We actually expect

Ai j = Bi j +O(r(h)).

Function r(h) describes the convergence rate or the preci-

sion of the fitting, and the main contribution of this paper is

to quantify r(h) for interpolation and approximation meth-

ods. As we shall see, interpolation or approximation of the

same degree yield the same convergence rate. The difficul-

ties posed are also similar and are essentially to deal with

singular matrices.

Relationship to previous theoretical contributions. The

theoretical results we are aware of are twofold. First, in
22Lemma 4.1, a degree two interpolation is used and ana-

lyzed. We deal with jets or arbitrary degree, for interpolation

and approximation. Second, convergence results on the coef-

ficients of the Lagrange interpolation polynomial versus the

Taylor expansion of a function are proved in 7. Our results

match those, but we also analyze the approximation case.

Most importantly, we give constructive proofs and develop

the corresponding algorithms.

It should be noticed that we are not concerned here with

the convergence of the Lagrange interpolation polynomial

to the height function on a whole given set. This problem re-

quires specific conditions on the function and the position of

the points, as illustrated by the Runge divergence phenom-

ena 19Chapter 2. Therefore, our study is not to be confused

with global fitting such as piecewise polynomial fitting en-

countered in CAD.

Due to the lack of space, the reader is refered to 6 for the

proofs.

2. Interpolation, approximation, numerical issues

In this section, we recall the fundamentals of the fitting

methods used, namely interpolation and approximation, to-

gether with the numerical issues arising from the resolutions.

2.1. Interpolation

The interpolation fitting is based upon the Lagrange interpo-

lation, that is the construction of a polynomial constrained

to fit a set of data points. Although this problem is classical

for the univariate case, the multivariate case is still an active

research field from both the theoretical and computational

points of view. We briefly review the univariate and multi-

variate basics of Lagrange interpolation.

Univariate Lagrange interpolation. Let X =
{x0, . . . ,xn} be n + 1 distinct real values, the so-called

nodes. Then, for any real function f , there is a unique poly-

nomial P of degree n so that P(xi) = f (xi), ∀i = 0, . . . ,n.

Polynomial P is called the Lagrange interpolation polyno-

mial of f at the nodes X . For any choice of distinct nodes,

this polynomial exists and is unique, and in that case the

Lagrange interpolation is said to be poised.

Multivariate Lagrange interpolation. Consider now the

following bivariate problem. Let Πn be the subspace of bi-

variate polynomials of total degree equal or less than n,

whose dimension is Nn =
(

n+2

n

)
, and let X = {x1, . . . ,xN}

consist of N = Nn values in R
2 called nodes. (Notice that

N is exactly the number of monomials found in the jet of

Equation 3.) The Lagrange interpolation problem is said to

be poised for X if for any function f : R
2 → R , there ex-

ists a unique polynomial P in Πn so that P(xi) = f (xi), ∀i =
1, . . . ,N. It is intuitive and well known that this problem is

poised iff the set of nodes X is not a subset of any algebraic

curve of degree at most n, or equivalently the Vandermonde

determinant formed by the interpolation equations does not

vanish. As noticed in 29, the set of nodes for which the prob-

lem is not poised has measure zero, hence it is almost always

poised.

However let us illustrate non-poised cases and almost

non-poised or degenerate ones. Consider the two quadrics

q1(x,y) = 2x + x2 − y2 and q2(x,y) = x2 + y2, whose in-

tersection curve I projects in the (x,y) plane to the conic

C(x,y) = 0 with C(x,y) = x− y2 —Figure 2. If one tries to

interpolate a height function using points on I, uniqueness of

the interpolant is not achieved since any quadric in the pencil

of q1 and q2 goes through I. A similar example featuring the

four one-ring and one two-ring neighbors of a point p is de-

picted on figure 3. Notice that being able to figure out such

configurations is rather a strength than a weakness of the

method since a surface is sought and, the amount of infor-
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Figure 2: Two quadrics whose intersection curve I projects

onto the parabola C : x = y2. Interpolation points located on

I do not uniquely define an interpolating height function.

mation available does not determine uniquely this surface.

A first fundamental difference between the univariate and

multivariate cases is therefore the critical issue of choosing

nodes so that the interpolation is poised.

In the particular case where the points lies on a regular

square grid of the plane, the geometry of the configuration

leads to the following remarks. On one hand, a non-poised

degree n interpolation occurs if the points lies on n lines,

since they define an algebraic curve of degree n. One the

other hand, triangular lattices yield poised problems for ev-

ery degree. These results and further extensions can be found

in 12 and references therein.

�

Figure 3: The Kite (almost) degenerate configuration —

tangent plane seen from above: the 6 points used for a de-

gree two interpolation are (almost) located on a degenerate

conic, that is two intersecting lines.

2.2. Least square approximation

It is well known that the minimization problem of Eq. (7) has

a unique solution iff the matrix M is of maximum rank Nn. In

that case, the minimum value ρ is called the residual of the

system, that is ρ = min ||MA−B||2. The important issue is

again the rank of the matrix M. In terms of the relative values

of N versus Nn, using too many points certainly smoothes out

geometric features, but also makes rank deficient matrices

less likely.

2.3. Numerical Issues

The difficulties of solving linear and least-squares systems

consist of dealing with rank-deficient matrices. We now dis-

cuss these issues in more detail. Distances between matrices

and matrix norms refer to the Euclidean norm.

Singular systems and condition numbers. To quantify

degeneracies, we resort to a Singular Value Decomposition

(SVD) 14. Denote σn, . . . ,σ1 the singular values of M sorted

in decreasing order. It is well known that the least singular

value of M is the distance from M to rank deficient matrices.

The singular values also characterizes the sensitivity of the

problem, that is the way errors on the input data induce er-

rors on the computed solution. Notice that errors refer to the

uncertainty attached to the input data and not to the rounding

errors inherent to the floating point calculations. In our case,

input data are the sample points, so that errors are typically

related to the acquisition system —e.g. a laser range scanner.

To quantity the previous arguments, we resort to the

conditioning or condition number of the system 14, 17.

The conditioning is defined as a magnification factor

which relates the afore-mentioned errors by the follow-

ing rule Error on solution = Error on input

× conditioning. Denote

κ2(M) = ||M||2||M
−1||2 = σn/σ1

the condition number of the matrix M. The conditioning in

the two cases are respectively given by





linear square system: κ2(M),

least square system: κ2(M)+κ2(M)2ρ

with ρ = ||MX −B||2 the residual.

(9)

The following theorem provides precise error bounds:

Theorem. 2 Suppose X and X̃ are the solutions of the prob-

lems




linear square system: MX = B and (M +∆M)X̃ = B+∆B,

least square system: min ||MX −B||2 and

min ||(M +∆M)X̃ − (B+∆B)||2,
(10)

with ε a positive real value such that ||∆M||2 ≤ ε||M||2,

||∆B||2 ≤ ε||B||2, and εκ2(M) < 1. Then one has:

||X − X̃ ||2
||X ||2

≤ ε conditioning. (11)

In practice, if the conditioning is of order 10a and the relative

error on the input is ε ≈ 10−b — with εκ2(M) < 1, then the

relative error on the solution is of order 10a−b.

Pre-conditioning the Vandermonde system. As already

discussed, a convenient way to solve Eqs. (6) and (7) consists

of using the basis of monomials. One ends up with the Van-

dermonde matrix of Eq. (8), that can be solved with usual
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methods of linear algebra. Unfortunately, Vandermonde sys-

tems are known to be ill-conditioned due to the change of

magnitude of the terms. We therefore pre-condition so as to

improve the condition number. Assuming the xis, yis are of

order h, the pre-conditioning consists of performing a col-

umn scaling by dividing each monomial xk
i yl

i by hk+l .

The new system is M′Y = MDY = B with D the diagonal

matrix D = (1,h,h,h2, . . . ,hn,hn), so that the solution A of

the original system is A = DY . The condition number used

in the sequel is precisely κ(M′). (Notice it has the geometric

advantage to be invariant under homothetic transformations

of the input points.) Then the accuracy of the result can be

estimated a posteriori, and almost degenerate cases hight-

lighted by large conditioning.

Alternatives for the interpolation case. An alternative

to the Vandermonde system consists of using the basis of

Newton polynomials. Resolution of the system can be done

using divided differences 28, a numerically accurate yet in-

stable method 17.

3. Surfaces

3.1. Problem addressed

Let S be a surface and p be a point of S. Without loss of

generality, we assume p is located at the origin and we aim at

investigating differential quantities at p. Consider the height

function f given by Equation (3) in any coordinate system

whose z axis is not in the tangent plane. We shall interpolate

S by a bivariate n-jet JA,n(x,y) whose graph is denoted Q.

The normal to a surface given by Equation (3) is

nS = (−B10,−B01,1)t/
√

1+B2
10

+B2
01

. (12)

In order to characterize curvature properties, we resort to the

Weingarten map A of the surface also called the shape opera-

tor, that is the tangent map of the Gauss map. (Recall that the

second fundamental form II and A satisfy II(v) =< A(v),v >
for any vector v of the tangent space.) The principal curva-

tures and principal directions are the eigenvalues (eigenvec-

tors) of A, and the reader is referred to 10Section 3.3. If the

z axis is aligned with the normal, the linear terms of Equa-

tion (3) vanish, and the second fundamental form reduces

to the Hessian of the height function. Further simplifications

are obtained in the Monge coordinate system, where I = Id2,

the Hessian is a diagonal matrix, and the principal curvatures

are given by 2B20 and 2B02.

3.2. Polynomial fitting of the height function

We begin by an approximation result on the coefficients of

the height function. We focus on the convergence rate given

by the value of the exponent of parameter h.

Proposition. 1 A poised polynomial interpolation or a poly-

nomial approximation of degree n based upon N points

pi(xi,yi,zi) whose abscissa are xi = O(h),yi = O(h) esti-

mates the coefficients of degree k of the Taylor expansion

of f to accuracy O(hn−k+1):

Ak− j, j = Bk− j, j +O(hn−k+1) ∀k = 0, . . . ,n ∀ j = 0, . . . ,k.

Moreover, if the origin is one of the pis, then A0,0 = B0,0 = 0.

Using the previous proposition, the order of accuracy of a

differential quantity is linked to the degree of the interpolant

and the order of this quantity. More precisely:

Theorem. 3 A polynomial fitting of degree n estimates any

kth-order differential quantity to accuracy O(hn−k+1). In

particular:

• the coefficients of the unit normal vector are estimated

with accuracy O(hn), and so is the angle between the nor-

mal and the estimated normal.

• the coefficients of the first, second fundamental form and

shape operator are approximated with accuracy O(hn−1),
and so are the principal curvatures and directions.

The previous theorem generalizes 22Lemma 4.1 where 2-

jet interpolations only are studied. The O(hn) bound on the

normal should also be compared to the normal estimate of

the normal vector using specific Voronoï centers called poles

considered in 1. The error bound proved there is equivalent

to 2ε with ε the sampling density of the surface. Setting

h = εlfs and assuming lfs is bounded from above, the esti-

mation stemming from a polynomial fitting therefore yields

more accurate results for the normal, and also provides in-

formation on higher order quantities. From an algorithmic

perspective, and according to proposition 2, it is sufficient to

perform the fitting in any coordinate system.

3.3. Accuracy of the fitting and relationship to the

coordinate system

Proposition 1 involves any admissible coordinate system.

From a practical standpoint, we would like to perform the

fitting in some arbitrary coordinate system, compute the nor-

mal and principal directions, and infer the height function in

the Monge coordinate system. Notice that this is not com-

pletely straightforward since rewriting a height function in a

different coordinate system results in an implicit equation for

the corresponding surface —we had z = f (x,y), but x,y,z be-

come linear combinations of the new variables x
′

,y
′

,z
′

. The

following proposition shows that calculations can indeed be

performed in this order, and that no accuracy is lost along

the process. The constructive proof uses the implicit func-

tion theorem and is omitted.

Proposition. 2 Let JA,n be the n-jet estimating JB,n in a co-

ordinate system D, and let Q be the surface associated with

JA,n. Let D
′

be another coordinate system, J
′

B,n (J
′

A,n) the

n-jet of S (Q) in D
′

. If Ak− j, j = Bk− j, j + O(hn−k+1), then

A
′

k− j, j = B
′

k− j, j +O(hn−k+1).
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3.4. Influence of normal accuracy on higher order

estimates

Following the guideline initiated in 27 several algorithms

first estimate the normal to the surface and then proceed

with Hessian of the height function. We analyze the error

incurred by the latter as a function of the accuracy on the

former. We denote θ the angle between the normal nS to

the surface and the normal nQ estimated by the two-stages

method. In order to simplify calculations, we assume that nQ

is aligned with the z-axis and nS is in the (x,z)-plane, so that

f (x,y) = B10x+B20x2 +B11xy+B02y2 +O(||(x,y)||3), with

B10 = − tanθ. Expressed in the same coordinate system,

the interpolant —a 2-jet to simplify calculations— reads as

JA,2(x,y) = A20x2 +A11xy+A02y2.

Proposition. 3 If a small error θ is done on the estimated

normal, a 2-jet interpolation give the Gauss curvature with a

linear error wrt θ:

kQ − kS = θO(h−1)+O(h)+O(θ2).

For a fixed h, the curvature error is a linear function of the

angle between the normals. The term θO(h−1) shows that

if θ is fixed, the smaller h the worse the accuracy. Hence

estimating the normal deserves specific care.

4. Plane Curves

All the results proved for surfaces in the previous section

can also be proved for curve, and we omit them. Instead, for

the interpolation case, we prove an error bound between the

coefficients of the curve and those of the jet.

4.1. Problem addressed

Let C be a curve, and consider the height function f follow-

ing Equation (1) in any coordinate system whose y axis is

not tangent to the curve and, whose origin is on the curve

(this implies that B0 = 0). We shall fit C by a n-jet JA,n(x)
whose graph is denoted Q. As already mentioned, there are

n + 1 unknown coefficients Ais, we assume N data points

Pi(xi = aih,yi) are given, where N = n + 1 for interpolation

fitting and, N > n + 1 for approximation. Notice again that

parameter h specifies the uniform convergence of these data

points to the origin. The fitting equations are:

yi = f (xi) = JB,n(xi)+O(xn+1

i ) = JA,n(xi).

Since curve C is given by Equation (1), the normal and the

curvature of C at the origin are given by

nC = (−B1,1)t/
√

1+B2
1

, kC = 2B2/(1+B
2
1)

3

2 . (13)

Moreover, in the Monge coordinate system —B1 = 0, these

expressions simplify to nC = (0,1)t and kC = 2B2.

4.2. Error bounds for the interpolation

The equivalent of Prop. 1 for curves gives the magnitude of

the accuracy of the interpolation. We can actually be more

precise and provide precise error bounds depending upon the

function interpolated as well as the relative position of the

sample points used.

Proposition. 4 Consider a degree n (n ≥ 2) interpolation

problem for a curve y = f (x). Let ε be a positive number so

that the interpolation point abscissa lie in the interval [−ε,ε].

Let c be a positive constant so that supx∈[−ε,ε] | f
(n+1)(x)| ≤

c. At last, let d ≤ 1 be defined by mini6= j |xi − x j| = 2εd/n.

(d is a measure of the minimum distance between the inter-

polation points.) Then for k = 0, ...,n:

|Ak −Bk| ≤ ε
(n−k+1)

c
(

n

2d

) n(n−1)
2

.

Here is an application of the previous result. Let θ denote

the angle between the normal and the estimated normal. We

have sin(θ) = ||nQ∧nC||= |A1−B1|/
√

(1+A2
1
)(1+B2

1
)≤

|A1 −B1|. It is found that

θ ≤ arcsin( εn
c
(

n

2d

) n(n+1)
2

).

Therefore, the coordinate system minimizing the error in the

worst case is the one with respect to which the pairwise dif-

ferences between the abscissa of the sample points is max-

imized. Generalizing this result for the curvature involves

cumbersome calculations.

5. Algorithm

The fitting algorithm to estimate the differential properties

at a point p consists of (i)collecting the points used for the

fitting. Recall that a n-jet involves Nn = (n + 1)(n + 2)/2

coefficients, so that when interpolating (approximating) we

assume N = Nn (N > Nn). (ii)solving the linear system

(iii)recovering the differential properties. We examine in

turn the details of these three steps.

5.1. Collecting N neighbors

The mesh case. Although no topological information is re-

quired by the fitting method, the connectivity information of

a mesh can be used as follows. We sequentially visit the one-

ring neighbors, two-ring neighbors, and so on until N points

have been collected. Let R1, . . . ,Rk be the k rings of neigh-

bors necessary to collect N neighbors. All the points of the

k−1 first rings are used. The complement up to N points is

chosen arbitrarily out of the kth ring.

The point-cloud case. The normal at p is first estimated,

and the neighbors of p are further retrieved from a power

diagram in the estimated tangent plane 3 —a provably good

procedure if the samples are dense enough. If the number of
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neighbors collected is less than N, we recursively collect the

neighbors of the neighbors.

Collecting the points therefore boils down to estimating

the tangent plane. One solution is to construct the Voronoï

diagram of the point set and use these Voronoï vertices called

poles 1, 11. Poles yield an accurate estimate of the normal

vector but require a global construction.

An alternative is to resort to the algorithm of section 3, and

solve a degree one interpolation problem —which requires

three points and is well poised as soon as the three points

are not collinear. Geometrically, the closer the three points

to being aligned, the more unstable the tangent plane esti-

mate. To see how one can get around this difficulty, denote

q the nearest neighbor of p. Also, let r be the sample point

so that the circum-radius rcirc of the triangle pqr is mini-

mum. The estimated normal at p is the normal to the plane

through pqr. Intuitively, minimizing the circum-radius rcirc

prevents two difficulties: on one hand triangles with a large

angle (near to π) exhibit a large circum-circle and are dis-

carded; on the other hand, triangles involving a third point r

which is not a local neighbor of p cannot minimize rcirc and

are also discarded. A more formal argument advocating the

choice of the triangle with minimum rcirc is provided in 30,

where it is shown that the worst error on the approximation

of the gradient of a bivariate function by a linear interpolant

precisely involves rcirc.

5.2. Solving the fitting problem

The next stage consists of choosing the z direction to work

with. Since the tangent plane has not been estimated, we use

a principal component analysis to compute a rough estimate

of the normal with the neighboring points. The polynomial

fitting can be done in any coordinate system whose z axis is

not tangent to the surface. Hence at least one of the three axis

of the world coordinate system matches this requirement.

A natural choice is to select the coordinate axis whose an-

gle with the rough estimated normal is minimum. For these

coordinates, we fill the Vandermonde matrix. The matrix is

further scaled as explained in section 2.3, with h the aver-

age value of the norms ||(xi,yi)||. The corresponding system

is solved using a Singular Value Decomposition. Practically,

we use the SVD of the Gnu Scientific Library, available from

http://sources.redhat.com/gsl.

As pointed out in section 2.3, the instability of the system

is provided by the condition number. Whenever degenerate

configurations are detected, one can proceed as follows. For

the approximation strategy, one can either keep the same de-

gree and increase the number of points used, or reuse the

same points with a lower degree. These changes are likely to

provide a non singular matrix M. In the worst-case, a degree

one fitting must be possible since then only three linearly in-

dependent points are required! For the interpolation, things

are a bit more involved since reducing the interpolation de-

gree requires discarding some points. Selecting the subset

yielding the best conditioning is a challenging problem 20, 17.

Notice also that for the approximation case, one can always

retrieve a solution from an under-constrained least-square

problem by choosing, e.g., the solution vector of least norm.

5.3. Retrieving differential quantities

We have already mentioned how to compute the normal. For

the second order information, we compute the Weingarten

map of the surface 10Section 3.3. Its eigenvalues (eigenvec-

tors) provide the principal curvatures (directions) of the sur-

face. For a parameterized surface given as a height func-

tion, one ends up with the formula given on Table 1. Notice

that a basis of the tangent space associated to the param-

eterization X(u,v) = (u,v,h(u,v)) consists of the two vec-

tors Xu = (1,0,hu)
t and Xv = (0,1,hv)

t . A Gram-Schmidt

orthonormalization of the basis {Xu,Xv} gives another basis

{Y,Z} of the tangent space. The diagonalization of the sym-

metric matrix representing the Weingarten map in the basis

{Y,Z} provides the expression of the principal curvature di-

rections with respect to the {Y,Z} orthonormal basis. Note

that the sign of principal curvatures and hence the definition

of minimal and maximal directions rely on the orientation of

the normal. As long as our experimental study is performed

on meshes of oriented surfaces, it is straightforward to find

a global and coherent orientation of the normals.

E = 1+a1
2

F = a2 a1

G = 1+a2
2

e = 2a3√
a1

2+1+a2
2

f = a4√
a1

2+1+a2
2

g = 2a5√
a1

2+1+a2
2

A
t =−

(
e f

f g

)(
E F

F G

)−1

Table 1: Computing the matrix A of the Weingarten map

of h(u,v) = a1 u + a2 v + a3 u2 + a4 uv + a5 v2 in the basis

{Xu,Xv}

6. Experimental study

We present results along two lines. First, we illustrate the

convergence theorems proved in section 3. Second, we

present illustrations on standard computer graphics models.

6.1. Convergence estimates on a graph

Setup. We illustrate the convergence properties with the

smooth height field f (u,v) = 0.1e2u+v−v2

defined over the

parametric domain (u,v)∈ [−0.5,0.5]2 —see Figs. 4. At se-

lected points on the graph of f , we study the angle between

the normals —more precisely its sine sin(n, ñ), and the rel-

ative errors on principal curvatures. The values output by

our algorithm are compared against the exact values com-

puted analytically with arbitrary precision under Maple, and

we report both average and maximum errors over samples

points. More precisely, the graph of f is sampled with points
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pi(xi,yi, f (xi,yi)) where the (xi,yi)s lies on a randomly per-

turbed triangulated square grid of side h. The triangulation

is randomly perturbed to avoid simple degenerate configu-

rations such as points lying on lines. The perturbation for

the point (u,v) of the regular grid is the point (x,y) with

x = u+δh, y = v+δ′h and δ,δ′ random numbers in [0,0.9].
The connectivity of the graph is that of the triangulated grid.

The convergence properties are illustrated (i)with respect

to the discretization step h of the grid —for a given fitting

degree n (ii)with respect to the fitting degree n —for a given

discretization step h. We compare the convergence proper-

ties of the interpolation and approximation schemes, for fit-

ting degrees ranging from one to nine. To quantify the ob-

servations, notice that according to theorem 3, the error δ on

a kth-order differential quantity is O(hn−k+1), hence

δ ≈ c h
n−k+1 ⇔ log(1/δ) ≈ log(1/c)+(n− k +1) log(1/h)

(14)

⇔
log(1/δ)

log(1/h)
≈

log(1/c)

log(1/h)
+(n− k +1).

(15)

Figures 5 to 12 illustrate the convergence behaviour —see 6

for enlarged versions.
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Figure 4: f (u,v) = 0.1e2u+v−v2

Convergence wrt to h. To highlight the convergence

properties with respect to the size of the neighborhood, we

consider sequences of meshes with h → 0, more precisely h

ranges from 2−2 to 2−6.

Curves of Figs. 5 to 10 show the average convergence be-

havior as the size of the neighborhood decreases. For a given

degree and following equation (14), curves of figures 5 to 10

should be lines of slope (n− k + 1). The behavior is more

regular for the approximation case, and the estimate is also

better: a gain of about a digit can be observed between kmax

estimates of figures 9 and 10.

Convergence wrt to the fitted polynomial degree.

Curves of figures 11 and 12 show the convergence as a func-

tion of the degree of the fitted polynomial for a fixed neigh-

borhood size. According to Eq. (15), curves of these fig-

ures should be lines of unit slope, with a vertical shift of

one unit between normal and curvatures errors since curva-

ture is a 2nd order quantity whereas normal is 1st order. The

gap between the average values and the maximal values is

greater for interpolation than for approximation. The partic-

ular case of a degree 7 approximation reveals to be worse

than expected, due to the regular connectivity of the mesh

used to find the neighbors: there is only one more point than

for the degree 7 interpolation fitting. Other charts providing

the conditioning and the least singular value can be found

in 6. Interpolation fitting is always more ill-conditioned than

approximation, and closer to a degenerate problem (the least

singular value is the distance of the matrix system to singular

matrices).

6.2. Illustrations (see color section)

We depict differential informations on several models. When

principal directions are displayed, blue and red respectively

correspond to kmin and kmax —that is kmin ≤ kmax—, as-

suming the surface normal points to the outside. To display

patches of osculating n-jets, it is sufficient to select a rectan-

gular domain in parameter space, sample it with a grid, and

plot the corresponding mesh.

Consider the mesh models of the elliptic paraboloid z =
2x2 + y2 —16k points, Fig. 1—, and the surface of revolu-

tion z = 0.1sin(10
√

(x2 + y2)) —8k points, Fig. 2. The ar-

rangement of curvature lines provides informations on um-

bilical points —where principal directions are not defined

since kmin = kmax. On the paraboloid , it is easy to follow

curvature lines and see how they turn around an umbilic. The

surface of revolution provides an example of two parabolic

lines (where the principal curvature kmax vanishes), that is a

curve along which the Gauss curvature KGauss vanishes. This

specific line splits the surface into elliptic (KGauss > 0) and

hyperbolic regions (KGauss < 0). This model also illustrates

a line of umbilical points where minimum and maximum

principal directions swap each over.

For a standard example from Computer Graphics, con-

sider the Michelangelo’s David of Fig. 3. On this model of

95922 pts, the principal curvatures provide meaningful in-

formation for shape perception (See also 18p197 as well as
15.) To finish up, we illustrate the robustness of the method.

Figure 4 displays random patches on the Mechanic model,

a 12,500 points model reconstructed from the output of a

range scanner. In spite of the coarse sampling, patches and

principal directions provide faithful information. In a similar

vein, approximation fitting with large neighborhoods Fig. 5

features a noisy triangulation of a graph. In spite of the se-

vere level of noise, surface patches average the available in-

formation. On Fig. 6, a noisy triangulation of an ellisoid, 15k

c© The Eurographics Association 2003.

185



Cazals and Pouget / Estimating Differential QuantitiesUsing Polynomial Fitting of Osculating Jets

points, principal directions are enough precise to recognize

an umbilic.

7. Conclusion

Estimating differential quantities is of prime importance in

many applications from Computer Vision, Computer Graph-

ics, Computer Aided Design or Computational Geometry.

This importance accounts for the many different differential

estimators one can find in the vast literature of applied geom-

etry. Unfortunately, few of these have undergone a precise

theoretical analysis. Another striking fact is that estimates of

second order differential quantities are always computed us-

ing degenerate conics/quadrics without even mentioning the

classification of Euclidean conics/quadrics.

The main contribution of the paper is to bridge the gap be-

tween the question of estimating differential properties of ar-

bitrary order and multivariate interpolation and approxima-

tion. In making this connection, the use of jets —truncated

Taylor expansions— is advocated. Precise asymptotic con-

vergence rates are proved for curves and surfaces, both for

the interpolation and approximation schemes. To the best of

our knowledge, these results are among the first ones pro-

viding accurate estimates for differential quantities of order

three and more. Experimental results for surfaces of R
3 are

reported. These experiments illustrate the asymptotic con-

vergence results, but also the robustness of the methods on

general Computer Graphics models.
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Figure 1: Elliptic paraboloid Figure 2: Surface of revolution

Figure 3: Michelangelo’s David: principal directions associ-

ated with kmax

Figure 4: Mechanic: closeup

Figure 5: f (u,v) = u+3v+ e2u+v−v
2

with noise Figure 6: Principal directions on a noisy ellipsoid
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