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1 Introduction

Estimation of disease prevalence is often important for public policy reasons. When ascertainment of

disease status is costly, for example in-depth interviews for determining depression, or invasive, such

as biopsy for diagnosing cancer, a two-phase or double sampling design (Neyman, 1938; Tenenbein,

1970) is often employed. In the first phase, a non-invasive and inexpensive screening test is given

to all subjects in the study. Disease status is then verified for a subset of subjects in the second

phase of the study, with the selection of subjects for phase 2 dependent on the measurements made

in phase 1. An example of such a study is the Great Smoky Mountain Study (Costelo et al., 1996)

which sought to estimate the prevalence of adolescent depression in the southeastern United States.

All subjects in this study were given an inexpensive screening questionnaire, and then screen positive

subjects were oversampled to receive an in-depth interview that determined depression. An analysis

of data from this study is provided in Section 5.

This problem also arises in contexts other than survey sampling. Consider a clinical trial to

compare treatment arms in regards to the occurrence of a dichotomous outcome or event. An easily

measured surrogate outcome measure may be available soon after treatment. The surrogate could

be used to select subjects on which to measure the true outcome if the latter is difficult to ascertain.

Alternatively, if the true outcome requires a follow-up period, it may simply be unavailable for a

subset of patients at the time of analysis. In either case, estimation of the probability of a favorable

outcome event (prevalence) is of interest and the study can be conjured as a two-phase study with

the surrogate or auxiliary outcome assuming the role of the “screening test” (Pepe et al., 1994).

In studies of new diagnostic tests, estimation of true and false positive rates relative to a gold

2

Hosted by The Berkeley Electronic Press



standard are sought. When the gold standard is difficult to measure, selection of subjects for ascer-

tainment of the gold standard diagnosis often depends on the result of the new test (Begg & Greenes,

1983). Estimation of disease prevalence, as measured by the gold standard, is required in order to

quantify the error rates associated with the new test. Such estimation is necessarily based on data

from a two-phase study, with the new test playing the role of the screen.

Naive estimates of prevalence can be biased in two-phase studies. In the context of medical diag-

nostic testing this is known as verification bias (Begg & Greenes, 1983) or work-up bias (Ransohoff

& Feinstein, 1978). Formulated as a missing data problem, two main approaches used to obtain

valid prevalence estimators are re-weighting (Horvitz & Thompson, 1951) and imputation (Clayton

et al., 1998, Roberts et al., 1987). Imputation estimators require a model for the probability of

disease conditional on the screening test results. In this paper, we show that model misspecification

can lead to biased prevalence estimates. Conversely, the classic re-weighting approach requires esti-

mates of verification probabilities. Since verification probabilities are often under the control of the

investigator, the disadvantage of the re-weighting estimator is not lack of robustness to model mis-

specification, but rather poor efficiency. In this paper, we derive a semiparametric efficient estimator

that is consistent if either the disease or verification model is correct and is generally more efficient

than the classic re-weighting estimator.

In Section 2, we describe and contrast a variety of commonly used prevalence estimators for

two-phase studies, including imputation and re-weighting estimators. By formulating estimators

in a common context, a unified approach to the development of asymptotic theory is facilitated

(Section 3). In Section 4, we describe extensive simulation studies. Results pertaining to relative
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efficiencies and small sample inference are presented. The methods are applied to data from the

Great Smoky Mountain Study in Section 5. We end with some recommendations and a discussion.

2 Prevalence Estimators

Consider a two-phase study to estimate disease prevalence, θ = P (D = 1). Let T denote variables

collected in phase 1 that are used to select subjects for phase 2. The notation A is used for additional

variables that may be predictive for D but that are not used to select subjects for verification of

D. Therefore, the nV subjects with disease verification, which we refer to as the verification sample,

have data (D, T, A, V = 1). The other n− nV subjects have data (T,A, V = 0). Although T and A

are assumed to be continuous, the methods that follow are applicable to discrete data as well.

We make the standard missing at random (MAR) assumptions (Little & Rubin, 1987) P (D|V, T,A) =

P (D|T,A) or equivalently P (V |D,T,A) = P (V |T, A). That is, although the disease process affects

T and A, it only affects selection for disease verification through its influence on T and A. By defi-

nition, A can be dropped from the conditioning arguments in the latter equality. We next consider

prevalence estimators that are based on two-phase study data. For ease of presentation, they are

referenced throughout using acronyms summarized in Table 1.

2.1 Imputation Estimators

In this section three imputation estimators are considered. The first estimator, the naive complete

case (CC) estimator, only includes data from subjects with complete data, i.e.

θ̂CC =
1

nV

n∑

i=1

ViDi, (1)
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where i indexes the 1, · · · , n subjects. The CC estimator imputes observed disease probabilities for

those verified. It is well known that θ̂CC is guaranteed to be unbiased only when the verification

sample is a simple random sample of subjects in the study. If, for example, those at higher risk of

disease are more likely to be selected for verification, then θ̂CC will be biased upwards.

The second estimator imputes disease values for all subjects (Roberts et al., 1987). Specifically,

the full imputation (FI) estimator is

θ̂FI =
1
n

n∑

i=1

ρ̂i (2)

where ρ̂i is an estimator of ρi = P (Di = 1|Ti, Ai) which can be obtained from a parametric model,

e.g. logistic regression, applied to the verification sample. The estimator is not consistent if the

parametric model is misspecified.

The third imputation estimator uses the score contributions for those in the verification sample

and imputes mean scores for those not in the verification sample over the distribution P (D|T,A).

Pepe et al. (1994) and Reilly & Pepe (1995) proposed estimating θ by solving
∑n

i=1{Vi Sθ(Di)+(1−

Vi) Ê[Sθ(D)|Ti, Ai]} = 0, where Sθ(D) is the binomial score, Ê[Sθ(D)|Ti, Ai] =
∫

Sθ(D) P̂ (D|Ti, Ai)dD

and P̂ (D|T, A) is estimated non-parametrically using the verification sample. Clayton et al. (1998)

proposed using a parametric model for P (D|T, A) to accommodate settings where T and A are con-

tinuous. For the binomial score Sθ(Di) = Di − θ, solving the above estimating equation yields the

mean score imputation (MSI) estimator of disease prevalence:

θ̂MSI =
1
n

n∑

i=1

{Vi Di + (1− Vi) ρ̂i}. (3)

Similar to FI, this estimator will yield asymptotically biased results if ρ̂i is biased.
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All three imputation estimators belong to the class of imputation estimators. Estimators in this

class aim to estimate θ by imputing ρi for various subsets of subjects. Suppose that complete data

were available and consider the estimating function SC(k) =
∑n

i=1{kDi + (1 − k)ρi − θ} where k

is a constant giving weight to the observed versus predicted true disease status. Clearly, setting

SC(k) = 0 yields a consistent prevalence estimator, n−1 ∑n
i=1{kDi +(1−k)ρi}, when ρi is estimated

consistently. For a two-phase study, we take the expectation of SC conditional on the observed data,

which we denote by W . The ith contribution of E[SC(k)|W ] is kDi + (1− k)ρi− θ when Vi = 1 and

kρi + (1− k)ρi − θ when Vi = 0 and we solve the equation E[SC(k)|W ] = 0 for θ where

E[SC(k)|W ] =
n∑

i=1

{Vi[kDi + (1− k)ρi − θ] + (1− Vi)[ρi − θ]}. (4)

Values of k result in familiar estimating functions. If k = 0, then (4) equals the estimating

function for the FI estimator. Conversely, if k = 1, then (4) equals the estimating function for the

MSI estimator. In addition, if k = 1 and ρi is estimated using the observed disease probability for

those verified, then (4) corresponds to the estimating function for the CC estimator.

2.2 Re-weighting Estimators

The classic re-weighting estimator (Horvitz & Thompson, 1951) weights each observation in the

verification sample by the inverse of the sampling fraction, πi = P (Vi = 1|Ti, Ai). It is easy to show

that E
[
Viπ

−1
i Sθ(Di)

]
= 0 under MAR. This suggests estimating θ by solving

n∑

i=1

Viπ
−1
i Sθ(Di) = 0. (5)

For Sθ(Di) = Di − θ, this yields the well-known Horvitz-Thompson inverse probability weighting
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(IPW) estimator of prevalence for sample surveys

θ̂IPW =

(
n∑

i=1

π−1
i Vi

)−1 n∑

i=1

Viπ
−1
i Di. (6)

Sampling fractions may be known or may need to be estimated depending on the study design.

Estimating πi, even when known, may increase efficiency (Pepe et al., 1994).

Classes of semiparametric estimators based on augmentations to the IPW estimating equations

have been proposed for conditional mean models, i.e. the conditional expectation of the response

variable given covariates is known up to a finite dimensional parameter, with missing outcomes

(Robins et al., 1995; Rotnitzky & Robins, 1995; Robins & Rotnitzky, 1995; Rotnitzky et al., 1998).

Next we derive a class of semiparametric estimators of disease prevalence as a special case of the

classes proposed by Robins, Rotnitzky, and colleagues.

In the setting when there are covariates of interest, the re-weighted score contribution for the

IPW estimator, π−1
i ViSθ(Di), can be rewritten as Vi

πi
Xiεi(θ), where εi = (Di − θ) is the residual

and X is a design matrix containing the covariates of interest. Robins et al. (1995) modify this

by replacing Xi with h(Xi) and subtracting the term Vi−πi
πi

φ(Xi, Ti, Ai), where h(·) and φ(·) are

unspecified functions. Thus, the following augmented estimating equation is used to define their

class of semiparametric estimators

n∑

i=1

{
Vi

πi
h(Xi)εi(θ)− Vi − πi

πi
φ(Xi, Ti, Ai)

}
= 0. (7)

This class of estimators is semiparametric because it requires parametric conditional mean models to

be specified for P (D|T, A) and P (V |T, A) but is non-parametric with respect to the joint distribution

of the data P (D,T,A).
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To derive the most efficient estimator in this class of estimators, Robins et al. (1995) note that for

a fixed h(·) the asymptotic variance of θ̂ is minimized at φ(Xi, Ti, Ai) = E[h(Xi)εi(θ)|Xi, Ti, Ai]. Even

for fixed h(·) this expectation may be intractable, and the optimal choice of h(·) typically requires a

complicated adaptive selection process. However, in our setting, only estimating the overall disease

prevalence is of interest. Thus, since there are no covariates of interest, the design matrix, X, only

contains a vector of 1’s and h(X) is equal to a constant which, without loss of generality, will be

assumed to equal 1. It can then be shown that the optimal choice of φ(Xi, Ti, Ai) is ρi−θ. Therefore,

solving
∑n

i=1

{
Vi
πi

(Di − θ)− Vi−πi
πi

(ρi − θ)
}

= 0 yields the most efficient estimator in this class

θ̂SPE =
1
n

n∑

i=1

{
Vi

Di

πi
−

(
Vi − πi

πi

)
ρ̂i

}
. (8)

We refer to this estimator as the semiparametric efficient estimator (SPE).

Since the IPW estimator is a member of this class of estimators for which SPE is the most

efficient estimator, SPE is more efficient than IPW. Not only is SPE the most efficient estimator in

the class defined by (7), it attains the semiparametric variance bound (Robins et al., 1995; Begun

et al., 1983). That is, any more efficient estimator must be inconsistent under some misspecification

of E[D|T,A]. This implies that FI and MSI may be more efficient than SPE because, as we have

already noted, they are inconsistent under misspecification of E[D|T,A], and hence are outside of

the class of semiparametric estimators.

If πi is estimated consistently, then the first and second terms in (8) converge to the true preva-

lence and zero, respectively. Moreover, by writing (8) as 1
n

∑n
i=1{Vi(Di− ρ̂i)/πi + ρ̂i} it is clear that

the SPE estimator converges to the true prevalence if ρi is estimated consistently. Thus, the SPE

estimator has the attractive attribute that it is “doubly robust” in the sense that it is consistent if
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either πi or ρi is estimated consistently. That is, misspecification of either πi or ρi (but not both)

permits consistency of θ̂SPE.

2.3 Qualitative comparison of estimators

Observation-specific contributions to each of the disease prevalence estimators are given in Table 1.

The FI estimator (2) imputes disease status for all subjects in the study. In contrast, the MSI

estimator (3) imputes disease status only for those subjects not in the verification sample and uses

the observed disease status for those in the verification sample. The IPW estimator (6) is similar to

the CC estimator (1) in that it uses the observed disease status for the verification sample. Unlike

the CC estimator, however, it corrects for the biased sampling by weighting the observed values by

the probability of selection for verification. Similar to FI and MSI, the SPE estimator (8) estimates

the probability of disease for those not verified. For those subjects in the verification sample, it

weights the observed disease status by the probability of being selected for disease verification just

like the IPW estimator, but also subtracts the product of the probability of being diseased and the

odds of not being verified. The term subtracted compensates for systematic or random differences

between Vi and its predicted value πi.

The CC, MSI, SPE, and IPW estimators are identical when all subjects are verified, i.e., πi = 1

for all i. Since all the estimators only require a regression model to be fit for a binary response (D

or V ), all the approaches are easy to implement, even as the dimension of A increases. CC yields

consistent estimates only if the verification sample is a simple random sample. FI and MSI are

consistent only if ρ̂i consistently estimates ρi. IPW is unbiased if π̂i is consistent. Conversely, SPE

is consistent if either ρ̂i or π̂i is consistent. Since πi is often under the control of the investigators
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designing the study, there are situations when it is known that π̂i is consistent; thus, resulting in

consistent IPW and SPE estimators.

3 Asymptotic Distribution Theory

All the prevalence estimators discussed can be derived as solutions to estimating equations of the

same form. Therefore, we develop asymptotic distribution theory in a unified framework.

3.1 Notation

Let β = (θ, α)T where α is a vector of nuisance parameters. The parameters α pertain to the

models for P (D = 1|T, A) and/or P (V = 1|T, A), as appropriate for the prevalence estimator. For

example, the FI and MSI estimators only involve P (D = 1|T, A) as the nuisance function and hence α

pertains to parameters in that function only. We assume that α̂ is the solution to a classic estimating

equation of the form Uα
n (β) =

∑n
i=1 Uα

i (β) = 0 where Uα
i (β) satisfy some conditions (below). For

example, for the FI and MSI estimators these are standard binary regression estimating equations

for the model P (D = 1|T, A) based on the verification sample. The simultaneous estimation of θ

and α implies that β̂ is the solution of an estimating equation of the form Un(β) =
∑n

i=1 Ui(β) = 0

where Ui(β) =

(
U θ

i (β)
Uα

i (β)

)
and the first component U θ

i (β) is the estimating function component

corresponding to θ̂, as defined in Section 2. Denote β?
0 = (θ?

0, α
?
0) to be a value of the parameter

vector β and let Nδ(β?
0) be a bounded δ-neighborhood of β?

0 . Further denote β0 = (θ0, α0) to be the

true value of the parameter vector β.
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3.2 Asymptotic results for solutions to estimating equations

Assuming that the data (Di, Ti, Ai, Vi) and, hence, Ui(β?
0) are independent and identically distributed

(iid), E[Ui(β?
0)] = 0, E[ ∂

∂β Ui(β?
0)] is negative definite, and the conditions

C1: β?
0 exists

C2: Elements of Un(β), ∂
∂β Un(β), and ∂2

∂β∂βT Un(β) exist in Nδ(β?
0)

C3: Ui(β), ∂
∂β Ui(β), and ∂2

∂β∂βT Ui(β) are uniformly bounded in Nδ(β?
0)

we obtain the following consistency and asymptotic distribution theory results

Theorem 1 (consistency) A unique solution β̂ to Un(β) = 0 exists with probability converging to 1

as n converges to ∞ and β̂ converges in probability to β?
0 .

Theorem 2 (asymptotic normality) n
1
2 (β̂−β?

0) converges in distribution to a mean 0 normally dis-

tributed random variable with variance-covariance matrix
/∑

= E
[

∂
∂β Ui(β?

0)
]−1

Cov(Ui(β?
0))E

[
∂
∂β Ui(β?

0)
]−1

.

Theorem 3 (consistent variance estimator) A consistent estimator of
/∑

is

/̂∑
= n

[
n∑

i=1

∂

∂β
Ui(β̂)

]−1 [
n∑

i=1

Ui(β̂)Ui(β̂)T

] [
n∑

i=1

∂

∂β
Ui(β̂)

]−1

.

If generalized linear models, for example logistic or probit regression, with bounded covariates are

used to estimate the nuisance parameters, then the existence of β?
0 (C1) is satisfied (Wedderburn,

1976) and the corresponding components, Uα
i (β), of the estimating functions will satisfy the con-

ditions C2 and C3. In the Appendix, we show that under minimal assumptions they also hold for

the estimating function components Uθ
i (β) corresponding to the class of semiparametric prevalence
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estimators. It can be shown in a similar manner that the estimating function components U θ
i (β)

corresponding to the class of imputation estimators satisfy the conditions.

Our main interest is in θ̂, the disease prevalence estimator. Theorems 1 and 2 along with the

observation that, in our setting, θ is a scalar, E
[

∂
∂θUα

i (β)
]

= 0, and E
[

∂
∂θUθ

i (β)
]

= −1 imply that

Corollary 1 n
1
2 (θ̂ − θ?

0) →d N
(
0, σ2

θ

)
, where σ2

θ = V ar(U θ
i (β)) + ϑθα Cov(α̂) ϑT

θα −

2 Cov(U θ
i (β), Uα

i (β)) ϑ−1
α ϑT

θα, ϑθα = −E
[

∂
∂αUθ

i (β)
]
, ϑα = −E

[
∂

∂αUα
i (β)

]
, and

Cov(α̂) = ϑ−1
α Cov(Uα

i (α))(ϑ−1
α )T .

Provided the nuisance estimating functions Uα
i (β) are unbiased, θ?

0 = θ0 so that Corollary 1

implies that θ̂ for FI, MSI, and IPW are consistent for the true disease prevalence, θ0. For the

SPE prevalence estimator, θ?
0 = θ0 and thus the estimator is consistent provided either the nuisance

estimating function for the disease model or the verification model is correctly specified.

3.3 Insights into relative performance

We observe from Corollary 1 that σ2
θ , the asymptotic variance of the prevalence estimator, is com-

prised of three components. The first component is the variability of θ̂ if α were known while the last

two components take into account the sampling variability in α̂. When α are known, the variance of

an estimator in the imputation class of estimators is V ar(ρi) + k2E[πiρi(1− ρi)]. Thus,

V ar
(
θ̂FI

)
= V ar(ρi) (9)

V ar
(
θ̂MSI

)
= V ar(ρi) + E[πiρi(1− ρi)]. (10)

Since FI is the MLE in a parametric model, it is not surprising that FI is the most efficient estimator

in this class of estimators when α are known. That is, if the disease probabilities are known, then it
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is more efficient to use them instead of the observed Di.

Furthermore, it can be shown that

V ar
(
θ̂SPE

)
= V ar(ρi) + E[ρi(1− ρi)/πi] (11)

V ar
(
θ̂IPW

)
= V ar(ρi) + E[ρi(1− ρiπi)/πi] (12)

Since the second terms in equations (11) and (12) are always non-negative, FI is also more efficient

than SPE and IPW when α are known. Comparing equations (10)-(12) also suggests that MSI is

more efficient than SPE which is more efficient than IPW. The FI and MSI estimators do not belong

to the class of semiparametric estimators for which SPE is most efficient because they make stronger

assumptions about the disease model. Thus, it is not surprising that FI and MSI are more efficient.

Next, we consider the setting when α are not known. Since ϑθα = 0 for SPE, Corollary 1 yields

that the variance of SPE is also (11) when α are not known. Variance expressions for the other

prevalence estimators depend on the model used to estimate ρi or πi. Thus, the relative efficiencies

of the estimators when α are not known is investigated in the next section using simulation studies.

The above insights into relative performance are valid even when the disease and verification

models are misspecified. However, θ̂ is no longer unbiased when πi and ρi are not estimated consis-

tently so the bias in the estimators also should be considered. The magnitude of the bias relative

to the variance will affect the relative performance of estimators as quantified, e.g., by the mean

squared error (MSE).
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4 Simulation Study

A disease can arise from an underlying continuous disease process which remains subclinical until it

reaches some threshold, at which point the disease becomes apparent. We simulate an underlying

continuous variable Z with a N(0, 1) distribution and disease status, D, as the indicator variable

D = I[Z > h], where h is the threshold. By varying h, we can vary the prevalence of disease, θ.

Frequently there are multiple components to a disease process. Thus, we considered Z to be the

sum of Z1 and Z2, where each was distributed N(0, 0.5). Since screening tests or other variables

associated with disease can relate differently to the different components, we simulated T and A

as linear combinations of Z1 and Z2 plus random normal error, ε1 and ε2. In particular, T =

ν1Z1+τ1Z2+ε1 and A = ν2Z1+τ2Z2+ε2, where ε1 ∼ N(0, 0.25) and ε2 ∼ N(0, 0.25) are independent.

By varying ν and τ , different aspects of the disease are weighted differently and the correlation

between T and A is varied. The inherent accuracy of T and A for D also can be altered by changing

the values of ν and τ . Table 2 summarizes the area under the receiver operating characteristic (ROC)

curve for T corresponding to ν1 and τ1 between 0 and 1. Values of the area under the ROC curve

(AUC) range from 0.5 at ν1 = τ1 = 0 where T does not discriminate between D = 1 and D = 0, to

0.96 at ν1 = τ1 = 1 indicating almost perfect discrimination.

To induce verification bias, verification status, V , was generated with P (V = 1) as a function

of T . Specifically, we consider P (V = 1|T > t(q)) = 1, and P (V = 1|T ≤ t(q)) = δ, where t(q)

denotes the qth quantile of the distribution of T . That is, similar to the protocol in the Great Smoky

Mountain Study, all subjects with a test result greater than the threshold were selected for disease

verification while only a random fraction below the threshold were selected. Results presented are for
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q = 0.8 and δ = 0.2. These values resulted in an average of 36% of study subjects receiving disease

verification, with 20% and 16% having a value of T above and below the threshold, respectively.

FI, MSI, and SPE require a parametric model for the probability of disease. We chose a probit

model linear in T and A because this form is induced under our simulation model. Estimators that

included both T and A are indexed by ‘B’ for ‘both’; whereas, models that only included T are

indexed by ‘T’. IPW and SPE estimators used either known or estimated verification probabilities,

indexed by ‘K’ and ‘E’ respectively. The empirical estimates used were π̂i = 1.0 if Ti > t(0.8) and

π̂i =
∑n

i=1
Vi I[Ti≤t(0.8)]∑n

i=1
I[Ti≤t(0.8)]

, if T ≤ t(0.8).

Results are shown for 1000 simulations of data for n=1000 subjects and θ = 0.1. Since verification

is a function of T , the extent of biased sampling was varied by changing the parameters that determine

T , ν1 and τ1. For larger values of ν1 and τ1, the discrepancy in the percentages of diseased and non-

diseased subjects verified is larger, and, consequently, the larger the bias in CC, the naive estimator

of prevalence (Table 2). FI, MSI, SPE, and IPW were essentially unbiased (not shown).

4.1 Relative efficiency

Mean prevalence variance estimates were similar to the simulation variance and the variance esti-

mator had good coverage probabilities, suggesting that large sample results can be used to perform

small sample inference. Both asymptotic relative efficiency (ARE) and small sample relative ef-

ficiency (SSRE) were calculated, with the latter calculated as the ratio of the variances for two

estimators across the 1000 simulation realizations. Asymptotic variance expressions (Corollary 1)

were calculated using Monte Carlo integration. Since ARE and SSRE were similar, only SSRE results

are presented.
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SSRE relative to FI-B is presented in Table 3 for A = Z1 +Z2 + ε2. SSRE less than 1 implies the

estimator is less efficient than FI-B. Estimators are listed in the rows while the informativeness of

T and potential for verification bias decreases moving across the columns. MSI-B and FI-B are the

most efficient estimators and have similar performance to each other. Conversely, the IPW estimator

is clearly the most inefficient estimator, 33-44% less efficient than the FI estimator. As anticipated,

estimating πi increased the efficiency of the IPW estimator. IPW with empirically estimated πi is up

to 14% more efficient than IPW using known πi. Conversely, using estimated πi does not appear to

affect the efficiency of SPE. These observations are consistent with previous literature (Pepe et al.,

1994; Robins et al., 1995). Table 3 also suggests that SPE estimators are 8-17% less efficient than

FI and MSI estimators that use the same disease probability model. This is not surprising because

FI and MSI do not belong to the class of semiparametric estimators (containing SPE) that makes

fewer assumptions. Observe, however, that the SPE estimator is up to 37% more efficient than the

IPW estimators that belong to the semiparametric class of estimators.

To assess gains in efficiency that can be achieved by incorporating auxiliary data, the informative-

ness of A was varied from highly informative (i.e., ν2 = τ2 = 1) to non-informative (i.e., ν2 = τ2 = 0).

Small sample efficiency of FI-T relative to FI-B that includes A in the disease model is given in Ta-

ble 4. Moving down a column decreases the informativeness of A and, not surprisingly, increases

the relative efficiencies. It is reassuring to observe that estimators that included non-informative A

were not less efficient than estimators that did not incorporate these data. We also observe that

relative efficiency generally decreases moving across the columns, as the informativeness of T for D

decreases. That is, the less informative T is, the more efficiency that can be gained by incorporating
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A. Similar results were observed for MSI and SPE.

Qualitative results seemed to generalize for various δ and θ (not shown). As δ increases to 1,

the difference in efficiency between FI and MSI estimators and other estimators decreased. This

is not surprising since CC, MSI, IPW, and SPE estimators are equivalent when all subjects are

verified. Moreover, there was a trend for differences in efficiencies between FI (MSI) and IPW to be

augmented by increasing θ. Conversely, the difference in efficiency between FI (MSI) and SPE was

smaller for larger θ.

4.2 Robustness to model misspecification

The estimators discussed in this paper require a binary regression model for disease and/or verifica-

tion probabilities. These models can be misspecified if either the form or components of the model

are incorrect. For a generalized linear model, these correspond to an incorrect link function or form

of the linear predictor. The latter can occur if the model does not include pertinent explanatory

variables or if the form of the explanatory variables included is not correct. Next, we discuss the

robustness of the prevalence estimators to these types of model misspecification.

Not surprisingly, simulation results were similar when probit and logit links were used (results

not shown). Thus, estimators appear to be robust to these link functions. Next, we investigate the

robustness of the estimators when the form of the linear predictor is incorrect. FI, MSI, and SPE

require a model for the probability of disease. Since verification is a function of T , the disease model

is misspecified if A is included in the model instead of T . In this case, the MAR assumption is

violated, P (D|A, V = 1) 6= P (D|A). As expected, SPE yielded unbiased estimates of prevalence in

all scenarios considered (Table 5). Conversely, FI and MSI overestimated prevalence except when
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a simple random sample of subjects was verified. The bias in FI and MSI was smaller for more

informative A and considerably less than the bias in CC when A was somewhat informative. The

variance of FI and MSI were larger than SPE except when A was highly informative or when a

simple random sample was verified. However, the mean squared error (MSE) of FI and MSI was

only smaller than the MSE of SPE when a simple random sample was verified. Similar qualitative

results were obtained for other forms of linear predictor misspecification.

To investigate the robustness of IPW and SPE to linear predictor misspecification, a model

linear in T was fit instead of the correct model containing the threshold I[T > t(0.8)]. IPW esti-

mates of prevalence clearly underestimated prevalence when the former model was used (not shown).

Conversely, the SPE estimator yielded unbiased estimates with slightly smaller variance than the

correctly specified estimator. However, when both disease and verification probability models were

misspecified, SPE (denoted SPE-L) had similar bias and variance to FI and MSI estimators (Table 5).

5 Great Smoky Mountain Study

One of the main goals of the Great Smoky Mountain Study (GSMS) was to assess the prevalence of

depression in adolescents residing in Western North Carolina (Costelo et al., 1996). The GSMS was

a two-phase study where in phase 1 an inexpensive 57-question screening questionnaire, designed

to uncover general behavioral and emotional disorders, was given to the parents of all study sub-

jects. All subjects scoring above a pre-determined threshold on the questionnaire were selected for

phase 2 while subjects scoring below were selected with probability 0.1. The subjects selected for

phase 2 as well as their parents were administered in-depth Child and Adolescent Psychiatric Assess-

ment (CAPA) interviews (Angold et al., 1995). Computer algorithms applied to the results of the
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CAPA interviews were used to diagnose depression, as defined by DSM-III-R taxonomy (American

Psychiatric Association, 1987).

5.1 Data

Screening questionnaire scores ranged from 0 to 79 with 25th, 50th, and 75th percentiles of 6, 12,

and 20, respectively. Of the 3878 subjects for which we had data, 1005 (25.9%) had a questionnaire

score higher than the threshold of 20. Due to refusal, loss to follow-up, and other reasons, only

758 (75.4%) of the screen positives and 257 (8.9%) of the screen negatives received depression status

ascertainment in phase 2. Overall 1015 (26.2%) received disease verification, of which 36 (3.5%) were

diagnosed with depression.

5.2 Estimators

In the notation used in previous sections, T are the continuous results of the screening questionnaire,

V is the binary variable indicating whether subjects received disease verification, and D is the binary

depression status. No auxiliary information, A, were available.

FI, MSI, and SPE estimators require a model for disease probabilities conditional on T . Gener-

alized Additive Models (GAM) were used as an exploratory tool to suggest transformations of T , if

necessary, to be included in the disease model (Hastie & Tibshirani, 1990). SPE and IPW estima-

tors were fit using both the known (theoretical) weights of 1.0 and 0.1 and the empirically estimated

weights of 0.754 and 0.089 for the screen positive and screen negative subjects, respectively.

5.3 Results

Table 6 presents estimates of the prevalence of depression for the various estimators. Based on

GAM results, T was included as a linear term in the model for P (D|T ). Logistic regression and
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probit regression yielded similar results so only probit regression results are reported. Clearly, the

CC estimate of prevalence (3.5%) is substantially larger than the other estimates. In fact, the 95%

confidence interval for CC does not contain any of the other prevalence estimates. FI and MSI

estimates are the least variable, but are roughly 0.02% higher than the SPE and IPW estimates.

SPE and IPW yield similar estimates whether theoretical or estimated weights are used. SPE

estimates are marginally less variable than the IPW estimates. Although the SPE, IPW, FI, and

MSI prevalence estimates are similar for these data, we recommend reporting results of the SPE

estimator because simulations reported in the previous section indicate that SPE is more robust to

model misspecification and is only marginally less efficient than FI and MSI.

6 Discussion

A variety of approaches have been taken to deal with missing data in two-phase study designs. We

have considered the simplest statistical task in this paper, namely estimation of disease prevalence,

and considered the corresponding variety of prevalence estimators. We conclude that the SPE method

is the preferred approach. We observed that the SPE estimator is only marginally less efficient than

the FI and MSI estimators when the disease model is correct and has the important advantage that

it is consistent if either the disease or verification model is correct. Moreover, it is substantially more

efficient than the most commonly applied IPW estimator.

The SPE estimator derived in Section 2.2 is similar to the regression estimator proposed by Gao

et al. (2000) for two-phase sample surveys. Gao et al. (2000) did not recognize this estimator

to be the most efficient estimator in the class of semiparametric estimators and did not develop

distribution theory for their estimator, that we have now provided here. An alternative approach to
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estimating prevalence is an efficient fully parametric analysis that parameterizes the joint distribution

of T , A, and D as Pθ,γ(T, A,D) = Pθ(D)Pγ(T, A|D) and estimates θ and γ simultaneously using

maximum likelihood estimation methods. However, not only is the nuisance component Pγ(T,A|D)

not of interest, but misspecification of this model can lead to inconsistent estimation of θ (Pepe,

1992). Another important disadvantage to a fully parametric approach is that it is usually difficult

to specify a model for Pγ(T,A|D), especially as the dimension of A increases (Clayton et al., 1998).

Distribution theory has been developed for the SPE estimator in a more general setting (Robins

et al., 1995). Clayton et al. (1998) obtain a variance expression for the MSI prevalence estimator

by considering a vector of estimating equations for the simultaneous estimation of the parameter

of interest, here disease prevalence, and nuisance parameters. In this paper, we formalized and

generalized this approach to obtain theory that is applicable to all the estimators considered in this

paper, and that can easily be extended to the clustered data setting.

Although our results pertain only to the estimation of prevalence, they may be informative

about more complex analysis such as regression analysis. Complete case, imputation, mean score,

and semiparametric methods can also be applied when fitting regression models. Application of

semiparametric efficient methods in those settings is much more challenging, however, and they may

not be practical. Further work to compare the approaches would be of interest.

The probability subjects are selected for phase 2 of a two-phase study is often under the control of

the investigators designing the study. The question arises as how to “optimally” design such a study.

Pepe et al. (1994) propose optimal sampling fractions for the mean score estimator with discrete

phase 1 data. Identifying optimal two-phase sampling strategies for other estimators of prevalence
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discussed in this paper and for continuous phase 1 data also warrants further attention.
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APPENDIX

Asymptotic theory stated in Theorems 1-3 is proven in an unpublished technical report that can be

accessed at http://www-rcf.usc.edu/∼talonzo/techrep.html. These results can be applied to the class

of semiparametric estimators provided β?
0 exists, Ui(β?

0) are iid, E[Ui(β?
0)] = 0, and the estimating

functions satisfy conditions C2 and C3 (Section 3.2). Clearly, these are satisfied for Uα
n (β) if logistic

or probit regression with bounded covariates are used to estimate nuisance parameters. The partial

derivatives of Uα
n (β) with respect to θ equal 0 because Uα

n (β) are not a function of θ. Therefore, C2

and C3 are true for ∂
∂θUα

n (β) and all that remains to be shown is that U θ
i (β?

0) are iid, E[U θ
i (β?

0)] = 0,

and Uθ
i (β) and ∂

∂αUθ
n(β) have properties C2 and C3. Next, we show that these hold under the

following assumptions: (A1) D is MAR; (A2) (Di, Ti, Ai, Vi) are iid; (A3) (T,A) is bounded; (A4)

E[ ∂
∂β Ui(β0)] is negative definite; (A5) ρi and πi are bounded away from 0.

U θ
i (β) = π−1

i Vi(Di − θ)− kπ−1
i (Vi − πi)(ρi − θ) are iid since each Uθ

i (β) is only a function of the

data which are assumed to be iid (A2). Using conditional expectations and (A1), E[U θ
i (β?

0)] equals

E
[
E

[
Uθ

i (β?
0)

] |Ti, Ai

]
= E

[
π−1

i (E[Di|Ti, Ai] πi − π θ?
0)

]− kE
[
π−1

i E [(Vi − πi)(ρi − θ?
0)|Ti, Ai]

]
= 0.

Expressions for Uθ
n(β), ∂

∂β U θ
n(β), and ∂2

∂β∂βT Uθ
n(β) can be easily derived. Hence existence (C2) is

satisfied. Furthermore, these expressions are bounded (C3) by assumptions A3-A5.
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Table 1: Contributions to prevalence estimation. ρi = P (Di = 1|Ti, Ai) and πi = P (Vi = 1|Ti, Ai).

Estimator (Acronym) Vi = 1 Vi = 0
Complete case (CC) Di 0
Full imputation (FI) ρi ρi

Mean score imputation (MSI) Di ρi

Inverse probability weighting (IPW) Diπ
−1
i 0

Semiparametric efficient (SPE) π−1
i [Di − ρi(1− πi)] ρi

Table 2: Empirical AUC, P (V = 1|D = 1), P (V = 1|D = 0), and bias in the CC estimator when
verification depends on the value of T = ν1Z1 + τ1Z2 + ε1.

ν1, τ1 AUC P (V = 1|D = 1) P (V = 1|D = 0) Bias of CC
1, 1 0.96 0.92 0.30 160%
1, 0.5 0.92 0.83 0.31 130%
0.5, 0.5 0.88 0.76 0.32 110%
1, 0 0.81 0.66 0.33 80%
0.5, 0 0.72 0.56 0.34 60%
0, 0 0.50 0.36 0.36 0%

Table 3: Small sample efficiency relative to FI-B for estimating disease prevalence when verification
depends on T = ν1Z1 + τ1Z2 + ε1. A is fixed to be Z1 + Z2 + ε2. Estimators indexed with “B”
and “T” use the disease probability models P (D|T, A) and P (D|T ), respectively. SPE and IPW use
known or estimated verification probabilities, indexed by ‘K’ and ‘E’ respectively.

ν1, τ1

Estimator 1, 1 0.5, 0.5 1, 0 0, 0
FI-T 0.97 0.84 0.81 0.63
MSI-B 0.99 0.99 1.00 1.00
MSI-T 0.96 0.83 0.81 0.63
IPW-K 0.67 0.59 0.64 0.56
IPW-E 0.81 0.64 0.67 0.56
SPE-K-B 0.87 0.83 0.88 0.92
SPE-K-T 0.83 0.67 0.69 0.55
SPE-E-B 0.87 0.83 0.87 0.91
SPE-E-T 0.83 0.67 0.69 0.55
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Table 4: Small sample efficiency for FI-T relative to FI-B for estimating disease prevalence when
verification depends on T = ν1Z1 + τ1Z2 + ε1.

ν1, τ1

ν2, τ2 1, 1 0.5, 0.5 1, 0 0, 0
1, 1 0.968 0.837 0.815 0.625
0.5, 1 0.984 0.901 0.833 0.741
0.5, 0.5 0.990 0.932 0.924 0.810
0, 1 0.995 0.967 0.866 0.892
0, 0 0.998 0.999 1.002 0.999

Table 5: Mean (variance ×10−4) estimated prevalence when verification depends on T = Z1+Z2+ε1.
True prevalence is 0.1. Different values of ν2 and τ2 are considered for A = ν2Z1 + τ2Z2 + ε2. FI,
MSI, and SPE incorrectly use the disease probability model P (D|A). SPE-L incorrectly fits the
verification probability model P (V |T ) linear in T .

ν2, τ2

Estimator 1, 1 0.5, 0.5 1, 0 0, 0
FI 0.13 (1.48) 0.18 (2.82) 0.20 (3.68) 0.26 (5.31)
MSI 0.13 (1.49) 0.18 (2.83) 0.20 (3.69) 0.26 (5.31)
SPE-E 0.10 (1.34) 0.10 (1.69) 0.10 (1.74) 0.10 (1.28)
SPE-L 0.13 (1.49) 0.18 (2.80) 0.20 (3.67) 0.26 (5.31)
CC 0.26 (5.28) 0.26 (5.28) 0.26 (5.28) 0.26 (5.28)

Table 6: Estimates of depression prevalence in the Great Smoky Mountain Study.

Estimator ̂Prevalence Standard Deviation 95% CI
CC 0.036 0.362 (0.024, 0.047)
FI 0.019 0.253 (0.011, 0.026)
MSI 0.019 0.251 (0.011, 0.026)
SPE-E 0.017 0.280 (0.008, 0.026)
SPE-K 0.017 0.272 (0.008, 0.025)
IPW-E 0.017 0.286 (0.007, 0.025)
IPW-K 0.016 0.281 (0.007, 0.025)
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