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1 Introduction

Firm investment in R&D is a key mechanism generating improvements in �rm performance over

time. Estimating the ex post return to the �rm�s R&D investment has been a major focus of

empirical studies for decades, with most of the empirical literature built around the knowledge

production function developed by Griliches (1979). In this framework, �rm investment in R&D

creates a stock of knowledge that enters into the �rm�s production function as an additional

input along with physical capital, labor, and materials. The marginal product of this knowledge

input provides a measure of the return to the �rm�s investment in R&D and has been the primary

focus of the empirical innovation literature.

The goal of this article is to estimate the expected payo¤ to R&D investment at the �rm

level. Unlike most of the empirical literature that relies on the knowledge production function,

we focus on the �rm�s R&D investment decision. The discrete decision to invest in R&D contains

information on both the costs of innovation and the expected long-run payo¤ to the �rm from

engaging in R&D investment. We develop a dynamic structural model of the �rm�s choice

to invest in R&D, estimate the model using micro data on German manufacturing �rms, and

summarize the implicit expected long-run payo¤ to R&D that rationalizes the �rm�s observed

R&D investment decision.

Our model of the �rm�s dynamic R&D choice captures �ve important features of the R&D

investment process. The �rst is the impact of R&D on the probability that the �rm realizes

a product or process innovation. The second is the e¤ect of these realized innovations on the

�rm�s revenue productivity and short-run pro�tability. Third, these e¤ects can be long-lived,

a¤ecting the incentives of the �rm to invest in the future and impacting the long-run value of the

�rm. Fourth, there is uncertainty surrounding both the e¤ect of R&D on innovation and the

e¤ect of innovation on productivity. Fifth, the cost of generating innovations is likely to di¤er

between �rms based on their size and whether they are spending to maintain ongoing R&D

activities or establishing new R&D programs. Incorporating these features into the model, the

structural parameters characterize the linkages between R&D, innovation, and productivity as

well as the costs of producing innovations.

We use the model to estimate the long-run payo¤ to R&D for a sample of German man-
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ufacturing �rms across a range of high-tech and low-tech industries. The data source is the

Mannheim Innovation Panel (MIP) collected by the Centre for European Economic Research

(ZEW). This is the German contribution to the Community Innovation Survey (CIS) that

is collected for most OECD countries. The key features of the MIP survey that we utilize

are questions on product and process innovations realized by the �rm, R&D input measures,

production expenditure, capital stocks, and �rm sales.

The structural estimates can be brie�y summarized. First, �rms that invest in R&D have

a substantially higher probability of realizing product or process innovations; but R&D invest-

ment is neither necessary nor su¢ cient for �rm innovation. The group of high-tech manufac-

turing industries has a higher probability of innovation, given R&D, than the group of low-tech

industries. Second, product as well as process innovations lead to increases in future �rm pro-

ductivity; but product innovations are more important for the high-tech industries while process

innovations are more important for the low-tech industries. Third, �rm productivity is highly

persistent over time, which implies that innovations that raise productivity have long-run ef-

fects on �rm performance. Fourth, the cost of generating innovations is signi�cantly smaller for

�rms that are maintaining ongoing R&D investment rather than beginning to invest in R&D.

This means that �rm R&D history is an important determinant of current R&D behavior.

Using the structural parameters, we estimate the expected payo¤ to �rm R&D as the pro-

portional di¤erence in the expected future value of a �rm when it invests in R&D versus when

it does not. This expected payo¤ varies with the productivity, capital stock, age, and industry

of the �rm and can be constructed for all �rms, not just �rms that choose to invest. We

�nd that the expected payo¤ varies substantially across industries and across �rms within each

industry. For the �ve high-tech industries, a �rm with the median productivity, capital stock,

and age has an expected payo¤ equal to 6.7 percent of �rm value. In the seven low-tech indus-

tries the corresponding payo¤ is 2.8 percent. Our results show that the di¤erence between the

high-tech and low-tech industries arises from di¤erences in both the magnitude of the e¤ect of

innovation on the �rm�s productivity and pro�ts and di¤erences in the probability of realizing

an innovation given that they invest in R&D.

The estimated dynamic structural model of R&D choice is used to simulate how a change
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in the cost structure of innovation arising from, for example, a tax break or direct subsidy for

R&D investment a¤ects the �rm�s investment choice and future productivity growth. We �nd

that, in the high-tech industries, a 20 percent reduction in the maintenance cost of R&D for

�rms with R&D experience leads to, after ten years, an average increase of 9 percentage points

in the probability a �rm invests in R&D and a 1.4 percent increase in mean productivity. The

same proportional reduction in the innovation cost faced by �rms just beginning to invest in

R&D has very little impact on the probability of investing or the level of productivity. In the

low-tech industries, reduction of the maintenance cost increases the R&D investment rate by

7 percentage points but there is little e¤ect on mean productivity. A 20 percent reduction in

the startup cost has a larger e¤ect, raising mean productivity by 2.1 percent after �ve years

and 7.0 percent after ten years. The simulations also illustrate that the two changes in cost

have very di¤erent impacts on �rm incentives. Reducing maintenance costs encourages �rms

to continue or begin investing in R&D. In contrast, the reduction in startup costs encourages

new �rms to begin investing but also reduces the option value of investing, leading some �rms

to stop or delay their R&D.

In the next section of the article, we review some key ideas from the empirical literature

estimating the private return to R&D. The third section develops the theoretical model of R&D

investment. The fourth section discusses some important features of the data and section �ve

develops the empirical model and estimation strategy. Sections six and seven discuss the

empirical results and report counterfactual simulations of the model.

2 The Private Return to R&D Investment

The expected private return to a �rm�s R&D investment is one of the main factors driving

the �rm�s decision to invest. Understanding the magnitude and determinants of the private

return is key to explaining the observed patterns of R&D investment and the likely response of

�rm investment to changes in the economic environment, in particular, policies that subsidize

the cost of R&D activities. Estimating the private return to R&D has been a major focus of

empirical research for decades with most of the literature utilizing the knowledge production
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function framework developed by Griliches (1979).1 In this framework, �rm investment in

R&D, or more broadly de�ned innovation input, creates a stock of knowledge or expertise

within the �rm that enters into the �rm�s production function as an additional input along

with physical capital, labor, and materials. The key concept of interest in this framework

is the partial derivative of output with respect to the knowledge stock which is estimated as

either the elasticity of output with respect to the knowledge stock or the marginal product of

the knowledge stock.2

This knowledge production function model has been extended in several ways, including

incorporating R&D spillovers across �rms or industries, using �rm market value or Tobin�s q

as a long-run output measure, and incorporating innovation outcomes as an intermediate step

between R&D investment and output.3 With respect to the last extension, the Community

Innovation Surveys (CIS) have been developed to collect �rm-level information on R&D ex-

penditures and innovations including the development of new products and the adoption of

new or improved production processes.4 Even with these extensions, the primary focus of

the literature remains the estimation of either the output elasticity or marginal product of the

knowledge capital stock.

An alternative approach to incorporating R&D in the �rm�s production process has been

implemented by Aw, Roberts, and Xu (2011) and Doraszelski and Jaumandreu (2013). They

model the �rm�s productivity as a Markov process that is altered by the �rm�s endogenous

decision to invest in R&D. There are two advantages of this stochastic productivity approach

over the knowledge capital model. The basic form of the knowledge capital model treats

1Surveys of the empirical literature are given by Hall (1996), and Hall, Mairesse, and Mohnen (2010).
2The knowledge stock can also depreciate as new products, materials, and production processes make the

�rm�s existing expertise irrelevant. The marginal product can be interpreted as the gross rate of return to R&D,
while the net rate of return is de�ned as the marginal product minus the rate of depreciation.

3See Griliches (1992) for a discussion of spillovers and Hall, Mairesse and Mohnen (2010) for a recent review of
the empirical evidence. Cohen (2010) provides a broad ranging review of the empirical literature on innovative
activity and performance, including numerous studies linking R&D investment with underlying �rm characteris-
tics. Czarnitzki, Hall, and Oriani (2006) review the literature that measures the e¤ect of the knowledge capital
stock on �rm market value. A large empirical literature has been built around the model of Crepon, Duguet,
and Mairesse (1998) to incorporate innovation outcomes into the R&D-productivity process. This literature is
reviewed in Hall (2011) and Mohnen and Hall (2013).

4See Hall (2011) for a survey of the empirical studies and Mairesse and Mohnen (2011) and Mairesse, Mohnen
and Kremp (2005) for a discussion of the estimation issues that arise in using the CIS data. Roberts and Vuong
(2013) provide a comparison of the structural model of R&D investment that we develop in this paper and the
framework from Crépon, Duguet, and Mairesse (1998).
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the stock of knowledge as the undepreciated sum of past R&D expenditures. In practice it

is problematic to estimate distributed lag coe¢ cients on past expenditures and researchers

generally end up assuming a �xed depreciation rate which imposes a lag structure on past

R&D. It is also problematic to estimate the stock of knowledge in the initial time period the

�rm is observed. Measuring the stock of knowledge is particularly di¢ cult when the �rm

data contains only short time series of expenditures, as is the case in this application. In

contrast, the stochastic productivity framework models current productivity as a function of

prior-period productivity, the current period investment in R&D, and a stochastic shock. The

e¤ect of distant past R&D expenditures is captured in prior-period productivity and both the

level of productivity and the persistence in the productivity process can be estimated even with

short time series of �rm-level data. A second advantage of the stochastic framework is that

it allows random shocks to current productivity to carry over into future productivity. This

captures an element of the undertainty in the productivity process and implies that two �rms

with the same past R&D expenditure path can have di¤erent productivity levels.5 Doraszelski

and Jaumandreu (2013) implement hypothesis tests that allow them to discriminate between

di¤erent variations of the knowledge capital and stochastic productivity speci�cations. Their

results favor the endogenous stochastic productivity model. In this article, we incorporate a

stochastic productivity process as one component of the dynamic model of R&D choice.

Griliches (1979) raises concerns about the ability of the knowledge production function

model to clarify the simultaneity between output and R&D expenditure. Current R&D ex-

penditures increase the future knowledge stock, which then increases future output through the

production function. That is the mechanism of interest, but estimating it is complicated by the

fact that current R&D expenditures are determined by past output and the �rm�s expectation

of future output. Griliches warns that, without careful attention to model speci�cation and

formulation, estimates of the e¤ect of R&D on output in this framework may largely re�ect the

e¤ect of output on R&D (Griliches, 1979, p. 108). In this article, we develop an alternative

approach that deals with the simultaneity issues by modeling and estimating the �rm�s dynamic

5Klette (1996), Griliches (1998) and Rogers (2010) extend the basic knowledge capital model by also incorpo-
rating an exogenous stochastic process for productivity. Doraszelski and Jaumandreu (2013, section 5.3) discuss
the di¤erences between the two approaches.
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decision to invest in R&D rather than just the production function.6 In doing so, we model

the simultaneous and intertemporal linkages between R&D and output that are identi�ed by

Griliches.

An important contribution of our dynamic framework is that it leads to a more compre-

hensive measure of the bene�t of R&D. Rather than de�ning it as the marginal product of

knowledge capital in the production function, we de�ne it as the impact of the �rm�s R&D

choice on the expected future value of the �rm. This bene�t depends on how R&D a¤ects pro-

ductivity and output in the subsequent period, which is the focus of the knowledge production

function literature, but also on how the change in productivity impacts the discounted sum of

future �rm pro�ts, including its e¤ect on the �rm�s incentives to invest in R&D in the future.

3 Theoretical Model

This section develops a theoretical model of a �rm�s dynamic decision to undertake R&D

investment. In the model, the �rm�s current productivity is a state variable that impacts the

�rm�s decision to invest in R&D and then evolves endogenously as a result of that decision. The

speci�c mechanism we model is that the �rm�s decision to invest in R&D alters the probability

of the �rm realizing a product or process innovation in the future. If the �rm realizes an

innovation, this shifts the distribution of future productivity and, ultimately, the future pro�ts

they earn. The �rm chooses to invest in R&D if the expected long-run payo¤ resulting from

this R&D-innovation-productivity process is greater than the current investment cost. This is

analogous to the �rm deciding in each period whether or not to exercise the option of buying

a possible productivity improvement. The expected long-run payo¤ of the investment re�ects

the �rm�s valuation of the productivity improvement and will vary across �rms with di¤erences

in their characteristics, in particular their capital stock, productivity level, age, and industry

a¢ liation. The cost of generating innovations also varies across �rms with di¤erences in their

6Aw, Roberts, and Xu (2011) estimate a dynamic demand curve for R&D by Taiwanese manufacturers.
Xu (2008) estimates a dynamic demand curve which includes both a private return to R&D and an across-�rm
spillover that generates potential social bene�ts from R&D. Hashmi and Van Biesebroeck (forthcoming) estimate
a model of dynamic R&D competition among �rms in the automobile industry. Bernstein and Nadiri (1989,
1991) estimate a demand curve for R&D using a dynamic cost function model. Their model of R&D investment
is analogous to an investment model for physical capital, and they estimate an Euler equation for the knowledge
capital stock.
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size and prior R&D experience.

The model contains four structural components. The �rst is the �rm�s pro�t function linking

productivity and pro�ts, �(!it); where !it is �rm i�s productivity in year t: The second links

the �rm�s R&D decision with the probability it realizes either a product or process innovation

in the future. This component is represented by a cdf F (dit+1; zit+1jrdit); where d; z; rd are

measures of product innovation, process innovation, and R&D choice, respectively. This

speci�cation captures the uncertainty surrounding whether or not the �rm�s R&D e¤orts will

produce innovation. The third component describes the process of productivity evolution, in

which product and process innovations a¤ect the probability distribution of the �rm�s future

productivity, G(!it+1j!it; dit+1; zit+1):7 This component leads to variability and uncertainty in

the �rm�s future pro�ts. The �nal structural component is the cost function for innovation,

C(rdit�1): This cost is either a sunk startup cost or a �xed maintenance cost depending on

the �rm�s prior history of R&D participation. The next subsections discuss each of these

components in more detail.

3.1 Productivity and the Firm�s Short-Run Pro�ts

The �rm�s short-run marginal cost is given by

cit = �0 + �kkit + �aait + �wwt �  it; (1)

where cit is the log of marginal cost, kit is the log of �rm capital stock, ait is �rm age, and wt is

a vector of market prices for variable inputs that every �rm faces in period t. The �rm-speci�c

production e¢ ciency  it captures di¤erences in technology or managerial ability and is known

by the �rm but not observable to the econometrician.8 The capital stock is treated as a �xed

factor in the short-run. Thus, there are three sources of cost heterogeneity across �rms: capital

stock, age, and unobserved production e¢ ciency.9

7Olley and Pakes (1996) and the empirical applications that follow from them assume an exogenous Markov
process for �rm productivity G(!it+1j!it): Doraszelski and Jaumandreu (2013) endogenize productivity evolution
by including a measure of R&D investment G(!it+1j!it; rdit). Aw, Roberts, and Xu (2011) let productivity
evolution depend on the �rm�s R&D and export market participation G(!it+1j!it; rdit; exit):

8Variation in input quality, which leads to variation in input prices, across �rms is also captured in  : We
model this source of quality variation as part of the unobserved �rm e¢ ciency.

9Equation (1) implies that, in the short run, the �rm can expand or contract output at constant marginal cost.
This is a reasonable assumption if, along with the variable inputs, the �rm can also adjust the utilization of its
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The demand for �rm i�s product qit is given by

qit = Qt

�
pit
Pt

��
exp(�it) = �t(pit)

�exp(�it); (2)

where Qt is the aggregate industry output in period t and Pt is the industry price index, which

are combined into the industry aggregate �t: The �rm-speci�c variables are the �rm�s output

price pit and a demand shifter �it that re�ects product desirability or quality. The demand

shifter is known by the �rm but not observed by the econometrician. The elasticity of demand

� is negative and assumed to be constant for all �rms in the industry.

Assuming the �rm operates in a monopolistically competitive market, it maximizes its short-

run pro�t by setting the price for its output equal to a constant markup over marginal cost:

pit =
�

�
1+�

�
exp(cit). Given this optimal price, the log of the �rm�s revenue rit is:

rit = (1 + �)ln (
�

1 + �
) + ln �t + (1 + �) (�0 + �kkit + �aait + �wwt � !it) : (3)

Revenue productivity is denoted by !it and is de�ned as !it =  it � 1
1+��it. Equation (3)

implies that, for a given capital stock and age, heterogeneity in the �rm�s revenue is driven by

di¤erences in production e¢ ciency  and the demand shifter �. We refer to the unobserved

revenue productivity !it simply as productivity.10 Given the form of the �rm�s pricing rule,

there is a simple relationship between the �rm�s short-run pro�ts and revenue:

�it = �(!it) = �
1

�
exp(rit): (4)

The link between productivity ! and short-run pro�ts is an important determinant of the �rm�s

decision to invest in R&D.

�xed capital stock in order to expand or contract its output in the short run. In addition, in micro panel data of
the type we utilize, most of the variation in �rm sales is in the across-�rm rather than within-�rm dimension. To
account for this, our marginal cost model relies on three factors, the capital stock, age, and production e¢ ciency
that primarily vary across �rms. Economies or diseconomies of scale are unlikely to be the source of the �rm
sales variation we observe in the data.
10Empirical measures of revenue productivity are also likely to re�ect di¤erences in markups which are not

included in the theoretical model. To estimate our model of R&D demand, we only need to quantify the e¤ect
of !it on �rm sales and pro�t and do not need to separate it into components re�ecting  and � or markups.
Studies that identify cost and demand shocks using quantity and price data are Foster, Haltiwanger and Syverson
(2008) and Roberts, Xu, Fan, and Zhang (2012).
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3.2 R&D Investment and Endogenous Productivity

A key component of our framework is that the �rm can endogenously a¤ect the evolution of

productivity and pro�ts over time by choosing whether or not to participate in R&D activities.

We model this linkage in two components. First, the �rm makes a discrete decision to invest

in R&D, rdit 2 f0; 1g; and this a¤ects the probability the �rm realizes a product or process

innovation. Innovations are denoted as zit+1 and dit+1, which are discrete variables equal to

1 if �rm i realizes a process or product innovation in year t + 1 and 0 otherwise. The linkage

between R&D and innovation is represented by the cumulative joint distribution of product and

process innovations, conditional on whether or not the �rm invests in R&D, F (dit+1; zit+1jrdit).

We expect that �rms that invest in R&D will be more likely to realize product and process

innovations in the next period.

We choose to treat the �rm�s R&D decision as a discrete choice for several reasons. In our

data, there are substantial di¤erences in the probabilities of product and process innovation

between �rms that invest in R&D and �rms that do not (evidence is provided in Table 2), but

�uctuation in the level of R&D spending has little e¤ect on these probabilities. This indicates

that there are basically two innovation regimes in the data, one for �rms that invest in R&D and

the other for �rms that do not. Since R&D in our framework works through the probability of

an innovation it is important to capture the di¤erence between �rms that invest in R&D and

�rms that do not but there is little additional gain from treating R&D as a continuous variable.

Furthermore, measurement error in the level of R&D expenditure is more substantial than the

error in the discrete participation variable and this can result in small estimated impacts of

R&D expenditure on the probability of innovation.11 Overall, the discrete R&D participation

variable is a robust indicator of the �rm�s investment strategy and clearly distinguishes the

�rms that choose to invest in uncertain R&D projects from those that do not. The focus of

our empirical model is on measuring the long-run di¤erence in �rm value between �rms that

adopt these di¤erent investment strategies.

This speci�cation of F (dit+1; zit+1jrdit) also recognizes that �rms may direct their R&D ac-
11See Mairesse, Mohnen, and Kremp (2005) for a discussion and evidence on this point using �rm data from

the French innovation survey.
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tivity in di¤erent ways including improving their production processes and developing new

or improved products. For example, in industries with extensive product di¤erentiation

across �rms, R&D may be heavily focused on new product development while in large scale

homogenous-product industries, R&D may be focused on reducing cost through process inno-

vations. This speci�cation also captures one aspect of the uncertainty that �rms face when

investing in R&D: the technological uncertainty surrounding the innovation process. The cdf

must be general enough to recognize that R&D investment is neither necessary nor su¢ cient

for innovation. A �rm with R&D investment might not realize any product or process inno-

vations while another �rm may realize one or both innovations even without R&D investment.

The latter can result from luck, the e¤ect of expenditures on R&D in the more distant past

even if the �rm is not currently investing, ideas that are brought to the �rm by hiring experi-

enced workers or other spillover channels, or changes in the production process that result from

learning-by-doing without formal R&D investment.

The second component of the R&D-productivity linkage is modeled with the cdfG(!it+1j!it; dit+1; zit+1);

where �rm productivity is a stochastic variable that is a¤ected by the �rm�s past productivity

and the current realizations of product and process innovations. This formulation captures

a second aspect of the uncertainty that �rms face when investing in R&D: uncertainty sur-

rounding the economic value of an innovation. Even when they realize an innovation, the

exact impact of that innovation on future productivity and pro�ts is unknown. It may also

be the case that product and process innovations have di¤erent impacts on future productivity

because each works through di¤erent channels on the demand and cost sides. We assume that

�rm productivity evolves as:

!it+1 = g(!it; dit+1; zit+1) + "it+1 (5)

The function g(�) is the conditional expectation of future productivity and " is a zero mean

stochastic shock. This captures several important aspects of productivity evolution. First,

the �rm�s productivity is assumed to persist over time. This intertemporal persistence is an

important feature of �rm-level data on productivity. Second, innovations are allowed to sys-

tematically shift the mean of the distribution of future �rm productivity. Expected future

productivity evolves only in those cases in which the �rm realizes a product or process innova-
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tion, capturing the fact that R&D expenditures alone are not su¢ cient to generate productivity

improvements. Third, the speci�cation recognizes that productivity change is a¤ected by sto-

chastic shocks "it+1, which re�ect the inherent randomness in the productivity process. We

assume the productivity shocks "it+1 are iid across time and �rms and are drawn from a nor-

mal distribution with zero mean and variance �2". Because of the persistence in productivity,

the shocks in any period are incorporated into future productivity levels rather than having

transitory e¤ects.

Combining these two stages captures both the uncertainty and the endogeneity of the pro-

ductivity process. By making investments in R&D, the �rm alters the probability of receiving

a product or process innovation, which in turn alters the distribution of productivity that it

faces in future periods. We refer to the �rst step as the innovation process and the second step

as the productivity evolution process. By including the innovation process in the model, rather

than linking R&D directly to productivity as in Aw, Roberts, and Xu (2011) and Doraszelski

and Jaumandreu (2013), we can gain some additional insight into whether R&D is working to

improve productivity through the demand side or cost side of the �rm�s operations. In this

framework, productivity improves with either cost reductions or demand expansions that lead

to higher �rm sales. While we cannot measure the impact of R&D on the separate demand

and cost components, �it and  it; if we �nd that the overall linkage between R&D and pro-

ductivity is primarily due to product innovations, it suggests that R&D is working through the

demand side, whereas a �nding of a more important role for process innovations suggests R&D

is working through the cost side.

3.3 The Firm�s Dynamic Decision to Invest in R&D

This section develops the �rm�s decision rule for whether or not to invest in R&D. The bene�ts

of investing depend on the e¤ect of R&D on the �rm�s expected future productivity and pro�ts,

as developed in the last two subsections. The �rm�s decision also depends on the cost of

improving its productivity. In this model, the �rm�s cost is the expenditure it must make to

generate a productivity improvement. This cost varies across �rms for many reasons such as

the nature of the project or number of projects the �rm invests in, the �rm�s expertise in the
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innovation process, its possibilities to access �nancial resources, and its prior R&D experience.

The fact that some �rms have higher innovation capabilities or have a larger set of technological

opportunities for innovation is captured in this model by lower innovation costs. Similarly, it

is likely that a �rm that performs R&D continuously over time requires a lower expenditure to

generate an innovation than a �rm that is just beginning to invest in R&D because it can rely on

past expertise or synergy e¤ects from previous projects. To capture heterogeneity in innovation

costs, we model a �rm�s innovation cost Cit as a draw from an exponential distribution where

the mean of the distribution varies with the �rm�s size, measured by its capital stock, and its

prior R&D experience. De�ning the discrete indicator variable rdit�1 to equal one if the �rm

invested in R&D in year t� 1 and zero if it did not, the innovation cost Cit of �rm i in year t

can be represented by:

Cit~ exp(

m � rdit�1 � kit + 
s � (1� rdit�1) � kit) (6)

A �rm with prior R&D experience has to pay a maintenance cost drawn from a distribution

with a mean of 
mkit and a �rm with no prior experience has to pay a startup cost drawn from

a distribution with a mean of 
skit: The parameter vector 
 = (
m; 
s) captures di¤erences in

the maintenance and startup cost distributions. This innovation cost is observed by the �rm

prior to their investment decision and acts as an additional source of unobserved heterogeneity

(to us) that drives �rm�s investment behavior.

We assume that, at the start of period t; the �rm observes its current productivity level !it;

knows its short-run pro�t function and the processes for innovation and productivity evolution

F and G: The �rm�s state variables sit = (!it; rdit�1) evolve endogenously as the �rm makes

its decision to conduct R&D, rdit 2 f0; 1g:12 Given its state vector and discount factor �, the

�rm�s value function V (sit), before it observes the maintenance or startup cost, can be written

12Each �rm is characterized by three exogenous variables: age ait which enters the pro�t function, capital stock
kit which enters the pro�t function and innovation cost function, and industry which enters all of the structural
components. To simplify the notation, we suppress these exogenous characteristics and explain the dynamic
decision to invest in R&D focusing on the endogenous variables in the model ! and rd. In the empirical model
we treat the �rm�s capital stock, age, and industry as de�ning an exogenous �rm type and solve the �rm�s value
function V (sit) for each �rm type.
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as:

V (sit) = �(!it) +

Z
Cit

max
rd2f0;1g

(�EtV (sit+1j!it; rdit = 1)� Cit;�EtV (sit+1j!it; rdit = 0)) dC;

(7)

where the expected future value of the �rm is de�ned as an expectation over the future levels

of productivity and innovation outcomes:

EtV (sit+1j!it; rdit) =
X
(d;z)

Z
!
V (sit+1)dG(!it+1j!it; dit+1; zit+1)dF (dit+1; zit+1jrdit): (8)

Equation (7) shows that the �rm will choose to invest in R&D if the discounted expected fu-

ture pro�ts from investing, �EtV (sit+1j!it; rdit = 1); net of the relevant maintenance or startup

cost, are greater than the expected future pro�ts from not investing, �EtV (sit+1j!it; rdit = 0):

What di¤erentiates these two expected future pro�ts is the e¤ect of R&D on the �rm�s future

productivity. Using this speci�cation, we can de�ne the marginal bene�t of conducting R&D

as:

�EV (!it) � �EtV (sit+1j!it; rdit = 1)� �EtV (sit+1j!it; rdit = 0): (9)

The �rm will choose to invest in R&D if �EV (!it) � Cit(rdit�1): This is the condition used

in the empirical model to explain the �rm�s observed R&D choice.

Overall, this model endogenizes the �rm�s choice to undertake R&D investments as a com-

parison between the net expected future pro�ts of the two alternatives. Using the empirical

model we develop in section 5, we estimate the innovation function, productivity evolution

process, and distributions of startup and maintenance costs of innovation faced by the �rm,

and quantify �EV (!it), the expected long-run payo¤ to investing in R&D.

4 Data

4.1 Firm Sample

The data we use to analyze the role of R&D in the productivity evolution of German �rms

are contained in the Mannheim Innovation Panel (MIP) survey collected by the Centre for

European Economic Research (ZEW) on behalf of the German Federal Ministry of Education

and Research. The survey is conducted every year for �rms in the manufacturing, mining,
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energy, water, construction, and service sectors. Samples are drawn from the Creditreform

database according to the stratifying variables �rm size, region, and industry.13 These are

representative of �rms with German headquarters and at least 5 employees.

The manufacturing survey begins in 1993 and contributes to the Community Innovation

Surveys (CIS) that are administered in many OECD countries. The survey adheres to the

Oslo Manual, which provides guidelines for the de�nition, classi�cation, and measurement of

innovation (OECD (1992, 1997, 2005)). Every year, the same set of �rms is asked to participate

in the survey and to complete the questionnaire sent to them via mail. The sample is updated

every two years to account for exiting �rms, newly founded �rms, and �rms that developed

to satisfy the selection criteria of the sample. Participation in the survey is voluntary and

the average response rate is approximately 25 percent, resulting in approximately 5000 survey

responses across all industries in each year. A non-response analysis is performed via phone

to check and correct for non-response bias. Due to cost reasons, starting in 1998, the full

questionnaire was only sent out every other year to all �rms in the full sample. However,

information on variables of interest, such as sales, capital stock and variable costs, are asked

retrospectively for the previous year to ensure the annual coverage. In odd years, only short

questionnaires with core questions are sent to a subset of �rms. Therefore, the number of �rms

in odd years in the panel is signi�cantly lower than in even years. This limits the ability to

follow individual �rms over long periods of time.14

For the empirical analysis, we focus on two groups of manufacturing industries. The high-

tech (HT) industry group consists of �rms in �ve aggregated two-digit manufacturing industries

(NACE codes): chemicals (23, 24), non-electrical machinery (29), electrical machinery (30, 31,

32), instruments (33), and motor vehicles (34, 35). Based on OECD data, these industries

all have R&D-sales ratios that exceed .025. The low-tech (LT) industry group includes �rms

in seven aggregated industries, food (15, 16), textiles (17, 18, 19), paper (20, 21, 22), plastic

(25), non-metallic minerals (26), basic metals (27, 28), and manufacturing n.e.c. (36, 37), that

all have much lower R&D-sales ratios. We estimate the model separately for the high-tech

13The Creditreform database is the largest credit rating agency in Germany and maintains a comprehensive
database of approximately 3.3 million German �rms.
14See Rammer and Peters (2013) for further details and summary statistics from the MIP.
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and low-tech groups and include dummy variables for the aggregated two-digit industries in

the pro�t function and innovation cost function. We also estimate the innovation probabilities

separately for each two-digit industry. Our �nal sample consists of observations between 1993-

2008 on all �rms in these industries with at least two consecutive observations and non-missing

information on the needed variables. There are a total of 3313 �rm-year observations used

for estimation in the high tech industries, 4290 observation for the low-tech industries and an

average of 2.6 observations for each �rm.

The sample attrition that occurs is virtually all due to non-reporting and not due to �rm

death. Beginning in 1999, we use codes in both the Creditreform data set and the MIP

questionnaire to identify �rms that disappear from our sample and are likely to be true �rm

deaths. Depending on the stringency of our death criteria, we �nd that only between 1.77

and 5.20 percent of the observations that disappear from our sample are true or likely �rm

deaths. We also �nd that, comparing the �rms that remain in the sample and those that exit

the sample, there is no signi�cant di¤erence in �rm characteristics, particularly productivity,

in their last year of observation. The sample attrition in our data set is random and is not due

to the death of low productivity �rms and does not generate selection bias in the estimates of

the revenue function.

4.2 Variable Measurement

For the estimation, we use data on �rm revenue, variable costs, capital stock, age, innovation

expenditures, and product and process innovations.15 Firm revenue is the sum of domestic and

export sales. Total variable cost is de�ned as the sum of expenditure on labor, materials, and

energy, and the �rm�s short-run pro�t is the di¤erence between revenue and total variable cost.

The �rm�s value is the discounted sum of the future short-run pro�ts and thus measures the

long-run resources available to pay its capital expenses plus the economic pro�ts. Firm age is

measured using a set of four dummy variables distinguishing the age groups: 1-9 years, 10-19

years, 20-49 years and � 50 years.

A special feature of the Community Innovation Surveys is that they provide measures of

15For 1999 and 2000, the panel does not contain information on the �rms� capital stock. We impute these
missing years using linear interpolation.
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both innovation input and innovation outputs. Innovation input is measured by the �rm�s

expenditure on a set of activities related to innovation. This measure includes R&D spending

but also spending on worker training, acquisition of external knowledge and capital, marketing,

and design expenditures for producing a new product or introducing a new production process.

The R&D variable we analyze in the empirical model (rdit) takes the value one if the �rm

reports a positive level of spending on innovation activities.

Innovation output captures the introduction of a new product or a new production process

by the �rm.16 The Oslo Manual de�nes a product innovation as a new or signi�cantly improved

product or service. A process innovation refers to new or signi�cant changes in the way products

are produced, delivered, or supplied. The main purpose of a process innovation is to reduce

production costs or to improve the quality of a product. For instance, the use of lasers to

increase the quality of products in metal processing or the introduction of automation concepts

is process innovations. The innovation does not have to be new to the market but only to

the �rm. A �rm could report an innovation if it adopted a production technology from a

competitor or expanded its product line even if the product was already o¤ered by other �rms.

The timing assumptions in the theoretical model about the relationship between R&D

spending, innovation outcomes, and productivity are fairly general: R&D spending precedes

innovation outcomes, and innovations that are realized are assumed to a¤ect productivity and

pro�ts in the period they are introduced. In the survey in year t, the �rms are asked whether

they introduced new or signi�cantly improved products or services during the years (t � 2);

(t�1); or t. The discrete variable product innovation dit takes the value one if the �rm reports

yes to the question. The discrete variable for process innovation zit equals one if the �rm

reports new or signi�cantly improved internal processes during the years (t � 2) to t. In the

empirical model, this outcome is related to R&D spending in the previous year (t�1); so there is

not a perfect match between the timing of the R&D and the realization of the innovations. This

may lead us to overestimate the e¤ect of R&D on innovation since the innovation variable could

be capturing an outcome from one year before the R&D investment was made. Attempting to

16Beginning in 2005, the survey started to also include questions on organizational innovation, which is de�ned
as new business practices, workplace organization, or external relations, and marketing innovation, referring to
changes in product design, packaging, product placement or promotion, and pricing methods. The time-series
information on these variables is too short for them to be utilized in this study.
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use more distant lags of R&D spending exaggerates the problems caused by sample attrition

and reduces the number of observations containing the necessary current and lagged variables.

Table 1 summarizes the proportion of �rms in the sample that report positive innovation

expenditures, successful product innovations, and successful process innovations for each indus-

try. The industries are aggregated into the high-tech and low-tech groups. In our sample,

the majority of �rms report having expenditures on innovation activities, but the proportions

di¤er across industries. In the �ve high-tech industries, the proportion varies from 0.714 to

0.828, while, in the seven low-tech industries, it varies from 0.476 to 0.634. The rate of product

innovation is also higher in the high-tech industries: Between 0.621 and 0.783 of the �rm/year

observations report having a new product innovation, while, in the low-tech group, the rate of

product innovation varies from 0.355 to 0.591. This same di¤erence exists for process innova-

tion, but the di¤erence in magnitude between the high-tech and low-tech industries is not as

large. The high-tech industries vary in a narrow band between 0.524 and 0.560, and all but

one of the low-tech industries vary between 0.386 and 0.486. The model developed in the last

section allows product and process innovations to occur at di¤erent rates given the �rm�s R&D

choice and allows them to each have a di¤erent impact on future productivity. This leads to

di¤erences in the expected bene�ts of R&D across industries and helps to explain di¤erences

in the proportion of �rms that choose to invest in R&D.

Table 2 summarizes the di¤erence in �rm revenue, capital stock, and age by industry and

R&D status. The table reports the median values in each category. Di¤erences in capital

stock and age will lead to di¤erences in pro�ts across �rms. Di¤erences in revenue, holding

capital and age �xed, will be re�ected in di¤erences in productivity in the empirical model. In

the model, capital, age, and productivity can all a¤ect the expected bene�t from investing in

R&D. The second and third columns show that �rms that invest in R&D generally have much

larger capital stocks than �rms that do not invest. The fourth and �fth columns indicate no

substantial di¤erences in median �rm age between investing and non-investing �rms. In most

industries the �rms that invest are equal in age or slightly older with the chemical, textile, and

plastic industries being the exception. The last two columns of the table show that �rms that

invest in R&D have larger sales, suggesting there may be productivity di¤erences between the
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two groups. Overall, the patterns in Table 2 suggest that �rm capital and productivity are

likely to be important sources of variation in the bene�ts of R&D across �rms.

5 Empirical Model

5.1 Productivity Evolution

In this subsection, we describe how we use the MIP data to estimate the revenue function, the

R&D-innovation, and the innovation-productivity relationships. Given that the innovation and

R&D variables are discrete and observed in the data, we estimate the probability distribution

F (dit+1; zit+1jrdit) as the fraction of observations reporting each of the four combinations of

dit+1 and zit+1 conditioning on rdit = 0 and rdit = 1. The innovation probabilities are

estimated separately for each of the twelve industries.

The demand elasticity for each industry is estimated using the fact that the model implies

the ratio of total variable cost to �rm revenue equals 1 + 1=�. We use the mean variable cost-

revenue ratio of each of the twelve industries as an estimate of one plus the inverse industry

demand elasticity.

Estimates of the transition probabilities for productivity G(!it+1j!it; dit+1; zit+1) are needed

to construct the value function. Unlike the innovation and R&D variables, the �rm�s produc-

tivity is not observable, and the process of productivity evolution is estimated jointly with the

parameters of the �rm�s revenue function, �k and �a; using the data on �rm sales. To estimate

the process of productivity evolution, we use the methodology developed by Doraszelski and

Jaumandreu (2013). Using the structure of our model we can solve for the demand functions

for the variable inputs of labor and materials. The factor demand equation for the log of

materials is:

mit = �t + (1 + �)�kkit + (1 + �)�aait � (1 + �)!it: (10)

In this equation, the intercept �t depends on the common time-varying components in the

model which include the intercept of the demand function and the variable input prices. The

material demand depends on the observed capital stock, age, and unobserved �rm productiv-

ity. Following the insight originally developed by Olley and Pakes (1996), this factor demand
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equation can be solved for the unobserved productivity as a function of the �rm�s material and

capital inputs and age. Solving equation (10) for productivity and lagging it one period gives:

!it�1 = (
1

1 + �
)�t�1 + �kkit�1 + �aait�1 � (

1

1 + �
)mit�1 (11)

We parameterize the productivity evolution process as a cubic function of lagged productivity

and a full set of interactions between the dummy variables for product and process innovations:

!it = �0 + �1!it�1 + �2!
2
it�1 + �3!

3
it�1 + �4dit + �5zit + �6ditzit + "it (12)

The persistence in �rm productivity over time is captured by the coe¢ cients �1; �2; and �3:

The e¤ect of innovations on the mean of the distribution of future �rm productivity is captured

by the coe¢ cients �4; �5; and �6: The coe¢ cient �6 allows for the possibility that the marginal

e¤ect of either a product or process innovation on future productivity depends on whether the

�rm has the other type of innovation.17 Substituting equation (11) into the productivity

evolution equation (12) and that into the revenue function gives the estimating equation for

�rm revenue:

rit = �0 + �t + (1 + �)�kkit � �1
�
�t�1 + (1 + �)�kkit�1 + (1 + �)�aait�1 �mit�1

�
(13)

�( �2
1 + �

)
�
�t�1 + (1 + �)�kkit�1 + (1 + �)�aait�1 �mit�1

�2
�( �3
(1 + �)2

)
�
�t�1 + (1 + �)�kkit�1 + (1 + �)�aait�1 �mit�1

�3
�(1 + �) [�4dit + �5zit + �6zitdit]� (1 + �)"it + �it:

The error term �it is a transitory shock to the �rm�s revenue function which is not observed

by the �rm prior to choosing its variable inputs or making its R&D decision. For estimation

we utilize the moment conditions implied by the fact that the error term �(1 + �)"it + �it is

uncorrelated with all right-hand side variables, ait�1; kit; kit�1;mit�1; zit; dit; and zitdit. The

intercept �0 is a combination of the intercepts of the revenue function and the productivity

17This interaction term also allows for the possibility that new product introductions may also require new
production processes, which could potentially raise cost and reduce output, and thus o¤set some of the revenue
gains from the product innovations. In this case, we may observe smaller productivity gains for �rms reporting
both innovations relative to �rms that report only one type of innovation.
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evolution equation �0: We can separately identify the �0 parameter from the revenue function

intercepts using the moment condition that "it has a zero mean. The time coe¢ cients �t

and �t�1 are functions of the common time-varying variables including the demand intercept

and factor prices. The �t�1 coe¢ cients are identi�ed, up to a base-year normalization, and

can be distinguished from the �t coe¢ cients because of the higher-order powers on !it�1 in

equation (12). We estimate equation (13) separately for the high-tech and low-tech industry

groups using NLLS. We allow the intercept �0 to vary across the two-digit industries in each

group, re�ecting industry di¤erences in the revenue functions and include the industry-speci�c

estimate of the demand elasticity as data. After estimation of the revenue function parameters,

�rm-level productivity is constructed from the inverted material demand function equation (11).

The �nal parameter estimated is the variance of the error term in the productivity evolution

equation �2" and this is estimated from the residuals in the productivity evolution equation.

This process di¤ers slightly from the methodology developed by Olley and Pakes (1996) in

two respects. First, as in Doraszelski and Jaumandreu (2013) and Aw, Roberts, and Xu (2011),

productivity evolution is not an exogenous process but is a¤ected by the �rm�s R&D choice. In

this case, it is a¤ected by the �rm�s innovations and, as a result, the innovation variables enter

into equation (13). Second, because we are modeling productivity using the revenue function,

we do not need to estimate the production function coe¢ cients on the variable inputs of labor

and materials. This simpli�es equation (13) by removing the need to instrument variable input

levels which would appear on the right hand side when using the production function as the

starting point.

5.2 Value Function and the Dynamic Choice of R&D

As described in section 3, the �rm bases its R&D investment decision on a comparison of the

long-run payo¤ from undertaking R&D, �EV (!it); with the realized maintenance or startup

cost, Cit. The probability that the �rm chooses to invest in R&D is given by:

Pr (rdit = 1jsit) = Pr [�EV (!it) � Cit(rdit�1)] (14)

= 1� exp(��EV (!it)=(
m � rdit�1 � kit + 
s � (1� rdit�1) � kit))
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where the innovation cost is modeled as described in equation (6). In the empirical model we

allow the cost function parameters 
 = (
m; 
s) to vary by industry.

The �nal piece of the empirical model is the construction of the value function and�EV (!it);

equations (7) and (9), respectively. We apply the nested �xed point algorithm developed by

Rust (1987) to estimate the dynamic discrete choice model. The state space sit = (!it; rdit�1)

is discretized into 100 grid points for productivity and two values for lagged R&D choice and

we use value function iteration to solve for the value function at each element of this discretized

state space. In addition, the �rm value di¤ers across �rms based on capital stock, age, and

industry. We de�ne a set of 4800 discrete �rm types based on 100 values of the capital stock,

four age categories, and 12 industries, and construct the �rm value and payo¤ to R&D for each

�rm type. The payo¤ to R&D is computed for each data point by using a cubic spline to

interpolate across the productivity and capital grid points for each industry-age category.

Assuming the �rm�s state variables sit are independent of the cost draws and that the costs

are iid across all periods and �rms, the likelihood function for the �rms�R&D choice data is:

L(
jrd; s) =
NY
i

TiY
t

Pr(rditjsit; 
): (15)

The vectors rd and s contain every �rm�s R&D choice and state variables for each period,

respectively. The total number of �rms is denoted by N , and Ti is the number of observations

for �rm i.

6 Empirical Results

6.1 Estimates of the Innovation and Productivity Process

Estimates of the probability of an innovation conditional on the �rm�s prior period investment

in R&D, Pr(dit+1; zit+1jrdit); are reported for each industry in Table 3. There is a strong

relationship between R&D investment and innovation outcomes. Columns (2) through (5) show

the probability of realizing each combination of product and process innovation given that the

�rm does not engage in R&D. Columns (6) through (9) report these probabilities for �rms that

conduct R&D. Column (2) shows that, on average, for �rms that did not engage in R&D, the

probability of having neither product nor process innovation in the next year averages 0.769 in
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the high-tech industries and 0.787 in the low-tech industries. This estimate is similar across all

12 industries, varying from a low of 0.710 in electronics to 0.820 in basic metals. What is more

important to note is that approximately 22 percent of the �rms still realize innovations even

if their R&D spending is zero, and the most common outcome among the three combinations

is the joint realization of both product and process innovations (d = 1; z = 1): This result

indicates that prior period R&D is not necessary for the �rm to realize innovations.

Firms that invest in R&D are much more likely to report innovations. However, R&D is

not su¢ cient to produce innovations: as shown in column (6) the probability of no innovation

outcomes varies between 0.091 and 0.270 percent across the industries and averages 0.203 in

the low-tech industry group and 0.106 in the high-tech industries. The di¤erence in the

probability of innovation outcomes can re�ect a combination of lower R&D e¤ort in the low-

tech industries, even when the �rm reports positive R&D spending, and fewer technological

opportunities for innovations. Among the three possible combinations of innovation outcomes,

the most common is that the �rm reports both a product and process innovation (d = 1; z = 1),

with the probability varying between 0.446 and 0.644. On average, the probability of realizing

both innovations is higher in the high-tech group than in the low-tech group, 0.612 versus 0.543.

Among investing �rms, the success rate for introducing a new product is in general higher than

the rate for a new process. The only exception is the paper industry which is an industry where

large scale production is important and which could give a strong incentive for �rms to invest

in process innovations.18

Table 4 reports the demand elasticity estimates for each industry in the high-tech and low-

tech sectors. In the chemical industry, the estimate of (1 + 1=�̂) is 0:675 implying a demand

elasticity �̂ of -3.075. The demand elasticity is used to convert productivity into pro�t, as

seen in equations (3) and (4). The estimates vary substantially across industries, ranging from

-2.991 in the food industry to -5.266 in metals.

Table 5 reports the estimates of the productivity evolution process for the high-tech and low-

18 If we construct Table 3 using rdit�1 as the conditioning variable, so there is a two-year lag between R&D and
innovation, we get a very similar pattern of innovation rates. Among the �rms with rdit�1 = 0; 73.6 percent in
hightech and 76.4 percent report no innovation. Among the �rms with rdit�1 = 1; 22.5 percent in the lowtech
sectors report no innovation which is twice as large as in the high-tech sectors. The estimates of innovation
probabilities by industry are not sensitive to the use of one or two-period lags in R&D.
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tech sectors from equation (13). The double and single asterisks denote parameter estimates

di¤erent from zero at the 0.01 and 0.05 signi�cance levels, respectively. The positive coe¢ cient

estimates for z and d indicate that �rms that realize innovations have, on average, higher

future productivity levels compared to those that do not have any kind of innovation. For

�rms in the high-tech industries, a new product innovation d contributes, on average, a 3.6

percent productivity gain, and a new process innovation z contributes 2.9 percent. There is no

signi�cant additional e¤ect from having both types of innovations jointly. The coe¢ cient on

the interaction term d�z is 0.001, which implies an average productivity increase of 6.6 percent

in the next year if the �rm has both types of innovations.

In the low-tech industries, the magnitudes of these productivity e¤ects are smaller but their

di¤erence is more pronounced. Firms that introduced a new product have, on average, 1.5

percent higher future productivity, while a new process innovation raises productivity by 3.5

percent. One possible reason for the weaker impact of product innovation on future productivity

is that new or improved products may represent less substantial changes over existing products

in these industries.19 If a �rm realizes both product and process innovations, it has 4.1 percent

higher future productivity.

The e¤ect of past productivity on the current productivity level is measured by the coe¢ -

cients of !t�1, its squared and cubic terms. Past productivity is highly persistent. There is

a non-linear relationship between current and lagged productivity for both sectors, as seen by

the statistically signi�cant e¤ect of !2t�1 and !
3
t�1. The persistence of the productivity process

has a substantial impact on the long-run payo¤ from R&D because it determines how quickly

the productivity gains from an innovation depreciate. Lower values of �1 imply more rapid

depreciation of the productivity and pro�t gains from an innovation d or z which lowers the

long-run payo¤ to R&D. Overall, both large coe¢ cients on the innovation variables and high

persistence of the productivity process results in a high level of �EV; the expected long-run

payo¤ to R&D.

The remaining variables in the pro�t function, capital and age also have signi�cant e¤ects.

19This interpretation is supported by data on products that are new to the market. In the MIP, the proportion
of �rms introducing products that are new to the market varies from 39 to 51 percent in the high-tech industries
but 16 to 31 percent in the low-tech industries.
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The cost elasticity of capital in the high-tech sector is estimated to be �̂k = �0:065 and �0:058

in the low-tech sector. Negative values of �k imply �rms with a higher capital stock have lower

production costs because they use less variable inputs. We include three dummy variables

representing di¤erent age categories in the estimation, where �rms between 1 and 9 years old

are the omitted base group. The estimated coe¢ cients for �rms in the 10-19 category implies

that they have high costs than the base group, but the di¤erence is not signi�cant in either

industry. The coe¢ cients on the remaining two age groups are negative and statistically

signi�cant, indicating that older �rms have lower costs than the base group. The magnitude

of the estimates is higher for the oldest �rms indicating higher cost e¢ ciency as the �rm ages.

20

Before turning to the estimation of the dynamic parameters we examine the reduced-form

relationship between R&D, the �rm characteristics, capital, age, and industry, and the two state

variables, productivity and lagged R&D. Table 6 reports probit regressions of this relationship.

The second column of the table reports estimates for the high-tech industries without the lagged

R&D variable included. Capital and productivity are both signi�cant determinants of discrete

R&D choice but age is not signi�cant. When lagged R&D is included in the speci�cation, it

is, not surprisingly, high signi�cant and the other coe¢ cients drop substantially in magnitude,

but capital and productivity remain statistically signi�cant. A similar pattern is found for the

low-tech industries. The main di¤erence is that productivity is not signi�cant when lagged

R&D is included. Also the age coe¢ cients are more important than in the high-tech industries

and the negative signs imply that older �rms are less likely to invest in R&D. This age pattern

is not consistent with the role of age in the dynamic model, where we �nd that older �rms have

lower production costs which will tend to increase their incentive to invest in R&D.

20We also check if estimates of the revenue function and productivity process are a¤ected by �rm exit. Olley
and Pakes (1996) found that the use of a balanced panel of plants did result in selection bias in their production
function estimates, but once the observations on entering and exiting plants were included in the sample the
selection bias was very minor. As explained in section 4.1, virtually all of the attrition in our sample is due
to non- reporting, not �rm death. To verify if sample attrition a¤ects our results, we estimate probit models
of exit and �nd that capital stock, age, material expenditures, and industry have no explanatory power in the
regressions. The pseudo R2 in the exit regression is 0.005 in both the high-tech and low-tech models, with
only a few industry dummies and age dummies being close to statistically signi�cant. Including the predicted
probability of exit in the revenue function estimation, equation (13), has no e¤ect on the structural parameter
estimates. The estimates of ! from a model that controls for the probability of exit and a model that does not
have a correlation above .99. There is no evidence of selection bias from sample attrition in our estimates.
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6.2 Estimates of the Cost of Innovation

The �nal sets of parameter estimates characterize the innovation cost distributions. In the

model, this is the expenditure the �rm must incur to generate a product or process innovation

that, in turn, raises its productivity. Table 7 reports parameter estimates for three di¤erent

cost speci�cations. The standard errors are bootstrapped to account for the variation in the

�rst-stage parameter estimates. The �rst, labeled model A in the table, is the speci�cation

described in equation (6), which allows the mean of the cost distribution to di¤er with the

�rm�s capital stock and industry. Model B allows the mean of the cost distribution to di¤er by

industry, while model C allows it to di¤er across small, medium, and large size classes de�ned

by the �rm�s capital stock. All three cost speci�cations distinguish between the distribution

of startup and maintenance costs.

Focusing on speci�cation A, the estimated maintenance costs are smaller than startup costs

in all industries. This means that, comparing two �rms with the same productivity, capital

stock, age, and industry and, hence the same expected payo¤ to R&D, the �rm with previous

R&D experience will �nd it less expensive to generate an innovation than one with no prior

experience.

In speci�cation A, the positive coe¢ cient implies that �rms with larger capital stock draw

their innovation cost from a distribution with a higher mean. In the estimated model, the

payo¤ to conducting R&D increases with the capital stock. Holding productivity, age, and

industry �xed, a �rm with a larger capital stock will have a larger bene�t to investing in R&D

and will be willing to invest more resources to get an innovation. An analogous interpretation

of the cost magnitude applies to a comparison of the high-tech and low-tech industries. The

higher expected payo¤ to R&D in the high-tech industries allows these �rms to invest more in

the innovation process.

The two other cost speci�cations result in lower log likelihood values. The results for model

B show that there are signi�cant di¤erences in mean costs across industries. These di¤erences

are particularly large between the high-tech and low-tech industries. The estimates for model

C show a higher mean level of innovation costs for larger �rms. Both of these patterns, industry

di¤erences and variation with �rm size are incorporated in model A and we will focus on those
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results in the remainder of this article.

We assess the goodness of �t of the dynamic model by simulating the �rms� investment

choices given their capital stock, age, productivity, and industry and compute the predicted

R&D transition rates. Table 8 reports the actual and predicted R&D transition rates using the

cost estimates from model A. The model �ts the data well for the �rms that do not engage in

R&D. In the high-tech industry, the predicted startup rate is 0.291 whereas this rate is 0.245

in the data. In the low-tech industry the predicted rate is 0.233 and the observed rate is 0.219.

For investing �rms in the high-tech industry, our model predicts a continuation rate of 0.862

versus 0.933 in the data. For the low-tech industries, the prediction is 0.711 and the data is

0.824. Overall, the model slightly underestimates the continuation rate and overestimates the

exit rate.

6.3 Expected Bene�ts of R&D

Using the estimates of innovation costs, innovation probabilities, and the productivity process,

we construct �EV (!), the expected long-run payo¤ to investing in R&D, from equation (9).

This measures the di¤erence in the present value of expected future pro�ts that accrue to

the �rm if it engages in R&D versus if it does not engage in R&D for a given year. This

bene�t depends on the industry-level measures (pro�t function, demand elasticity, productivity

evolution, and innovation probabilities) and the �rm-level variables (productivity, capital stock,

and age) and, therefore, varies across �rms within an industry.

Table 9 focuses on di¤erences in the expected bene�ts across industries. The second column

reports the value of �EV (!) for a �rm in age group 2 (10-19 years old) with the median level of

productivity and capital stock in each industry, a "median" �rm. In the high-tech industries,

the expected payo¤ to R&D varies from 2.33 million euros in the instrument industry to 6.77

million euros in vehicles. Not surprisingly, given the earlier �ndings of lower innovation rates

and lower productivity impacts of innovation, the expected payo¤ to R&D investment by �rms

in the low-tech sector is smaller. They vary from 0.299 million euros in the textile industry to

1.563 million in the basic metals industry.

These di¤erences in expected bene�ts, when combined with the cost estimates, translate into
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di¤erences in the probability of investing in R&D. The last two columns of Table 9 summarize

these probabilities for the same "median" �rm in each industry. The probabilities also vary

with the �rm�s prior R&D experience because of the di¤erence in maintenance versus startup

cost. In the high-tech industry, this "median" �rm has a high probability of continuing to invest

in R&D. Given they are paying a maintenance cost (i:e:rdt�1 = 1); the probability of investing

in R&D varies between 0.847 and 0.975. The probability of beginning an R&D program is

much smaller, varying from 0.244 to 0.370 across industries, re�ecting the substantial startup

costs that are faced by �rms beginning to invest in R&D. In the low-tech industries, both

continuing and starting probabilities are smaller, re�ecting the lower expected payo¤s. For

the "median" �rm with prior R&D experience, the investment probability varies from 0.397 to

0.804 and is particularly low for the food, textile, and paper industries. The probabilities of

starting R&D vary from 0.09 to 0.246 across industries. This indicates a substantial hurdle to

R&D startup in these industries.

Table 10 focuses on how the other �rm characteristics, productivity, capital stock, and age,

lead to variation in the expected bene�t of R&D within each industry. The marginal e¤ects

of changes in productivity, capital, or age on �EV (!) and the probabilities of investing in

R&D are di¢ cult to gauge directly from the structural coe¢ cients in tables 3, 4, 5, and 6

because they are nonlinear functions of model parameters and variables. In this table we

report estimates of the change in �EV (!) and investment probabilities resulting from changes

in the �rm�s productivity, capital, and age. Columns (2), (3), and (4) summarize the di¤erence

in outcomes between �rms with productivity levels at the 25th and 75th percentile of the

productivity distribution holding capital stock �xed at the median level and age at category

2. Productivity impacts the �rm�s expected return and probability of investment directly

through the pro�t function but also through the persistence parameters in the productivity

evolution process. High persistence, which we observe in the Table 5 estimates, implies long-

lived productivity di¤erences across �rms. Therefore, a high productivity �rm is more likely

to invest in R&D than a low productivity �rm.

The results in columns (2)-(4) show that productivity heterogeneity is a major driving force

of the di¤erence in expected returns and investment probability across �rms. In the high-tech
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industries, a �rm at the 75th percentile of the productivity distribution has an expected payo¤

that is 3.5 to 15.3 million euros higher than that of a �rm at the 25th percentile. The average

di¤erence across industries is 8.899 million euros. There are also substantial di¤erences in the

probability of R&D investment. In the chemical industry, the probability of investing is 0.686

(0.565) higher for a high productivity �rm paying a maintenance (startup) cost compared to a

low productivity �rm. The increase in investment probability is also substantial in the vehicle

industry. In the low-tech industries, the magnitude of the di¤erences in expected returns is

much smaller, varying from approximately 1.0 to 2.5 million euros and averaging 1.608 million.

The smaller magnitude re�ects lower overall expected returns in these industries. Despite

a small di¤erence in expected returns, we observe a relatively large impact of productivity

changes on the probability of investing, particularly on the probability of continuing to invest.

This probability increase averages 0.594 across the seven industries while the startup probability

is higher by an average of 0.329.

Columns (5), (6), and (7) provide the estimated impacts of changes in the �rm�s capital

stock on expected payo¤s and investment probabilities. These reported numbers summarize

the di¤erence in outcomes between �rms at the 25th and 75th percentile of the capital stock

distribution, holding productivity �xed at the median level and age �xed at group 2. Capital

di¤erences impact these outcomes through two channels: through the �rm�s short-run pro�t

function and through the cost of innovation. While capital has a positive impact on pro�ts, it

also increases innovation costs, and these e¤ects are o¤setting on the probability of investing.

When compared with productivity heterogeneity, the di¤erences across �rms� capital stocks

account for much smaller di¤erences in expected returns and investment probabilities. This is

true in both the high-tech and low-tech industries. Among the high-tech industries, the increase

in expected return averages 2.943 million euros and the probabilities of investing in R&D

increase by 0.062 and 0.080, on average, for the maintenance and startup groups, respectively.

In the low-tech industries, the average di¤erence in expected returns is 0.443 million euros and

the probabilities di¤er by 0.043 and 0.027. In particular, in four of the low-tech industries the

di¤erence in investment probabilities between �rms with large and small capital stocks is less

than one percentage point and is even negative in some cases.
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The �nal three columns examine the marginal e¤ect of age. We compare the outcomes of a

�rm in age group 4 (� 50 years) to the outcomes of a �rm in age group 2 (10-19 years) holding

capital and productivity �xed at the median industry values. Firm age has an impact on the

expected returns and investment rates through its impact on the �rm�s pro�t. The di¤erences

in outcomes between age groups are slightly larger than those observed for capital heterogeneity

but much less than those for productivity heterogeneity. Averaging across industries, the mean

expected bene�t of older �rm is 3.829 and 0.535 million euros higher in the high-tech and low-

tech groups, respectively. In the high-tech industry, the probability of starting to invest di¤ers

more across the age categories than the probability of maintaining investment. In the low-

tech industries, the opposite pattern is observed. Age di¤erences have a larger impact on the

probability of continuing to invest.

Overall, the results in Tables 9 and 10 show that there are substantial di¤erences in the

expected return to R&D, particularly between �rms in the low-tech and high-tech industries.

This contributes to the di¤erences in R&D investment rates across industries. Within in-

dustry, heterogeneity in productivity is particularly important in explaining di¤erences across

�rms, with high productivity �rms having substantially higher expected returns and investment

probabilities. Di¤erences in capital stocks and age also contribute to within-industry di¤er-

ences in these outcomes; however, the magnitude of their impact is smaller than the impact of

productivity di¤erences.

6.4 The Long-Run and Short-Run Return to R&D

The dynamic framework developed in this article has the advantage of providing measures for

both the long-run and short-run bene�ts of R&D investment that can be compared to each

other. The short-run gain captures changes in sales and pro�ts in the subsequent period,

while the long-run gain captures the changes in �rm value due to the �rm being on a higher

productivity path. The latter includes both a higher pro�t stream and di¤erent optimal future

R&D choices. Both of these e¤ects are induced by the productivity gain resulting from R&D

investment.

We de�ne the long-run gain as the proportional impact of R&D on �rm value. It is measured
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as the log di¤erence in the expected future value of the �rm, equation (8), conditional on its

R&D choice while holding the �rm�s other characteristics �xed:

� lnEV = ln(EV (sit+1j!it; rdit = 1))� ln(EV (sit+1j!it; rdit = 0)): (16)

This long-run gain can be constructed for every �rm-year observation in the data, regardless

of whether or not the �rm actually invested in R&D in that year. This allows us to characterize

the distribution of expected long-run gains over all �rms, and not simply for �rms that choose

to conduct R&D. The median value over all sample observations in each industry is reported

in the second column of Table 10, the 25th and 75th percentiles are reported in column (3).

This table also reports the median value of EV (sit+1j!it; rdit = 0); denoted EV 0; which serves

as the base for interpreting the proportional change in �rm value.

In the high-tech industries, the median value of the long-run gain varies between 0.057 in

the instrument industry to 0.085 in vehicles. The 25th percentile varies between 0.024 and

0.048 while the 75th percentile varies from 0.079 to 0.109. Aggregating over all �rms in the

high-tech industries, the median gain is 0.067, implying a di¤erence in long-run �rm value of

6.7 percent between �rms that undertake R&D and those that do not. The 25th and 75th

percentiles are 0.040 and 0.093, with much of the heterogeneity arising within industries.

In the low-tech industries, the proportional long-run gains are lower. The median varies

from a low of 0.017 in the food and textile industries to 0.390 in the metals industry and equals

0.028 when aggregating over �rms in the low-tech industries. In three of the industries, the

median gain is less than 2.0 percent of �rm value. The dispersion in long-run bene�ts within

each industry is also much smaller than in the high-tech industries. In four of the industries,

the 25th percentile is less than or equal to 0.01 and the 75th percentile is above 0.05 in only

two cases, plastics and metals industries. Not surprisingly, given the results reported in tables

3, 4, and 5, R&D investment has a lower expected payo¤ in the low-tech industries relative to

the high-tech industries.

As discussed in section 2, the knowledge production framework focuses on the elasticity

of output (usually measured as �rm revenue) with respect to R&D expenditure as a measure

of the return to additional R&D spending. Hall, Mairesse, and Mohnen (2010) report that

revenue elasticity estimates vary across studies from 0.01 to 0.25 and are centered around 0.08.
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Doraszelski and Jaumandreu (2013, Table 7) report estimates of the elasticity of output, not

revenue, for ten Spanish manufacturing industries. The average value over all �rms is 0.015,

and the average at the industry level varies from -0.006 to 0.046 across the ten industries, with

half of the industries falling between 0.013 and 0.022.

Using the results reported in Tables 3, 4, and 5, we construct an analogous measure using the

discrete R&D variable: the proportional gain in �rm revenue resulting when the �rm moves from

not investing in R&D (rdt = 0) to investing in R&D (rdt = 1): The revenue increase resulting

from R&D depends on how R&D a¤ects innovation, how innovation a¤ects productivity, and

how productivity translates into revenue. The di¤erence in log revenue when rd = 1 and rd = 0

can be measured using our model as:

�r = (1 + �)
P
(d;z)

[g(!; d; z)� g(!; 0; 0)] [Pr(d; zjrd = 1)� Pr(d; zjrd = 0)] (17)

for all (d; z) 2 f(1; 0); (0; 1); (1; 1)g

Table 11 provides estimates of this shift on the log of future revenue for each industry.

These estimates are constant across �rms in an industry. The �nal column of the table reports

the median value of �rm sales, in millions of euros, to use as the basis for comparison. In the

high-tech industries, �r varies from 0.081 in chemicals to 0.158 in machinery and averages 0.122

across the �ve industries. The latter number implies 12.2 percent higher revenue for �rms that

conduct R&D relative to �rms that do not. In the low-tech industries, the short-run revenue

di¤erences vary from 0.035 to 0.100 and average 0.061. These are within the range reported

by Hall, Mohnen, and Mairesse (2010) in their review of the literature. In percentage terms

the short-run gains are larger in magnitude than the median long-run gains reported in column

(2). However, the long-run gains � lnEV apply to a larger base, the expected future �rm

value, than the short-run gains in revenue. In monetary units, the short-run gains are always

smaller than the long-run gain. This results because �r does not consider the persistence of

the productivity gains and the optimal future investment choices motivated by this productivity

gain.
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7 Counterfactual Analysis

The results in the previous section reveal large di¤erences in the long-run payo¤ to R&D which

generates di¤erences in the investment incentive between �rms in the low-tech and high-tech

industries. We explore the source of these di¤erences by focusing on the two technology

components, productivity evolution and the innovation probability, that contribute to �EV:21

When investing in R&D, �rms in the high-tech industries have a higher innovation success rate

and their innovations have a larger productivity impact than those in the low-tech industries, as

seen in Tables 2 and 5. Columns (2)- (4) of Table 12 report the average change in high-tech �rm

R&D investment, productivity level, and �EV when facing low-tech productivity impact and

innovation process. In column (2) we show how the high-tech �rms would be a¤ected if they

had the �4; �5; and �6 parameters of the low-tech industries. The proportion of �rms investing

in R&D would drop by 0.312 after �ve years and 0.375 after ten years. This reduction in R&D

investment shows up very quickly in response to the reduced economic impact of innovations.

The strong decline in R&D investment is followed by an increasing shortfall in the level of

industry productivity. Average industry productivity drops by 6.3 percent after �ve years

and this drop continues to fall to 10.4 percent after ten years. The expected bene�t of R&D

decreases by approximately 5.0 million euros due to the lower productivity and smaller impact

of innovations.

The third column of Table 12 shows the e¤ect of lower innovation probabilities. If high-tech

�rms faced the same probabilities as in the low-tech sector, the R&D investment rate would

drop by 0.080 and 0.093 over �ve and ten year horizons, respectively. As a consequence, mean

productivity level declines by 1.9 percent after �ve and 3.3 percent after ten years. Compar-

ing the e¤ects of these two technology factors on industry investment and productivity, the

productivity impact of innovations is the stronger driving force for the di¤erence between the

high-tech and low-tech industry. Finally, the fourth column shows declines in R&D participa-

21 In the simulation exercises reported in this section, all observations are initialized with the observed industry,
age, capital stock, productivity, and lagged R&D status in the data. The �rm�s cost, productivity shock, and
innovation outcome are then drawn from the appropriate distributions and the �rm�s optimal R&D choice is
calculated. The state variables are updated and the process is repeated for 10 periods. The simulations are
repeated 100 times and averaged. All �gures reported in Tables 10 and 11 are the di¤erences in the simulated
outcomes under alternative parameter choices relative to the base case using the estimated model parameters.
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tion, mean productivity level, and expected bene�ts if both productivity impact and innovation

probabilities were identical to those of the low-tech sector. The declines are only slightly higher

than those due to lower productivity impact of innovations, re�ecting the nonlinear e¤ect of

these factors in our model.

The last three columns of Table 12 report corresponding changes in R&D rate, productivity,

and expected bene�t for �rms in the low-tech industries when imposing the high-tech innovation

probabilities and productivity impact of innovations. Similar to the results found for high-tech

industries, the major impact comes from the productivity evolution parameters. The stronger

impact of innovation in the productivity process causes the R&D rate to increase by 0.252

after �ve years and 0.283 after ten years. More favorable innovation probabilities, such as

those faced by the high-tech �rms, however, only increase the R&D rate by 0.025 and 0.021,

respectively. Consequently, productivity changes attributed to the higher innovation impact

are more pronounced than those resulting from higher innovation probabilities. In summary,

Table 12 shows that the impact of innovation on �rm productivity, and thus on �rm sales

and pro�ts, plays a crucial role in explaining the di¤erences in �rm performance and R&D

investment between high-tech and low-tech industries, more so than the impact of R&D on the

innovation creation.

Another important component determining �rm investment decisions is the cost of innova-

tion. Policy instruments such as R&D subsidies, grants, and tax relief directly alter this cost.

To assess the impact of tax relief or subsidies, we simulate �rm R&D investment choices and

productivity development if there was a permanent reduction in maintenance or startup costs.

The second and third columns of Table 13 show the e¤ect of lowering the maintenance cost

distribution parameter by 20 percent for high-tech and low-tech industries. We report these

e¤ects as changes in R&D investment rates, mean productivity and expected bene�ts �EV

after �ve and ten years. The last two columns report the corresponding changes resulting from

a 20 percent reduction in startup costs.22

22�In our model there are no R&D spillovers across �rms and the bene�t of a �rm�s R&D investment is fully
internalized by the �rm, so there is no reason that a subsidy is needed to induce the socially e¢ cient level of R&D
investment. This counterfactual is simply summarizing how responsive �rm R&D participation and productivity
are to a reduction in innovation costs. See Klette, Moen, and Griliches (2000) for a review of the literature on
subsidies and market failure.
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Five years after a maintenance cost reduction, the probability of investing in R&D has risen,

on average across the high-tech �rms by 7.9 percentage points, and by 7.0 among the low-tech

industry �rms. After 10 years we see a small additional increase in the proportion of �rms

investing, however, the largest increase in the investment rate resulted shortly after the cost

reduction. In addition, the cost reduction does not act a¤ect all �rms equally. Approximately

25 percent of the �rms in each industry group are not a¤ected by the maintenance cost reduction

because their probability of investing was already close to either one or zero. The reduction in

cost alters the investment decision of �rms that have costs near the threshold of �EV , while

the decision of �rms with very low or very high initial costs remains unchanged.

The increased rate of investment in R&D leads to a shift in the distribution of productivity.

In the high-tech industries the mean of the �rm productivity distribution increases by 0.8 and

1.4 percent after �ve and ten years, respectively. The increases are smaller, 0.5 and 0.6 percent

in the low-tech industries. The lower cost of an innovation also raises the expected long-

run bene�t of investing in R&D. In the high-tech industries, the mean value of �EV rises

by slightly more than 0.5 million euros, while in the low-tech industries it increases by 0.156

million euros.

The e¤ects of a reduction in startup costs di¤er from what we observe for the maintenance

cost reduction. A startup cost reduction lowers the entry barrier into investment for �rms with

no formal R&D previously. The results in Table 13 show there is virtually no e¤ect of this cost

reduction on R&D investment or productivity in the high-tech industries and a modest positive

e¤ect in the low-tech industries. In contrast to the maintenance cost reduction, which always

raises the expected bene�t of investment and increases the �rm�s probability of investing, a

startup cost reduction has two opposing e¤ects on R&D choice which can explain the smaller

impact. First, it lowers the entry cost for �rms that were not investing and this raises the

probability of investment for any level of expected bene�ts. Second, however, the lower startup

cost also reduces the value of investing today because it is now less expensive to wait and invest

in the future. More precisely, the lower startup cost in future periods will result in an increase

in EV (sit+1j!it; rdit = 0);the expected future value if the �rm does not choose to invest in R&D.

This leads to a reduction in �EV which reduces the �rm�s incentive to invest. Table 13 shows
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that the estimated reduction in �EV is 0.455 million euros after �ve years of cost reduction

in the high-tech industry and 0.104 million euros in low-tech. The e¤ect of the startup cost

reduction on the expected bene�t of investing causes some �rms to stop their R&D investments.

Overall, the startup cost reduction has a less powerful e¤ect on investment incentives than the

reduction in maintenance cost.23 However, it is important to point out that the two cost

changes are not equivalent in terms of the overall cost of the subsidy. The maintenance cost

reduction is applicable to all investing �rms, while the startup cost reduction only applies to

the �rms that begin to invest in R&D.

8 Conclusions

Much of the empirical innovation and productivity literature focuses on measuring the private

return to R&D investment, with the knowledge production function model being used as the

primary framework. In this production model, �rm R&D investments accumulate and depreci-

ate over time, creating a knowledge stock that enters as an additional input into the production

function. Estimates of the marginal product of this knowledge stock provide a measure of the

return to R&D.

In this article, we take a di¤erent approach to measure the expected long-run, private payo¤

to R&D investment by estimating a model of the �rm�s dynamic decision to invest in R&D.

The model allows �rm�s R&D investment to raise the probability of being on a higher future

productivity and pro�t path. Investment payo¤s are realized in the future and subject to

several sources of uncertainty. The proportional di¤erence in the expected value of the �rm

between these two paths, therefore, is a crucial component of the �rm�s R&D decision and

provides a natural measure of the expected payo¤ to the R&D investment.

The empirical model is designed to exploit the micro data collected in the Community

Innovation Surveys. For Germany, this includes �rm panel data on R&D activity, their realized

product and process innovations, and variables to construct productivity and short-run pro�ts.

23 In contrast to this �nding, Gonzalez, Jaumandreu, and Pazo (2005) �nd that subsidies would have a sub-
stantial impact on the R&D investment of Spanish manufacturing �rms. They estimate that among �rms that
did not invest in R&D, half of the large ones would begin investing with a 10 percent cost subsidy and one-third
of the small ones would begin with a 40 percent subsidy.
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The four key structural components of the model are: the �rm�s pro�t function that relates

productivity to pro�t, the evolution of �rm productivity which depends on product and process

innovations realized by the �rm, the probability of a product or process innovation given the

�rm�s R&D choice, and the costs the �rm must incur to generate an innovation.

The structural parameter estimates show �rms that invest in R&D have a higher probability

of realizing a product or process innovation, but R&D investment is neither necessary nor

su¢ cient for �rm innovation. On average, across the high-tech manufacturing industries, the

probability a �rm has either a product or process innovation, given that they do not invest in

R&D is 0.231 but increases to 0.894 if they choose to invest. Firms in the low-tech industries

have a lower probability of realizing innovations. On average, the probability is 0.213 if they

do not invest in R&D and 0.797 if they do. Second, product innovation and process innovation

lead to increases in future �rm productivity, but product innovations are more important in

the high-tech industries, raising productivity by 3.6 percent, while process innovations are more

important for �rms in the low-tech industries, raising their productivity by 3.5 percent. Third,

�rm productivity is persistent over time, hence, innovations that raise productivity have long-

lived e¤ects on �rm value. Fourth, the cost to generate an innovation is signi�cantly smaller

for small �rms and �rms that have prior R&D investment.

We �nd that the expected payo¤ to investing in R&D varies across industries, averaging

4.4 million euros for the high-tech industries and 0.78 million euros for the low tech industries.

The payo¤ also varies substantially across �rms within an industry with di¤erences in age,

capital stock, and productivity. Older, larger, and more productive �rms have higher expected

bene�ts from R&D investment, with productivity di¤erences generating the most substantial

di¤erences across �rms. We measure the expected long-run gain to investing in R&D as the

proportional impact on �rm value. In the �ve high-tech industries, the median gain across

�rms varies from 0.057 in the instrument industry to 0.085 in the vehicle industry and averages

0.067 across the �ve industries. Across the seven low-tech industries, the median gain varies

from 0.017 to 0.039 and averages 0.028.

Our structural model of �rm R&D investment provides a decision rule for �rm investment

choice allowing us to conduct counterfactual experiments to study the e¤ect of changes in
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the economic environment on the R&D decision and future productivity. Additionally, we

simulate di¤erent subsidy policies by changing the cost of innovation. The e¤ect of lower

innovation costs is at the heart of many policy discussions regarding the costs and bene�ts of

public subsidies for R&D investment. The results show that in the high-tech industries, a 20

percent reduction in the innovation cost for an experienced R&D �rms leads, after ten years,

to an average increase of 9.0 percentage points in the probability of investing in R&D, a 1.40

percent increase in mean �rm productivity, and an increase in the expected bene�t of R&D of

0.5 million euros. The same proportional reduction in the cost faced by high-tech �rms that

start to invest in R&D has virtually no impact on the probability of investing or the level of

productivity. In contrast, in the low-tech industries, where there is a lower overall investment

rate by �rms, the startup margin is more important. A 20 percent reduction in the startup

cost raises the investment rate by 0.012 percentage points and mean productivity by 7.0 percent

after 10 years. The simulations illustrate that the e¤ect of innovation cost reduction on R&D

decisions and productivity growth, depends on industry, the distribution of expected bene�ts,

and, importantly, the target group of the subsidy. A structural model of the long-run payo¤

to R&D is needed to assess the impact of cost subsidies on the �rms�investment decisions.
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Table 1: Innovation Rates by Industry - pooled over �rms and years
Proportion with Proportion with Proportion with
Expenditure rd Product Innovation d Process Innovation z

High-Tech Industries
Chemicals 0.769 0.686 0.552
Machinery 0.757 0.692 0.524
Electronics 0.826 0.765 0.560
Instruments 0.828 0.783 0.534
Vehicles 0.714 0.621 0.534
Average HT Industries 0.780 0.713 0.539
Low-Tech Industries
Food 0.536 0.481 0.409
Textiles 0.476 0.416 0.311
Paper 0.480 0.355 0.386
Plastic 0.634 0.591 0.486
Mineral 0.580 0.536 0.452
Basic Metals 0.582 0.469 0.472
Misc. Manuf. 0.632 0.555 0.408
Average LT Industries 0.560 0.477 0.428
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Table 2: Firm Characteristics - Median over all observations in the category
Capital Stock* Age Revenue*
rd = 1 rd = 0 rd = 1 rd = 0 rd = 1 rd = 0

High-Tech Industries
Chemicals 8.181 4.474 23 33 32.000 30.768
Machinery 4.136 1.000 19 14 19.648 3.579
Electronics 2.272 0.271 16 14 12.871 3.337
Instruments 1.636 0.358 18 15 9.985 2.127
Vehicles 9.383 1.170 18 17 52.034 4.346
Low-Tech Industries
Food 5.113 2.700 20 16 15.200 9.076
Textiles 1.855 0.794 16 39 7.719 7.490
Paper 4.800 2.023 26 18 17.057 4.957
Plastic 3.380 1.425 16 20 11.468 4.090
Mineral 3.221 1.428 20 17 11.000 4.858
Basic Metals 3.250 1.162 16 16 11.248 4.200
Misc. Manuf. 3.926 1.023 18 17 12.265 3.059

* millions of euros

43



Table 3: Probability of Innovation Conditional on Past R&D: Pr(dt+1; zt+1j rdt)
rdt = 0 rdt = 1

Product Innovation d = 0 d = 1 d = 0 d = 1 d = 0 d = 1 d = 0 d = 1
Process Innovation z = 0 z = 0 z = 1 z = 1 z = 0 z = 0 z = 1 z = 1

High-Tech Industries
Chemicals 0.776 0.049 0.049 0.126 0.107 0.224 0.048 0.621
Machinery 0.780 0.061 0.036 0.123 0.104 0.252 0.038 0.606
Electronics 0.710 0.084 0.028 0.178 0.094 0.268 0.031 0.607
Instruments 0.800 0.050 0.020 0.130 0.091 0.302 0.011 0.595
Vehicles 0.778 0.065 0.040 0.111 0.135 0.174 0.058 0.633
Average HT Industries 0.771 0.061 0.037 0.131 0.103 0.253 0.035 0.609
Low-Tech Industries
Food 0.756 0.047 0.047 0.150 0.239 0.178 0.046 0.537
Textiles 0.783 0.062 0.037 0.108 0.254 0.244 0.048 0.454
Paper 0.785 0.032 0.085 0.098 0.270 0.138 0.146 0.446
Plastic 0.793 0.077 0.017 0.111 0.145 0.171 0.040 0.644
Mineral 0.780 0.062 0.023 0.136 0.179 0.163 0.048 0.611
Basic Metals 0.820 0.024 0.046 0.110 0.170 0.123 0.118 0.585
Misc. Manuf. 0.780 0.083 0.038 0.098 0.167 0.259 0.051 0.523
Average LT Industries 0.792 0.047 0.046 0.114 0.196 0.168 0.082 0.555
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Table 4: Demand Elasticity Estimates (standard error)
1+1/� � sample size

High-Tech Industries
Chemicals 0.675 (0.005)�� -3.075 1350
Machinery 0.803 (0.002)�� -5.078 2643
Electronics 0.731 (0.005)�� -3.713 1403
Instruments 0.763 (0.005)�� -4.213 1428
Vehicles 0.796 (0.005)�� -4.891 892

Low-Tech Industries
Food 0.665 (0.007)�� -2.991 1162
Textiles 0.697 (0.003)�� -3.302 991
Paper 0.697 (0.003)�� -3.296 1669
Plastic 0.798 (0.003)�� -4.941 1396
Mineral 0.675 (0.005)�� -3.080 960
Metals 0.810 (0.002)�� -5.266 2763
Misc. Manuf. 0.765 (0.004)�� -4.253 872
�� signi�cant at the 0.01 level
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Table 5: Productivity Evolution Parameters (standard error)
High-Tech Industries Low-Tech Industries

d 0.036 (0.008)�� 0.015 (0.008)
z 0.029 (0.014)� 0.035 (0.010)��

d � z 0.001 (0.016) -0.009 (0.013)
!t�1 0.711 (0.020)�� 0.707 (0.015)��

!2t�1 0.211 (0.012)�� 0.160 (0.010)��

!3t�1 -0.056 (0.004)�� -0.041 (0.003)��

k -0.065 (0.003)�� -0.058 (0.003)��

a = (10� 19) 0.009 (0.013) 0.017 (0.013)
a = (20� 49) -0.058 (0.019)�� -0.049 (0.020)��

a � 50 -0.158 (0.025)�� -0.101 (0.023)��

intercept 0.866 (0.150)�� 0.313 (0.182)��

chemicals 0.061 (0.037) food 0.022 (0.037)
machinery 0.035 (0.030) textiles -0.162 (0.036)��

electronics 0.069 (0.034)� paper -0.033 (0.033)
instruments 0.072 (0.033)� plastic -0.053 (0.033)

minerals -0.001 (0.037)
metals 0.006 (0.031)

SE(") 0.189 0.203
sample size 3313 4290
��signi�cant at the 0.01 level, � signi�cant at the 0.05 level
Time dummies for �t and �t�1 included but not reported.
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Table 6: Reduced-Form Model of R&D Investment
High-Tech Industries Low-Tech Industries

rdt�1 2.048 (0.065)�� 1.608 (0.046)��

k 0.192 (0.017)�� 0.118 (0.020)�� 0.167 (0.014)�� 0.088 (0.016)��

k2 0.003 (0.005) 0.002 (0.006) 0.014 (0.004)�� 0.011 (.0005)�

! 0.313 (0.066)�� 0.163 (0.081)� 0.130 (0.054)� 0.013 (0.060)
!2 -0.203 (0.039)�� -0.134 (0.047)�� -0.062 (0.028)� 0.004 (0.032)
a = (10� 19) -0.003 (0.068) 0.023 (0.083) -0.091 (0.054) -0.101 (0.061)
a = (20� 49) -0.083 (0.071) -0.099 (0.086) -0.232 (0.059)�� -0.141 (0.066)�

a � 50 0.041 (0.080) -0.028 (0.096) -0.155 (0.056)�� -0.093 (0.063)
intercept 0.457 (0.084)�� -0.729 (0.110)�� intercept -0.062 (0.075) -0.867 (0.087)��

chemicals 0.090 (0.081) 0.026 (0.101) food 0.020 (0.087) 0.066 (0.096)
machinery 0.461 (0.092)�� 0.254 (0.112)� textiles -0.110 (0.078) -0.056 (0.086)
electronics 0.568 (0.172)�� 0.248 (0.115)� paper 0.336 (0.085)�� 0.235 (0.095)�

instruments -0.195 (0.100) -0.112 (0.123) plastic 0.149 (0.088) 0.115 (0.098)
minerals 0.197 (0.077)� 0.179 (0.086)�

metals 0.346 (0.096)�� 0.284 (0.108)��

Sample Size 3313 3313 4290 4290
Pseudo R2 0.104 0.422 0.070 0.301
��signi�cant at the 0.01 level, � signi�cant at the 0.05 level
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Table 8 : Transition Rates for R&D
Data Model

rdt = 0 rdt = 1 rdt = 0 rdt = 1
High-Tech Industries
rdt�1 = 0 0.755 0.245 0.709 0.291
rdt�1 = 1 0.067 0.933 0.138 0.862
Low-Tech Industries
rdt�1 = 0 0.781 0.219 0.767 0.233
rdt�1 = 1 0.175 0.824 0.289 0.711
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Table 9: Long-Run Expected Bene�ts of Conducting R&D
(evaluated at median !; median k; age=2 in each industry)

�EV (!)� Pr(rdt = 1)
rdt�1 = 1 rdt�1 = 0

High-Tech Industries
Chemicals 4.213 0.847 0.281
Machinery 4.708 0.917 0.327
Electronics 2.691 0.975 0.244
Instruments 2.331 0.965 0.345
Vehicles 6.770 0.856 0.370
Average HT Industries 4.413 0.912 0.313
Low-Tech Industries
Food 0.470 0.440 0.163
Textiles 0.299 0.397 0.090
Paper 0.450 0.459 0.138
Plastic 1.272 0.755 0.226
Mineral 0.590 0.730 0.218
Metals 1.563 0.716 0.170
Misc. Manuf. 0.833 0.804 0.246
Average LT industries 0.782 0.614 0.179
* millions of euros

50



T
ab
le
10
:
W
it
hi
n-
In
du
st
ry
D
i¤
er
en
ce
s
in
th
e
B
en
e�
ts
of
R
&
D
an
d
P
ro
ba
bi
lit
y
of
In
ve
st
in
g

Im
pa
ct
of
in
cr
ea
si
ng
!
on

Im
pa
ct
of
in
cr
ea
si
ng
k
on

Im
pa
ct
of
in
cr
ea
si
ng
ag
e
on

�
E
V
(!
)�

P
r(
rd
t=
1)

�
E
V
(!
)�

P
r(
rd
t=
1)

�
E
V
(!
)�

P
r(
rd
t=
1
)

H
ig
h-
T
ec
h
In
du
st
ri
es

rd
t�
1
=
1

rd
t�
1
=
0

rd
t�
1
=
1

rd
t�
1
=
0

rd
t�
1
=
1

rd
t�
1
=
0

C
he
m
ic
al
s

11
.8
15

0.
68
6

0.
56
5

1.
59
4

0.
02
0

0.
01
7

2.
41
5

0.
10
1

0.
12
4

M
ac
hi
ne
ry

6.
59
6

0.
24
5

0.
34
2

3.
75
3

0.
09
6

0.
12
4

5.
34
5

0.
07
8

0.
24
4

E
le
ct
ro
ni
cs

7.
24
0

0.
18
5

0.
46
7

1.
40
4

0.
01
3

0.
03
2

1.
96
0

0.
02
3

0.
13
9

In
st
ru
m
en
ts

3.
56
3

0.
15
4

0.
37
7

1.
45
0

0.
02
6

0.
06
4

1.
75
8

0.
03
2

0.
17
9

V
eh
ic
le
s

15
.2
82

0.
54
2

0.
56
1

6.
51
2

0.
15
4

0.
16
4

7.
66
5

0.
12
7

0.
25
7

A
ve
ra
ge
H
T
In
du
st
ri
es

8.
89
9

0.
36
4

0.
46
2

2.
94
3

0.
06
2

0.
08
0

3.
82
9

0.
07
2

0.
18
8

L
ow
-T
ec
h
In
du
st
ri
es

Fo
od

1.
74
2

0.
75
7

0.
46
0

0.
12
2

-0
.0
07

-0
.0
03

0.
14
6

0.
09
2

0.
04
5

T
ex
ti
le
s

1.
01
5

0.
69
6

0.
26
6

0.
11
4

-0
.0
12

-0
.0
03

0.
11
6

0.
10
7

0.
03
3

P
ap
er

1.
26
4

0.
69
8

0.
32
8

0.
16
5

0.
00
4

0.
00
2

0.
17
3

0.
11
4

0.
04
8

P
la
st
ic

2.
00
5

0.
42
4

0.
29
1

0.
88
0

0.
11
6

0.
06
9

1.
03
9

0.
16
7

0.
14
6

M
in
er
al

1.
25
7

0.
64
9

0.
38
1

0.
17
9

-0
.0
08

-0
.0
05

0.
22
0

0.
10
4

0.
06
9

M
et
al
s

2.
53
1

0.
45
8

0.
23
6

1.
16
2

0.
14
4

0.
06
3

1.
52
7

0.
20
1

0.
13
8

M
is
c.
M
an
uf
.

1.
44
4

0.
47
6

0.
34
4

0.
47
5

0.
06
3

0.
04
3

0.
52
3

0.
12
5

0.
12
2

A
ve
ra
ge
LT

in
du
st
ri
es

1.
60
8

0.
59
4

0.
32
9

0.
44
3

0.
04
3

0.
02
7

0.
53
5

0.
13
0

0.
08
6

51



Table 11: Long-Run and Short-Run Proportional Gains From R&D
Long-Run, � lnEV Short-Run, �r

Median 25th� 75th Median EV 0 �r Median Revenue
High-Tech Industries
Chemicals 0.067 0.024 - 0.091 71.87 0.081 31.44
Machinery 0.071 0.048 - 0.091 80.06 0.158 12.40
Electronics 0.068 0.039 - 0.098 43.84 0.095 10.23
Instruments 0.057 0.037 - 0.079 45.79 0.127 6.21
Vehicles 0.085 0.040 - 0.109 104.88 0.151 30.11
All HT Industries 0.067 0.040 - 0.093 64.59 0.122 20.68
Low-Tech Industries
Food 0.017 0.007 - 0.030 30.13 0.035 12.78
Textiles 0.018 0.007 - 0.034 21.58 0.040 7.31
Paper 0.019 0.007 - 0.033 27.18 0.041 9.60
Plastic 0.037 0.023 - 0.056 37.67 0.095 6.90
Mineral 0.025 0.010 - 0.038 26.06 0.046 7.58
Metals 0.039 0.023 - 0.059 49.41 0.100 7.16
Misc. Manuf. 0.032 0.016 - 0.045 30.90 0.067 8.47
All LT industries 0.028 0.013 - 0.041 34.25 0.061 7.82
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Table 12: E¤ect of Technology Parameters on Productivity and R&D
HT industries with LT parameters LT industries with HT parameters
productivity innovation both productivity innovation both
evolution function evolution function

Change in R&D Prop
5 years -0.312 -0.080 -0.350 0.252 0.025 0.317
10 years -0.375 -0.093 -0.412 0.283 0.021 0.362

Prop Change in !
5 years -0.063 -0.019 -0.072 0.051 0.001 0.069
10 years -0.104 -0.033 -0.111 0.082 0.009 0.110

Change in �EV
5 years -5.490 -1.825 -6.035 2.069 0.033 2.481
10 years -4.986 -1.765 -5.378 2.041 0.011 2.598
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Table 13: Counterfactual Reductions in Costs of Innovation
20% Reduction in Maintenance Cost 20% Reduction in Startup Cost
High-Tech Ind. Low-Tech Ind High-Tech Ind. Low-Tech Ind

Change in R&D Prop
5 years 0.079 0.070 0.002 0.013
10 years 0.090 0.072 0.004 0.012
Prop Change in !
5 years 0.008 0.005 0.002 0.021
10 years 0.014 0.006 0.003 0.070
Change in �EV
5 years 0.506 0.156 -0.455 -0.104
10 years 0.556 0.156 -0.373 -0.081
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