
1647

Mol. Biol. Evol. 17(11):1647–1660. 2000
q 2000 by the Society for Molecular Biology and Evolution. ISSN: 0737-4038

Estimating Divergence Times in the Presence of an Overdispersed
Molecular Clock

David J. Cutler1

Center for Population Biology, University of California at Davis

Molecular loci that fail relative-rate tests are said to be ‘‘overdispersed.’’ Traditional molecular-clock approaches to
estimating divergence times do not take this into account. In this study, a method was developed to estimate
divergence times using loci that may be overdispersed. The approach was to replace the traditional Poisson process
assumption with a more general stationary process assumption. A probability model was developed, and an accom-
panying computer program was written to find maximum-likelihood estimates of divergence times under both the
Poisson process and the stationary process assumptions. In simulation, it was shown that confidence intervals under
the traditional Poisson assumptions often vastly underestimate the true confidence limits for overdispersed loci.
Both models were applied to two data sets: one from land plants, the other from the higher metazoans. In both
cases, the traditional Poisson process model could be rejected with high confidence. Maximum-likelihood analysis
of the metazoan data set under the more general stationary process suggested that their radiation occurred well over
a billion years ago, but confidence intervals were extremely wide. It was also shown that a model consistent with
a Cambrian (or nearly Cambrian) origination of the animal phyla, although significantly less likely than a much
older divergence, fitted the data well. It is argued that without an a priori understanding of the variance in the time
between substitutions, molecular data sets may be incapable of ever establishing the age of the metazoan radiation.

Introduction

In 1965, Zuckerkandl and Pauling suggested the
use of protein sequences to infer the time since diver-
gence of two or more related species. Their suggestion
was based largely on the observation that proteins did,
in fact, accumulate differences in an amount proportion-
al to the time since their common ancestor. One could,
therefore, use this empirical pattern to estimate diver-
gence times. A precise population genetics model to ac-
count for this observation was not presented.

Kimura and Ohta (1971) offered the neutral theory
as a model to explain this pattern. Under the neutral
theory, it can be shown that the number of substitutions
in a lineage in T generations will be Poisson distributed
with mean uT, where u is the mutation rate per sequence
per generation (Kimura 1983). Thus, the neutral theory
provides a precise statistical model that can be tested
with molecular sequence data.

The first test of the constant-rate Poisson model of
protein substitutions occurred early in the history of mo-
lecular clocks (Ohta and Kimura 1971). Ohta and Ki-
mura examined three proteins in several pairwise com-
parisons in mammals. They showed that for two of the
proteins in a few of the pairs, a Poisson process with a
constant rate could be rejected. This result was some-
what hard to interpret, as no explicit phylogenetic hy-
pothesis was made, and the effect of phylogeny on,
among other things, the independence of comparisons
went unconsidered. The first attempts to use phylogeny
in an explicit manner occurred in the following three
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years (Langley and Fitch 1973, 1974). Langley and
Fitch examined four proteins in 18 species. The species
were assumed to have a known phylogeny. The numbers
of amino acid substitutions along all branches in the
phylogeny were inferred. Next, all divergence times and
substitution rates were found by maximum likelihood.
Finally, a x2 (Langley and Fitch 1973) and a likelihood
ratio test (Langley and Fitch 1974) were performed to
ask whether the observed numbers of mutations on the
branches were statistically different from those expected
under a constant-rate Poisson model. This model was
rejected with high confidence. Discussions in both pa-
pers attribute the rejection of the Poisson model to rate
variation.

Since these pioneering works were performed, test-
ing the constant-rate Poisson model has become com-
mon practice in molecular evolution (Li and Graur 1991;
Li 1997), and new tests continue to be proposed (Muse
and Weir 1992). Tests of the constant-rate Poisson mod-
el are generally called ‘‘relative-rate tests,’’ but this
name may be misleading. Relative-rate tests examine
agreement between the constant-rate Poisson model and
the observed sequence divergence. When a test achieves
a significant result, the model is rejected. The reason for
rejection of the model may be that the constant-rate as-
sumption failed. On the other hand, the model may have
been rejected because the Poisson assumption failed
(Gillespie and Langley 1979).

Standard Poisson processes have the property that
the mean number of events in a given amount of time
is equal to the variance in the number of events in that
time. All relative-rate tests use this fact. Thus, when a
relative-rate test returns a significant result, it may be
because the mean numbers of events in the lineages are
unequal. Conversely, it may be that the mean numbers
are identical, but the variance in the numbers is larger
than the mean (Gillespie and Langley 1979). A choice
between these two alternative interpretations will be
necessary to model an overdispersed molecular clock.
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Nevertheless, this dichotomy of interpretations is not al-
ways clearly distinguished.

Suppose one believes that the mean numbers of
substitutions in two lineages are identical, but the vari-
ances are higher than the mean. One might naturally try
to model this situation with a negative binomial distri-
bution. The negative binomial is a discrete distribution
with a variance larger than the mean, and as the variance
approaches the mean, the negative binomial reduces to
a Poisson (Stuart and Ord 1987, p. 178). It seems a
logical choice to model a high variance process.

Alternatively, one might believe that the number of
substitutions in a lineage is Poisson distributed, but the
mean number varies. One might attempt to model this
situation by assuming that the mean numbers of substi-
tutions in lineages are independent and gamma distrib-
uted, and given the mean, the actual number of substi-
tutions is Poisson distributed. The resulting substitution
process (a Poisson process with a gamma-distributed
mean) has a negative binomial distribution (Stuart and
Ord 1987, p. 182). In other words, both interpretations
(Poisson with variable rate versus high-variance con-
stant rate) lead to identically distributed substitution pro-
cesses. Distinguishing these alternatives with a single set
of observations is impossible. In principle, if the evo-
lution process were repeated over and over again, the
alternatives could be distinguished, but given that the
tree of life happened only once, it may be fundamentally
unknowable which interpretation is correct.

A locus that fails a relative-rate test is often called
overdispersed. Knowing why the locus is overdispersed
may not be possible, but some assumption about the
cause will be necessary in order to formulate a practical
method to estimate divergence times using loci that
might be overdispersed. In the past, four basic approach-
es have been taken to estimating divergence times with
such loci: (1) don’t ask, don’t tell; (2) molecule shop-
ping; (3) taxa shopping; or (4) making an explicit model
for the overdispersion. Each option will be considered
in turn.

Sometimes researchers interested in estimating di-
vergence times do not perform relative-rate tests, or if
they do perform the tests, the results are not reported.
This approach has little to offer other than expediency.
A second approach is to search for a molecule that pass-
es, or is more likely to pass, a relative-rate test. The
procedure can be either formal (acquire sequences; per-
form the tests; if you reject the constant-rate Poisson
model, repeat; Kumar and Hedges 1998) or informal
(introns are thought to be more ‘‘neutral’’ than exons,
so do the analysis on introns because they are more
likely to pass a relative-rate test, even if the test is never
performed). Molecule shopping is a sensible procedure
if one believes that there do exist molecules for which
the constant-rate Poisson model is correct. If such mol-
ecules do exist, the researcher merely needs to find
them, and shopping may be the appropriate way.

A third approach is taxa shopping. The basic idea
is to exclude from the analysis taxa that are likely to
cause significant relative-rate tests. Again, this proce-
dure can be formal (perform a test; if the test is signif-

icant, remove a taxon and repeat; Takezaki, Rzhetsky,
and Nei 1995) or informal (taxon X, say, nematodes, is
thought to be ‘‘unusual,’’ and therefore X is excluded
from the analysis). This approach is sensible if one be-
lieves that most species evolve according to a constant-
rate Poisson model, but occasionally there are a few
species evolving at some different rate and therefore
need to be excluded.

Of course, any sort of data shopping can potentially
introduce bias into the analysis. If one believes that ov-
erdispersion is intrinsic to the process of evolution (Gil-
lespie 1991) and that loci are, on average, overdispersed
(Ohta 1995), then restricting one’s analysis to loci and
taxa which happen to pass relative-rate tests is inappro-
priate. Moreover, it is easy to imagine that the taxa and
loci that happen to pass relative-rate tests might be a
biased subset of all taxa and loci. In particular, the power
of any relative-rate test increases with the amount of
divergence in the sample. By shopping for molecules or
taxa, one may be restricting one’s analysis to loci and/
or taxa that evolve unusually slowly. Finally, even
though a locus is overdispersed, it still almost certainly
contains some information about divergence times. Ide-
ally, one would like to be able to use that information.

Therefore, the fourth approach, to build an explicit
model of overdispersion, is favored here. Several pre-
vious authors have already taken this approach, but each
analysis assumed that the substitution process was fun-
damentally Poisson and that rates varied between line-
ages. Hasegawa, Kishino, and Yano (1989) assumed
three different rates in a tree of four primates. Lynch
and Jarrell (1993) demonstrated a generalized linear
model that can allow for arbitrary rate variation. Uyen-
oyama (1995) gave different rates to different functional
classes of sequences. Sanderson (1997) assumed that
rates autocovaried through the history of a lineage, and
he maximized this covariance. Thorne, Kishino, and
Painter (1998) proposed a different model of rate auto-
covariance. The approach taken here will be from the
opposite end of the dichotomy. In this paper, a model
will be developed that assumes the number of substi-
tutions in a lineage is stationary, but, unlike a Poisson
process, the variance in the number of substitutions will
not necessarily be equal to the mean. To do this, the
Poisson process assumption will be replaced by a sta-
tionary process assumption, and a central limit theorem
approximation will be required. The performance of the
model will be examined in simulation, and the model
will be used to estimate divergence times among land
plants and among the higher metazoans.

Materials and Methods
Langley and Fitch with a Stationary Process

Under the constant-rate Poisson model, the times
between substitutions are independent of each other and
exponentially distributed with constant mean m. The ex-
ponential distribution imposes the property that the var-
iance in the time between substitutions must equal m2.
By relaxing the independence assumption, not requiring
an exponential distribution, and utilizing a central limit
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theorem approximation, a more general stationary pro-
cess model can be used.

Let Xi be the time between substitution i and sub-
stitution i 1 1. Under the constant-rate Poisson model,
Xi’s are independent of one another and exponentially
distributed. To relax these assumptions, first assume that
the substitution process is stationary, such that the joint
density of , , . . . , depends only on i2 2 i1, . . . ,X X Xi i i1 2 k

ik 2 i1 (Cox and Isham 1980, p. 24). In other words,
the substitution process is unaffected by translations of
time. In place of assuming that all Xi’s are independent
of one another, instead assume that the dependence of
the Xi‘s on one another decays over time. Thus, assume
that

1
2s 5 lim var{X 1 X 1 · · · 1 X }1 2 k1 2kk→`

k i
5 lim var{X } 1 2 1 2 cov{X , X } (1)O1 1 i111 2[ ]1 2kk→` i51

exists and that s2 , `. If m 5 E{Xi} is the mean time
between substitutions, for a Poisson process the times
between substitutions are all independent of one another,
such that Cov{X1, Xi11} 5 0. As a result, s2 5 m2, and
s2 is simply the variance in the time between substitu-
tions. In fact, Cov{X1, Xi11} 5 0 for any renewal process
(such as Takahata’s [1987] fluctuating neutral space), so
that s2 in equation (1) is the variance Var{Xi} of any
single time between substitutions. For other stationary
models, s2 is the variance in time between substitutions
plus twice the sum of all the covariances in times be-
tween substitutions. For the sake of simplicity, s2 will
be called the ‘‘cumulative variance per term’’ in time
between substitutions. A finite s2 appeared to exist for
every model of evolution studied by Gillespie (1993,
1994a, 1994b), although models without this property
are certainly possible. Bickel and West (1998) model the
substitution process as a doubly stochastic Poisson pro-
cess with the assumption that s2 is infinite, and they
obtain a good fit between observed mammalian substi-
tutions and their model. Nevertheless, for this paper, s2

will be assumed to be finite.
Since the time between substitutions is not observ-

able from molecular data, but the total number of sub-
stitutions may be inferred, the distribution for the total
number of substitutions is needed. Finding this distri-
bution for any given model of evolution is usually a
formidable problem. As a result, this analysis will fall
back on a central limit theorem approximation. If the
total number of substitutions, S, in a given period of
time, t, is large, S will be approximately normally dis-
tributed with mean t/m and variance s2t/m3 (Cox and
Isham 1980, p. 36).

The basic approach to finding divergence times is
that of Langley and Fitch (1973). Amino acid or nucle-
otide sequences will be collected from L loci in K taxa.
The K taxa will be assumed to have a known, accurate,
and given phylogeny. The phylogeny will be assumed
to be identical for each locus examined. The number of
substitutions in each locus along each branch in the phy-

logeny will be assumed to be known without error. Of
course, in practice, neither the phylogeny nor the num-
ber of substitutions along each branch is ever known
without error, but must be inferred. Errors in this infer-
ence may lead to subsequent errors in analysis and in-
ference (Gillespie and Langley 1979; Hudson 1983b).
In particular, ancestral polymorphism can lead to sepa-
rate loci having slightly different divergence times
(Hudson 1983b). More rarely, ancestral polymorphism
can lead to loci having different phylogenies (Hudson
1983b).

Let Sb,l be the number of substitutions along branch
b for locus l. By assumption, Sb,l is normally distributed
with mean mb,l 5 (Ti 2 Tj)/ml and variance 2s 5b,l

, where Ti is the time of divergence of the2 3s (T 2 T )/ml i j l

node above b, Tj is the time of divergence of the node
below b, ml is the mean time between substitutions for
locus l, and is the cumulative variance per term.2sl

Thus, Sb,l has probability density function

 21 (x 2 m )b,lexp 2 , if x . 0
22 [ ]2sÏ2ps b,lb,l

f (x) 5 b,l
0 21 (y 2 m )b,lexp 2 dy, if x 5 0.E 22 [ ]2sÏ2ps b,l 2` b,l

(2)

The second condition assumes that a negative num-
ber of substitutions is impossible. Thus, fb,l(x) is a nor-
mal density on the positive real line, with an atom of
probability mass at zero. Notice that the number of sub-
stitutions has been assumed to be real-valued (i.e., not
an integer). This can be viewed as consistent with al-
gorithms that infer real values for the number of sub-
stitutions on each branch, for example, the Fitch and
Margoliash (1967) and neighbor-joining (Saitou and Nei
1980) algorithms.

Assuming that all loci and all branches are inde-
pendent of one another, the overall likelihood of the ob-
served numbers of substitutions is given by

L 5 f (S ). (3)P b,l b,l
b,l

The parameter values (Ti, ml, and ) that maximize2sl

L are found numerically. To do this, 2log(L) is mini-
mized using the ‘‘Powell’’ algorithm found in Press et
al. (1992). In principle, the mean time between substi-
tutions (ml) and the divergence times (Ti) are confounded
with one another. In order to obtain absolute estimates
of these quantities, calibration using the fossil record is
required. The treatment used here is inspired by San-
derson (1997) and is described in the next section.

Confidence intervals for all parameters can be es-
timated from the likelihood surface (Edwards 1992). If
L* is the maximum likelihood, all points within two log
likelihood units of L* are considered to be within the
95% confidence interval of the maximum (Edwards
1992). For each parameter A, the largest and smallest
values of A are sought, such that there exists a point
with the given value of A that is within two log likeli-
hood units of L*. During this search, all other parame-
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FIG. 1.—Fossil A provides a lower bound for times T1 and T2.
Fossil B provides a lower bound for time T1. Fossil C provides an
upper bound for time T2 and a lower bound for time T1.

ters are allowed to take on any value. The search for
these points is conducted using the Powell algorithm
(Press et al. 1992).

Confidence interval estimation in this fashion suf-
fers from three potential problems. First, if (Amin, Amax)
is the estimated confidence interval for some parameter
A, nothing guarantees that all values of A such that Amin

, A , Amax are also within two log likelihood units of
the maximum. This will never be a problem for suffi-
ciently convex likelihood surfaces, but should be kept
in mind when small data sets are examined. Second,
inadequate or incomplete searches of the likelihood sur-
face will always lead to an underestimate of the ‘‘true’’
confidence interval. Third, the choice of two log likeli-
hood units as defining the 95% confidence limits is
based on a central limit theorem result for large data
sets. It appears from simulation that small data sets tend
to lead to an underestimate of the true interval (see
Results).

Two distinct models are compared. The first is the
stationary process (SP) model described above, and the
second is the constant-rate Poisson process (PP) model,
i.e., the model Langley and Fitch (1974) used. The index
of dispersion, R, is the ratio of the variance in the num-
ber of substitutions to the mean number of substitutions.
Under the PP model, R 5 1 for all loci. Under the SP
model, for locus l.2 2R 5 s /ml l l

Following Langley and Fitch (1973, 1974), model
evaluation occurs in two ways. First, a x2 test is per-
formed to assess the goodness of fit of the SP model
and the PP model. For the SP model, x2 is calculated
by

2(S 2 m )b,l b,l2x 5 , (4)O 2sb,l b,l

where mb,l is the expected number of substitutions on
branch b for locus is the variance in that num-2l, and sb,l

ber. For the PP model, x2 is given by

2(S 2 m* )b,l b,l2x 5 , (5)O
m*b,l b,l

where is the expected number of substitutions form*b,l

branch b and locus l under the PP model. For both x2

tests, all branches with fewer than three substitutions
were binned together.

Second, a series of likelihood ratio tests is per-
formed to directly compare the fits of the two models.
In order to create proper nesting between the SP and the
PP models, for the likelihood ratio test only, the Poisson
model is approximated by a normal with a mean and
variance equal to the mean under the Poisson. This ap-
proximation is expected to be very poor when many
branches have few substitutions. As a result, this test
may be highly unreliable for data sets with very short
branches (see Results: Performance Evaluation). The PP
model has K 2 1 1 L parameters (K 2 1 divergence
times and L substitution rates). The SP model has K 2
1 1 2L parameters (K 2 1 divergence times, L mean
times between substitutions, and L variances in time be-

tween substitutions). Thus, there are L degrees of free-
dom when comparing SP with PP.

Calibration

In order to assess absolute divergence times, it is
necessary to calibrate the clock with fossil data. The
traditional approach (Wray, Levinton, and Shapiro 1996)
is to use fossils to ‘‘assign’’ dates to some of the nodes
in the phylogeny. Next, given these fixed dates, the sub-
stitution rate is estimated under the Poisson model for
taxa descended from these nodes. Finally, using the in-
ferred substitution rate, divergence dates are estimated
for the remaining nodes in the phylogeny. Unfortunate-
ly, using fossils to assign dates to nodes in a phylogeny
is problematic.

Fossils never occur at nodes in a phylogenetic tree.
One is never so lucky as to find a fossil that dates to
the precise moment at which two taxa diverged from
one another. Fossils do not provide estimates of diver-
gence dates, but they do provide bounds for divergence
dates (Sanderson 1997). The best possible situation
would be to find a fossil that occurs on a branch above
a node and find another fossil on a branch below a node
(see fig. 1). Any fossil that occurs on a branch above a
node provides an upper bound on the divergence time
of that node. A fossil that occurs on a branch below a
node provides a lower bound for that divergence time.
In general, all fossils are assigned to branches. Fossils
that occur on exterior branches provide only lower
bounds for nodes. Fossils on interior branches provide
both upper bounds and lower bounds. In order for di-
vergence times to be bounded above, either at least one
interior branch fossil must be identified (see appendix),
or one must artificially assign an absolute upper bound
for the entire tree. Presumably any assigned upper
bound reflects some natural boundary (e.g., the age of
the universe) or is a hypothesis being directly tested
(e.g., the hypothesis that the higher metazoans radiated
no more than 600 MYA, which is examined below).
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FIG. 2.—In a phylogeny of extant taxa, a fossil from an extinct
sister taxon can be ‘‘assigned’’ to its closest extant relative. The fossil
provides a lower bound for time T1. In order to do this, the researcher
must be convinced that B and C are more closely related to each other
than either is to any other taxon in the phylogeny.

Doyle and Donoghue (1993) point out that fossils
can seldom even be assigned to branches in a phylogeny
of extant taxa. Fossils are often not ancestors of extant
taxa, but instead may be extinct sister groups to modern
taxa or clades. This presents little difficulty when the
extinct fossil is the sister of an extant terminal taxon,
since the fossil can simply be ‘‘assigned’’ to the extant
lineage without changing the analysis (see fig. 2). The
fossil provides a lower bound for the node above the
extant lineage, whether it occurred on the lineage lead-
ing to the extant taxa or on the lineage leading to a now
extinct sister. Unfortunately, this does mean that fossils
will seldom be unequivocally assignable to interior
branches in the phylogeny. Since interior branch fossils
are likely to be rare, and since fossils on interior branch-
es provide upper bounds on divergence times, confi-
dence intervals for divergence times will often be highly
asymmetric with lower bounds tightly fixed, but with
upper bounds often many times as large as the point
estimates.

Thus, the approach to finding divergence times is
to allow fossils to provide constraints on divergence es-
timates. The parameter values (Ti, ml, and ) that max-2sl

imize equation (3) are sought simultaneously, but if any
divergence date (Ti) violates a fossil bound, the likeli-
hood is set to 0. Fossils create the domain from which
divergence dates may be drawn.

Clock calibration as described above, and as done
by Sanderson (1997) in a different manner, has several
advantages over the traditional approach. First, this
method accurately represents the proper scope of one’s
knowledge. One does not ever know for certain when
two lineages diverged, and building an analysis by as-
suming that such a quantity is known just seems logi-
cally flawed. Second, under this approach, adding ad-
ditional fossils can only improve estimates. Adding ad-
ditional fossils will either create better bounds or have
no effect (if there are already fossils above and below
on the branch). In the traditional approach, by assuming

that fossils occur at nodes when they do not, each ad-
ditional fossil adds error to the analysis. If this error has
mean 0, adding additional fossils will probably improve
the analysis. On the other hand, if the error exhibits bias
(e.g., divergence times are generally underestimates of
the true times; see Doyle and Donoghue 1993; Springer
1995), adding more fossils can have the effect of in-
creasing one’s confidence in an erroneous estimate.

A third advantage to treatment of fossils in this
manner is that it does not require the Poisson model to
be correct. Traditionally, one estimates rates of substi-
tution under a Poisson model, and then those substitu-
tion rates are used to estimate divergence times. Unfor-
tunately, if the Poisson model is rejected, it is not at all
clear how calibration should proceed. The approach tak-
en here avoids such problems.

Finally, it should be noted that the approach to fos-
sil calibration taken here can result in nonunique esti-
mates of divergence times. A very simplistic example
of this can be found in the appendix. In general, it is
difficult to know a priori whether or not an inferred di-
vergence time represents a unique maximum or, instead,
represents one possible maximum from some interval of
possibilities. For this reason, it is important not only to
focus on estimated divergence times, but also to consid-
er inferred confidence intervals. Assuming the likeli-
hood surface is sufficiently convex, the inferred confi-
dence intervals should include all possible maximum-
likelihood estimators. For this reason, confidence inter-
vals should be carefully considered along with point
estimates.

C language source code to estimate divergence
times and confidence intervals under both the PP model
and the SP model is available from the author on re-
quest. The basic input files are PHYLIP tree files. The
program relies on the Powell algorithm (Press et al.
1992) to find parameter values. This algorithm assumes
parameters are unconstrained (i.e., can take on any value
from 2` to `). As a result, the algorithm will often try
negative m’s, negative s2’s, and divergence times which
violate fossil constraints. Whenever such an event oc-
curs, an extremely low likelihood ( ) is assigned to50210e
the offending set of parameters. This creates disconti-
nuities at the boundaries of legal parameter space, and
as a result, the initial parameter guesses must come from
legal parameter space (i.e., initial m’s and s2’s must be
positive, and initial divergence times must not violate
fossil constraints).

Performance Evaluation

Several computer simulations were performed to
examine the effectiveness of the SP model to estimate
divergence times when the Poisson model was correct,
as well as the effectiveness of the PP model to estimate
divergence times when the stationary model was correct.
The basic simulation approach follows Sanderson
(1997). Several variables were examined in simulation:
number of substitutions per branch, number of taxa, rate
of fossilization, and cumulative variance per term (for
the SP model simulations).
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FIG. 3.—Land plant tree topology. Branch lengths are not to scale.
Fossil calibration points are indicated.

In all simulations, the number of terminal taxa ex-
amined was K, with K 5 10 or K 5 25. The phylogeny
of these taxa is generated by a pure-birth process (Yule)
with the time between taxon births being exponentially
distributed with mean B/n, where n is the number of
taxa currently ‘‘alive.’’ The simulations used the time
reversibility property of exponential distributions and
formally modeled a pure-death process. As a result, the
implemented code bore a strong similarity to a neutral
coalescent (Hudson 1983a), but one where the time be-
tween ‘‘common ancestor’’ events had mean B/n, rather
than 2B/n(n 2 1). Thus, in these simulations, all branch-
es are on average length B/2. The mean time between
substitutions, m, was fixed in all simulations with m 5
1, but average branch length was allowed to vary, with
B ranging from 5 to 50. Therefore, the average number
of substitutions per branch ranged from 2.5 to 25. The
majority of the simulations focused on B 5 5 or B 5
50, and only these values are reported.

The number of loci examined per simulation, L,
was either 1, 5, or 10. For a branch of length T, under
the Poisson model, the number of substitutions at a giv-
en locus along this branch was drawn from a Poisson
distribution with mean T/m. Under the SP model, the
number of substitutions was drawn from a normal dis-
tribution with mean T/m and variance Ts2/m3. All neg-
ative numbers of substitutions were replaced by 0. Sim-
ulated branch lengths were not rounded when estimates
were made under the SP model. When estimated under
the PP model, branch lengths were rounded to the near-
est integer. The cumulative variance per term, s2, ranged
from 5 to 50 for the SP model. Within any one simu-
lation, all loci were assumed to have the same s2.

By assumption, the number of fossils on a branch
of length T that are recovered and can be assigned to
this branch is Poisson distributed with mean T/f. Here,
f varies with B so that the average number of fossils per
branch ranges from 0.005 to 1. Given that a fossil oc-
curred on a branch with endpoint t1 and t2, the date of
the fossil is assumed to be uniformly distributed on (t1,
t2).

In all simulations, the phylogeny and the number
of substitutions per branch were assumed to be known
without error. Any simulation with no substitutions on
any branch for a locus was discarded. Similarly, any
simulation without any fossils on an internal branch was
discarded (without internal branch fossils, divergence
times cannot be bounded from above). For any given
set of parameters, 100 simulations were performed.

Land Plants

The land plant data set was provided by Sanderson
(1997). This data set consisted of a single locus (the
chloroplast rbcL gene) of nucleotide sequence. The phy-
logeny and the number of substitutions per branch were
both given by Sanderson. The number of substitutions
per branch ranged from 3 to 121, with a mean of 36.3
substitutions and median of 26.5 (the median would cor-
respond to B 5 52 in the simulations). Two internal
fossil calibration points were also given by Sanderson

(fig. 3). Two hypotheses were considered. The first hy-
pothesis imposed the condition that the root of the phy-
logeny was no older than 450 Myr (Sanderson 1997).
The second hypothesis made no assumption about the
root.

Metazoa

Five mitochondrial (ATPase subunit 6, cytochrome
B, cytochrome C oxidase subunit 1, cytochrome C oxi-
dase subunit 2, NADH subunit 1) and two nuclear (actin,
histone H3) amino acid sequences were acquired from
14 higher metazoan species (plus one outgroup species).
Sequences were obtained primarily from Greg Wray’s
website (Wray, Levinton, and Shapiro 1996) with ad-
ditional data from GenBank. The amino acid sequences
were aligned with CLUSTAL W using the default pa-
rameters. All pairwise per-site divergences were calcu-
lated with the PHYLIP program protdist, with default
parameters using a Dayhoff PAM substitution model to
correct for multiple hits.

Since the phylogeny of the higher metazoans is far
from established (McHugh and Halanych 1998), seven
distinct phylogenetic hypotheses were considered (figs.
4–10). For each of the seven unrooted (but containing
a bacterial—Escherichia coli or Rhodobacter spaero-
ides—outgroup to estimate the number of substitutions
on the most interior branches) trees, for each locus, sub-
stitutions per branch were inferred by least-squares min-
imization using the PHYLIP program fitch with default
parameters. The average number of substitutions per
branch varied depending on the tree being considered,
but the mean numbers of substitutions per branch were
65, 37, 42, 52, 64, 2.5, 0.5 for ATPase subunit 6, cy-
tochrome B, cytochrome C oxidase subunit 1, cyto-
chrome C oxidase subunit 2, NADH subunit 1, actin,
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FIG. 4.—Metazoan tree 1 topology. Branch lengths are not to
scale. Fossil calibration points are indicated.

FIG. 6.—Metazoan tree 3 topology. Branch lengths are not to
scale. Fossil calibration points are indicated.

FIG. 7.—Metazoan tree 4 topology. Branch lengths are not to
scale. Fossil calibration points are indicated.

FIG. 5.—Metazoan tree 2 topology. Branch lengths are not to
scale. Fossil calibration points are indicated.

and histone H3, respectively. Rooted trees were then
obtained by removal of the outgroup.

Following Wray, Levinton, and Shapiro (1996),
fossil calibration was taken from Benton (1993) and is
indicated in figures 4–10. For each phylogeny, two hy-
potheses were considered. The first hypothesis might be
called the ‘‘Cambrian explosion hypothesis’’ and im-
poses the condition that the root of the phylogeny is no
older than 600 Myr (30 Myr older than the oldest iden-
tified annelid fossil). The second hypothesis makes no
assumption about the age of the root. All sequences,
alignments, fossil calibrations, and phylogenies, along

with branch lengths, are available from the author on
request.

Results
Performance Evaluation

Both PP and SP simulations were performed. Anal-
ysis of the simulations focused on three areas: estima-
tion of the age of the entire clade, confidence intervals
associated with that estimate, and model selection. Each
of these areas will be discussed in turn.
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FIG. 8.—Metazoan tree 5 topology. Branch lengths are not to
scale. Fossil calibration points are indicated.

FIG. 9.—Metazoan tree 6 topology. Branch lengths are not to
scale. Fossil calibration points are indicated.

FIG. 10.—Metazoan tree 7 topology. Branch lengths are not to
scale. Fossil calibration points are indicated.

Special attention was given to estimation of the age
of the entire clade for three reasons. First, because of
the stochastic nature of the treatment of fossils, interior
nodes were often tightly bounded in some simulations,
while being nearly unconstrained in others. The root of
the tree was the only node never bounded from above
by fossils; hence, only the root had consistently large
confidence intervals. Second, the age of the root of the
tree is often a question of great interest (e.g., in the
metazoan data set). Third, because maximum-likelihood
estimates of divergence times need not be unique (see
appendix), confidence intervals may be more descriptive
than single-point estimates.

When simulations were performed under a Poisson
model, point estimates of the age of the root of the tree
were almost always nearly identical under either a PP
or an SP estimation procedure. The correlation coeffi-
cient between these age estimates under PP and SP was
greater than 99%. Thus, when the true model is Poisson,
assuming that the model is actually a stationary process
does very little to change estimates of divergence times.
The average error of these estimates (Sanderson 1997)
ranged from approximately 5% (from simulations with
long branches, many loci, and many fossils) to approx-
imately 45 % (from simulations with short branches, few
loci, and few fossils) (see tables 1 and 3).

Similarly, when the true model was stationary, both
the PP and the SP models tended to make similar esti-
mates of the age of the clade, with the correlation co-
efficient between their estimates being greater than 95%.
The mean error ranged from approximately 13% to over
66% and was again inversely proportional to branch
length, number of loci, and number of fossils. Addition-
ally, the mean error was also an increasing function of

the index of dispersion. Higher variance loci produced
greater errors in estimates (see tables 2 and 3).

In an infinitely large data set, with a comprehensive
search of the likelihood surface, inferred confidence in-
tervals should include the true parameter value 95% of
the time. Under a Poisson substitution model and the PP
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Table 1
Poisson Process Simulations for the Age of the Root

True Model Poisson L 5 1 L 5 5 L 5 10

% error of estimated age . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PP
SP

18.6
18.6

16.4
16.2

15.4
15.2

Frequency of confidence interval including true time . . . . . . . PP
SP

84.5
79.3

84.5
82

87.5
84.3

% rejected by x2 test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PP
SP

2.5
1.8

2.67
1.17

2.83
1.0

Frequency of PP model selected by likelihood ratio test . . . . 2.5 substitutions per branch
25 substitutions per branch

73
52

57.3
80.3

32
82.3

Frequency of SP model selected by likelihood ratio test . . . . 2.5 substitutions per branch
25 substitutions per branch

27
48

42.7
19.7

68
17.7

NOTE.—L is the number of loci. PP indicates estimation under a Poisson process assumption. SP indicates estimation under a stationary process assumption.
All values are averaged over several fossilization levels.

Table 2
Stationary Process Simulations for the Age of the Root

TRUE MODEL STATIONARY

L 5 1

s2 5 5 s2 5 10 s2 5 50

L 5 5

s2 5 5 s2 5 10 s2 5 50

L 5 10

s2 5 5 s2 5 10 s2 5 50

% error . . . . . . . . . . . . . . . . . . . . . PP
SP

28.2
29.4

31.4
32.3

35.3
37

24.7
24.6

26.4
26.7

26.6
30.5

25.1
25.1

24.5
24.4

25.6
27.6

% within confidence interval . . . PP
SP

76.2
75.8

66.4
75.6

50
79.3

88.6
88.4

83.2
85.6

68.8
79.3

87.4
89

81.4
88.4

73.2
84.5

% x2 rejected . . . . . . . . . . . . . . . . PP
SP

24.4
3

45.5
3.6

79.5
5.3

52.2
0.2

79.2
0

96
0

64
0.2

83
0

99.3
0.3

% PP model selected . . . . . . . . . . B 5 5
B 5 50

26
20.7

11.5
1.7

0.5
0

0
0

0
0

0
0

0
0

0
0

0
0

% SP model selected . . . . . . . . . . B 5 5
B 5 50

74
79.3

88.5
98.3

99.5
100

100
100

100
100

100
100

100
100

100
100

100
100

NOTE.—L is the number of loci. s2 is the cumulative variance per term. Note that m (the expected time between substitutions) 5 1. PP indicates estimation
under a Poisson process assumption. SP indicates estimation under a stationary process assumption. B 5 5 implies that branches, on average, had 2.5 substitutions.
B 5 50 implies that branches, on average, had 25 substitutions. All values are averaged over several fossilization levels.

estimation procedure, confidence intervals included the
true age of the clade roughly 83% of the time with 1
locus, 84% of the time with 5 loci, and 87% of the time
with 10 loci. When the correct substitution model was
Poisson but estimation was performed with the SP mod-
el, confidence intervals included the true value 79%,
82%, and 84% of the time for 1, 5, and 10 loci, respec-
tively. Thus, when the true model is Poisson, inferred
95% confidence intervals might be thought of as the
80% confidence intervals.

When the true model was stationary, the PP and
SP confidence intervals behave fundamentally differ-
ently. PP confidence intervals are often too small. With
only one locus, PP confidence intervals include the true
time as infrequently as 38% of the time, and averaged
over all one locus stationary process simulations, no
more than 64% of the time. As expected, the larger the
index of dispersion, the worse the confidence intervals.
On the other hand, for single-locus simulations, the SP
model confidence intervals include the true time 75%–
80% of the time, regardless of the index of dispersion.
When 5 or 10 loci are examined, the PP model confi-
dence interval includes the true time approximately 80%
of the time, and the SP model includes the true time
85% and 87% of the time, respectively.

Thus, when the true model is stationary, the con-
fidence interval from the SP model can be loosely
thought of as the 80% confidence interval. The confi-

dence interval for the PP model should not be consid-
ered so. In fact, from one-locus simulations, the PP con-
fidence intervals appear worthless (often less than a 50%
chance of including the true value). This result should
be cause for deep concern, since many divergence es-
timates reported in the literature are based on a single
locus and a Poisson model.

Model selection is performed in two ways. First, a
x2 test is performed to assess goodness of fit of the PP
and the SP models. When the true model is Poisson, the
PP model is rejected on average 2.67% of the time at a
5% significance level. When the Poisson model is cor-
rect, the SP model is rejected 1.3% of the time, also at
a 5% significance level. Thus, the x2 test seems some-
what conservative when the Poisson model is correct.
When the stationary process model is correct, the SP
model is rejected 1.4% of the time, averaged over all
simulations. The PP model is rejected from 25% (1 lo-
cus, R 5 5) to over 99% of the time (10 loci, R 5 50).
Thus, there is moderate to great power to reject PP as
long as the index of dispersion is large enough and
enough loci are considered.

Model selection is also performed by way of a like-
lihood ratio test. For a given simulation, when the SP
model fits significantly better (at the 5% level) than the
PP model, we say the SP model is selected; otherwise,
the PP model is selected. In order for this testing pro-
cedure to behave properly, there must be enough data
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Table 3
Effect of Fossilization Level on the Age of the Root

% ERROR OF ESTIMATED AGE

EXPECTED NO. OF FOSSILS PER

BRANCHa

0.005 0.25 0.5 1

Estimated under Poisson processb . . .
Estimated under stationary processb . .

0.41
0.43

0.19
0.19

0.16
0.17

0.08
0.08

a Listed values are the expected numbers of fossils per branch in a given
simulation. Any simulation with no interior branch fossils was discarded; there-
fore, the actual number of fossils in the simulations analyzed was biased to be
larger than this value.

b Averages taken over all other parameter values.

so that likelihood surfaces are nearly Gaussian. Small
data sets can lead to incorrect inferences, and this is seen
in simulations. Moreover, the SP model makes the as-
sumption that a large number of substitutions occur on
each branch. Violation of this assumption also leads to
incorrect inference.

With only one locus and few substitutions per
branch (2.5 per branch), when the Poisson model is cor-
rect, the PP model is selected 73% of the time, and the
SP model is selected 27% of the time. As the number
of loci increase, with short branches, the inference pro-
cedure gets worse. With five loci, the two models (PP
and SP) are selected 57% and 43% of the time, respec-
tively. With 10 loci, the models are selected 32% and
68% of the time, respectively. Thus, when the true mod-
el is Poisson and the number of substitutions per branch
is very small, the Poisson model is selected too rarely,
and this bias becomes more pronounced as the number
of loci increases. The reason for this, almost certainly,
can be traced to the normal approximation. In order to
have proper model nesting when selecting models with
a likelihood ratio test, the Poisson model is approxi-
mated by a normal distribution. The approximation is
very poor for short branch lengths, and as a result, the
likelihood ratio test with short branches is highly
unreliable.

With large numbers of substitutions (25) per branch
and under Poisson simulation, a bias in selection still
exists, but adding loci appears to diminish it. With one
locus, the model selection splits are 52% and 48%. With
five loci, one sees 80% and 20%, and with 10 loci, the
splits are 82% and 18%. Thus, there is still a bias (ide-
ally, one should select the PP model 95% of the time),
and the size of this bias is similar to that observed for
confidence interval estimation.

When the true model is stationary, the likelihood
ratio test is more reliable. With one locus, the PP model
is selected less than 25% of the time, and the SP model
is selected more than 75% of the time (over all simu-
lation parameters). With five or more loci, the SP model
is selected 100% of the time (over all simulation param-
eters). Thus, when the true model is stationary, the like-
lihood ratio test selects the correct model the vast ma-
jority of the time, as long as there are at least five loci.
Overall, though, the likelihood ratio test should not be
seriously relied upon unless there are several loci and
many substitutions per branch.

Land Plants

Sanderson (1997), in addition to implementing a
rate autocovariance model of the substitution process,
also implemented the PP model to estimate divergence
times. His implementation of PP and the implementation
of PP done here, when applied to his land plant data set
under the assumption that the root of the tree is no older
than 450 Myr, produce the same divergence time esti-
mates to three significant digits.

Sanderson (1997) highlights three nodes in the tree
where the PP procedure is likely to have inferred an
incorrect divergence estimate. Under the PP model, the
cycad crown group is estimated to have diverged 112
MYA, with a confidence interval of (85 MYA, 144
MYA). The fossil record suggests that this divergence
probably took place in the Carboniferous (Sanderson
1997), roughly 300 MYA. Thus, the estimated date is,
in all likelihood, more than 150 Myr too late. Similarly,
the fossil record suggests a Mesozoic divergence of Fa-
gus and Carya, as well as Nelumbo and Platanus. The
PP estimation procedure places both of these divergenc-
es in the Cenozoic: 39 MYA, with a confidence interval
of (28 MYA, 50 MYA), for Fagus/Carya and 54 MYA,
with a confidence interval of (37 MYA, 74 MYA), for
Nelumbo/Platanus.

Interestingly, the SP model produces even worse
point estimates for these problem taxa, but produces
confidence intervals that should lead one to the proper
inference. The cycad crown group is estimated to have
diverged 57 MYA, but the confidence interval runs from
16 MYA to 261 MYA. Similarly, the Fagus/Carya split
is placed at 28 MYA, with a confidence interval of (8
MYA, 78 MYA), and the Nelumbo/Platanus split is
placed at 21 MYA, with a confidence interval of (4
MYA, 124 MYA). Thus, the Nelumbo/Platanus split has
a confidence interval that includes times that are both a
factor of five larger and a factor of five smaller than the
point estimate. The confidence interval for the cycad
crown group does not quite reach the supposed diver-
gence time for these groups (estimated to be roughly
300 MYA), but the confidence intervals for Nelumbo/
Platanus and Fagus/Carya are likely to include the true
divergence times. Moreover, in all three cases, the con-
fidence intervals are so wide as to leave one highly sus-
picious that the maximum-likelihood estimates are not
unique, and there may be a very large region of equally
likely divergence estimates.

In this data set, the PP model can be rejected by a
simple goodness-of-fit test (x2 5 259.5, which yields P
, 1029); the SP model cannot be (x2 5 69.7, which
yields P ø 0.32). Using a likelihood ratio test, the PP
model is rejected in favor of the SP model (P , 1025).
Consistent with both of these results, the inferred index
of dispersion of this locus is 19.7, i.e., nearly 20 times
as large as that expected under a constant-rate Poisson
model.

Overall, a PP model is rejected. The SP model can-
not be rejected by a x2 test. Moving from a Poisson
model to an SP model enlarges the inferred confidence
intervals on nearly all divergence estimates and shows

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/17/11/1647/1167942 by guest on 21 August 2022



Estimating Divergences with Overdispersed Loci 1657

Table 4
Metazoan Data (unconstrained time to root)

2log (L)
Stationary process

root Divergence (MYA) Poisson process root Divergence (MYA)

Tree 1 . . . . . .
Tree 2 . . . . . .
Tree 3 . . . . . .
Tree 4 . . . . . .
Tree 5 . . . . . .
Tree 6 . . . . . .
Tree 7 . . . . . .

615.3
620.6
629.4
638.5
641
644.6
650

1,407.5
1,532.6
1,502.9
1,022.1

680.8
1,056.1
1,038.1

(1,129.6, 1,752.35)
(1,223, 1,931.1)

(1,193.4, 1,912.5)
(839.8, 1,295.1)
(647.2, 1,349)
(848.9, 1,305)
(881.8, 1,286.7)

1,033.8
1,096.1
1,088.9

863.5
730.2
899.3
915.4

(988, 1,177)
(1,041.9, 1,154.3)
(1,037.2, 1,144.4)

(833.9, 965.6)
(713.8, 836)

(866, 934.7)
(880.6, 932.5)

that all three of the problematic taxa have enormous
confidence intervals. Thus, in the three cases in which
we suspected for a priori reasons that our point estimates
were inaccurate, the confidence intervals told us that the
point estimates were highly unreliable.

Sanderson (1997) constrains the root of the land
plants to be no older than 450 Myr. If this constraint is
removed, several interesting results occur. First, the PP
model is still rejected with extremely high confidence
(P , 1029) and the SP model is not (P 5 0.38). The SP
model without the constraint also fits significantly better
than the SP model with it (P , 0.01, df 5 1) by a
likelihood ratio test. Neither the point estimates nor the
confidence intervals for the three problem nodes change
greatly (less than 10%). The root of the tree changes
considerably. When the root is constrained to be ,450
MYA, it is estimated to be 450 MYA, with a confidence
interval of (430 MYA, 450 MYA). Without this con-
straint, the estimate becomes 612 MYA, with a confi-
dence interval of (492 MYA, 840 MYA). Thus, the data
become significantly more likely if one assumes that
there has been 162 Myr of evolution in the land plants
that has not been observed in the fossil record. A date
this early, at first blush, appears preposterous, for it sug-
gests a common ancestor of land plants that predates
land on our planet. Of course, there is no necessary rea-
son to suspect that the common ancestor of modern land
plants was itself terrestrial. Nevertheless, either this date
is incorrect, or very little is known about the early his-
tory of land plants. Finally, by removing the constraint,
the index of dispersion for this locus is reduced to 16.8,
as opposed to 19.7.

Metazoa

Seven separate phylogenies were considered, and
two types of hypotheses were considered. One hypoth-
esis, the Cambrian explosion hypothesis, constrained the
root of the tree to be no older than 600 Myr. The other
hypothesis made no constraint on the root. We begin by
discussing the unconstrained hypothesis.

All seven trees have several features in common.
In all cases, the PP model was rejected by a x2 test with
extraordinarily high confidence (P , 1029). In all cases.
the SP model could not be rejected by a x2 test. In all
cases, the SP model fit significantly better than the PP
model by a likelihood ratio test (P , 1025). Thus, for
all seven trees, the SP model was selected as the best
fitting model.

By a direct comparison of likelihoods, the best fit-
ting tree is tree 1, the second best fitting tree is tree 2,
. . . , and the worst fitting tree is tree 7. Using a naive
comparison of log likelihoods for these incompatible
tree topologies, each tree fits significantly better than the
tree that follows it. Point estimates for the root of the
tree are given in table 4. The three best fitting trees all
have the property that nematodes are an outgroup to all
the other species in the tree. The four worst fitting trees
do not have this property. The confidence interval for
the root of all seven trees includes 1,223–1,286 MYA,
suggesting that no matter which tree is correct, a meta-
zoan divergence time of 1.2 billion years ago can never
be ruled out. For all seven trees, confidence intervals are
asymmetric, with larger ranges above the point estimates
than below them. This asymmetry can be traced to the
dearth of interior branch fossil calibration points (a sin-
gle point is used), since only interior branch fossils help
to provide upper bounds for divergence estimates. Fi-
nally, simulation studies suggest that these confidence
intervals should be thought of as perhaps the 80%
bounds and nothing better, even when the SP model is
correct. If this model is not a correct description of the
evolutionary process, no conclusions should be made.

For the best fitting tree, estimates of the index of
dispersion were 27.4, 10.6, 18.6, 12.2, 16.3, 51.7, and
107.7 for ATPase6, coxI, coxII, cytB, NADH1, actin, and
histone, respectively. The last two estimates come from
slow-evolving nuclear loci, and these estimates of the
index of dispersion are highly unreliable. The confi-
dence interval for the estimates of the mean time be-
tween substitutions ranged over four orders of magni-
tude for both actin and histone. Estimates of the vari-
ance in time between substitutions had even larger con-
fidence intervals. For trees 2–7, estimates of the index
of dispersion for the first five loci were generally larger
than for tree 1. No trend existed for actin and histone
(as might be expected from the enormous confidence
intervals).

To facilitate comparison with previous studies, ta-
ble 4 also includes the root divergence estimates under
the PP model (constant-rate Poisson model). These es-
timates should not be considered seriously, since the PP
model has been clearly rejected. Nevertheless, the reader
may note that these estimates are generally consistent
with Wray, Levinton, and Shapiro (1996), but slightly
smaller in absolute value. The favored SP model esti-
mates are perhaps slightly larger than Wray, Levinton,
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FIG. 11.—The fossil labeled F creates both upper and lower
bounds on all divergence times. Fossils at either f1 or f2 create only
lower bounds. The labels a, b, c, and d are the numbers of substitutions
found on each of the four branches.

and Shapiro’s (1996) for the three most favored trees,
but the confidence intervals are very wide and certainly
include Wray, Levinton, and Shapiro’s date. For trees 1–
3 under the SP model, the chordate/arthropod diver-
gences are estimated to be 808 MYA (722 MYA, 958
MYA), 871 MYA (754 MYA, 1,045 MYA), and 840
MYA (740 MYA, 1,004 MYA). The chordate/arthropod
split is the root for trees 4–7, given in table 4. These
estimates are generally consistent with Gu (1998).

The Cambrian explosion hypothesis constrains the
root of the phylogeny to be no older than 600 Myr.
Under this constraint, the best fitting tree was tree 5,
followed by trees 1, 2, 4, 6, 3, and 7. There was no
significant difference between the fits of trees 2 and 4
and trees 3 and 7. All other pairs were significant. The
best constrained tree (tree 5) did not fit significantly
worse than the worst fitting unconstrained tree (tree 7).
Otherwise, all unconstrained trees fit better than all con-
strained trees. Thus, a logical inference (but see discus-
sion below) is rejection of the Cambrian explosion hy-
pothesis, since unconstrained trees make the data sig-
nificantly more likely.

For all seven constrained trees, the PP model could
be rejected by a x2 test with extremely high confidence
(P , 1029). Conversely, the SP model could never be
rejected. In all cases, the SP model fit the data signifi-
cantly better than the PP model by a likelihood ratio
test. Thus, the SP model was always favored and never
rejected for any of the seven constrained trees. The nat-
ural interpretation is that even under a Cambrian explo-
sion hypothesis, the SP model fits the data well in ab-
solute terms. The data become even more likely if the

Cambrian constraint is removed, but there is no way to
reject the Cambrian explosion hypothesis solely on the
basis of the goodness of fit of the SP model.

Discussion

In both data sets, land plants and metazoa, the con-
stant-rate PP model was rejected in favor of an SP mod-
el. The improvement in the fit was highly statistically
significant, and in no cases could the SP model be re-
jected by a x2 goodness-of-fit test. In every case, the PP
model was rejected by the x2 test. Thus, it seems ap-
propriate to estimate divergence times for these taxa and
these loci only with the SP model. Under the SP model,
the age of the higher metazoan radiation is estimated to
be between 680 and 1,532 MYA, depending on the true
phylogeny of these taxa. For the best fitting tree, this
radiation is estimated to be 1,407 MYA, with a confi-
dence interval ranging from 1,130 MYA to 1,752 MYA.
Simulation results suggest that this confidence interval
probably has little more than an 80% chance of includ-
ing the true date under the assumption that the stationary
model is correct.

In simulation and in these data sets, the primary
distinction between the PP model and the SP model oc-
curs in confidence interval estimation. Large cumulative
variance per term creates wide confidence intervals.
With few interior branch fossils and indices of disper-
sion larger than 10, confidence intervals in simulation
and in both data sets are often many times as large as
the point estimates. The only hope for improving on
confidence intervals is to add additional loci and/or ad-
ditional interior branch fossils. Moreover, this work
strongly suggests that one should be highly skeptical of
any confidence interval estimated using the constant-rate
Poisson model without a simultaneous demonstration
that this model fits the data well.

The approach to parameter estimation and model
selection taken here is a typical likelihood approach (Ed-
wards 1992). The model and parameters that imply the
highest likelihood for the data are favored. Therefore,
this study chooses tree 1 to be the favored metazoan
tree and 1,407 MYA to be the age of the root, since this
tree and parameter value imply a significantly higher
likelihood for the data than any other combination. Nev-
ertheless, this should not be construed as disproof of a
Cambrian origin of the animal phyla.

For all seven trees, the Cambrian explosion hy-
pothesis (a metazoan radiation no more than 600 MYA)
led to a significantly lower likelihood for the data than
did a much older divergence. Nevertheless, for all seven
trees, the Cambrian hypothesis fit well. The hypothesis
could never be rejected by a x2 test. The question is,
why does an older divergence fit better?

From equation (4), it is clear that any model with
sufficiently high variance will not be rejected by a x2

test. In effect, one can increase the variance until the
model cannot be rejected by a goodness-of-fit test.
When comparing the Cambrian explosion hypothesis
with the unconstrained hypothesis, several features are
immediately apparent: (1) the age of the root of the un-
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constrained hypothesis is much older, (2) the likelihood
of the unconstrained hypothesis is much higher, and (3)
the cumulative variance per term of the unconstrained
hypothesis is much lower. For instance, for the five mi-
tochondrial loci, tree 1 produced indices of dispersion
of 27, 11, 19, 12, and 16 for the unconstrained hypoth-
esis and 92, 33, 28, 37, and 39 for the Cambrian explo-
sion hypothesis. This pattern is reproduced for all five
mitochondrial loci (the index of dispersion could not be
reliably estimated from the slow-evolving nuclear loci)
for all seven trees. Nevertheless, a priori there is no
more reason to suspect that the index of dispersion for
these loci ought to be around 15 than there is to suspect
that it ought to be around 40. No Bayesian prior has
even been suggested for the index of dispersion (other
than the neutral prediction, which is rejected when the
PP model is rejected).

This study has modeled the overdispersed clock by
assuming that the substitution process is a stationary
process. As argued in the introduction, given that the
tree of life happened only once, it may be fundamentally
unknowable whether the description of the world taken
here, or some different model with, say, a Poisson-dis-
tributed number of substitutions along each branch, but
with a mean that changed over time, is correct. Seen
through the lenses of this world view, the much greater
divergence times for the unconstrained trees and the in-
crease in the index of dispersion associated with the
Cambrian explosion hypothesis taken together imply
that there must have been a tremendous increase in evo-
lutionary rates at the time of the metazoan radiation.
Interestingly, the land plant data set shows the same pat-
tern. Either there is a 160-Myr evolutionary history
missing from the fossil record, or there was an increase
of evolutionary rates associated with the radiation of this
group (as observed by the lower index of dispersion for
the unconstrained hypothesis).

Thus, one is left with two hypotheses, neither one
of which can be rejected with these data sets. The first
hypothesis is that the higher metazoans are an ancient
lineage which originated hundreds of millions of years
before the Cambrian and left few fossils prior to the
Cambrian. The second hypothesis postulates a Cambri-
an, or near Cambrian, radiation of this group, accom-
panied by a tremendous increase in evolutionary rates.

The only hope of distinguishing these hypotheses
probably does not lie in further analysis of these taxa.
Instead, one must develop a broader and more general
understanding of the cumulative variance per term, or,
viewed from the other side of the dichotomy, a more
general understanding of the variation in evolutionary
rates. If this understanding can be developed, it will only
occur through some sort of replication. The tree of life
may have evolved only once, but within the next few
years, thousands of loci in many species will be se-
quenced. If these loci are, in any sense, independent
replicates of a common evolutionary pattern, it may be
possible to develop a proper Bayesian prior on the index
of dispersion/variation in evolutionary rates. With such
a prior, it may be clear that an index of dispersion of 40
is out of the question, or perhaps it will turn out to be

perfectly common. If these sequences cover many in-
stances of radiation of multiple clades, it may become
clear that a sharp increase in the index of dispersion/
evolutionary rates always accompanies major clade ra-
diations, or it may become clear that this is an unusual
occurrence. Only with secure answers to these questions
can molecular clocks provide more certain estimates of
divergence times.
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APPENDIX

A single interior branch fossil can be both neces-
sary and sufficient to bound from above all divergence
times. Consider the simplest possible phylogeny under
the PP model containing only a single interior fossil
calibration point (fig. 11). Assume that a single locus is
examined, and a, b, c, and d are the numbers of substi-
tutions along each of the four branches in the phylogeny.
The PP model has three unknown parameters: T1, T2,
and m. Let F ± 0 be the observed age of a single fossil.
Scale T1 and T2 by the age of the fossil so that t1 5 T1/
F and t2 5 T2/F. If L is the likelihood of the observa-
tions under the PP model,

log(L) 5 2mF(2t 1 t ) 1 S log(m) 1 (a 1 b)log(t )1 2 2

1 c log(t 2 t ) 1 d log(t ) 1 C,1 2 1 (6)

where S 5 a 1 b 1 c 1 d and C is a constant. Differ-
entiating equation (6) with respect to t1 and m, setting
the result to 0, and solving for t1 and t2 yields

f
t 5 (7)1 mF

S 2 2f
t 5 , (8)2 mF

where
22S 1 c 1 3d 6 Ï(2S 2 3d) 1 c(c 1 4S 1 6d)

f 5 .
12

(9)

The fossil F is an upper bound on time T2 and a
lower bound on T1. Therefore, t1 $ 1 and t2 # 1. The
second condition implies that (the maximum-likeli-m̂
hood estimator of m) $ (S 2 2f)/F. This implies that
the maximum-likelihood estimator of the root diver-
gence time is less than or equal to fF/(S 2 2f). Thus,
a single interior branch fossil, F, creates an upper bound
on the maximum-likelihood estimator of all divergence
times.

Notice that if fossils are found at either f1 or f2 (fig.
11), no upper bounds are created. A fossil at f1 implies
that both t1 and t2 are greater than 1, and as a result,

is bounded only by 0; consequently, neither T1 nor T2m̂
have any upper bound. Similarly, a fossil at f2 implies
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that t1 . 1, but has no implications for t2, such that
maximum-likelihood estimators of neither T1 nor T2 are
bounded above.

Finally, it should be noted that in the simple situ-
ation shown in figure 11, the maximum-likelihood es-
timators of divergence times need not be unique. In fact,
all positive real values of T1 and T2 such that

fF F(S 2 2f)
F # T # # T # F1 2S 2 2f f

are maximum-likelihood estimators of T1 and T2. For
this reason, it is clearly possible for estimated diver-
gence times not to be unique, but to instead represent
one of an infinite number of equally likely divergence
times within a bounded interval. Of course, increasing
the number of fossil constraints can restrict the range of
these divergence times and can potentially result in a
single maximum. In general, for a complicated phylog-
eny with multiple fossils, determining whether or not a
divergence time is unique appears to be a difficult
problem.
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