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ECONOMICS

Estimating economic damage from
climate change in the United States
Solomon Hsiang,1,2*† Robert Kopp,3*† Amir Jina,4† James Rising,1,5†

Michael Delgado,6 Shashank Mohan,6 D. J. Rasmussen,7 Robert Muir-Wood,8

Paul Wilson,8 Michael Oppenheimer,7,9 Kate Larsen,6 Trevor Houser6

Estimates of climate change damage are central to the design of climate policies. Here,

we develop a flexible architecture for computing damages that integrates climate science,

econometric analyses, and process models. We use this approach to construct spatially

explicit, probabilistic, and empirically derived estimates of economic damage in the United

States from climate change. The combined value of market and nonmarket damage

across analyzed sectors—agriculture, crime, coastal storms, energy, human mortality, and

labor—increases quadratically in global mean temperature, costing roughly 1.2% of gross

domestic product per +1°C on average. Importantly, risk is distributed unequally across

locations, generating a large transfer of value northward and westward that increases

economic inequality. By the late 21st century, the poorest third of counties are projected

to experience damages between 2 and 20% of county income (90% chance) under

business-as-usual emissions (Representative Concentration Pathway 8.5).

E
conomically rational management of the

global climate requires that the costs of re-

ducing greenhouse gas emissions beweighed

against the benefits of doing so (or, converse-

ly, the costs of not doing so). A vast liter-

ature has considered this problem, developing,

among other insights, our understanding of the

optimal timing of investments (1), the role of un-

certainty (2), the importance of future adaptation

(3), the role of trade (4), and the potentially large

impact of unanticipated tipping points (5, 6).

Integrated assessmentmodels that value the bene-

fits of greenhouse gas abatement are used by gov-

ernments to estimate the social cost of climate

change (7, 8), which in turn informs the design

of greenhouse gas policies. However, the estima-

ted benefits of greenhouse gas abatement—or

conversely, the “damages” from climate change—

are conceptually and computationally challeng-

ing to construct. Because of this difficulty, previous

analyses have relied on rough estimates, theorized

effects, or limited processmodeling at continen-

tal scales or larger (9–11), with no systematic cali-

bration to observed human-climate linkages (12).

Since the original development of these models,

methodological innovations (13) coupled with data

availability and computing power have fueled

rapid growth in a spatially resolved, empirical un-

derstanding of these relationships (14). Yet inte-

grated assessments of climate change and their

calculation of the social cost of carbon do not re-

flect these advances (15–17).

Here, we develop an integrated architecture to

compute potential economic damages from cli-

mate change based on empirical evidence, which

we apply to the United States. Our risk-based

approach is grounded in empirical longitudinal

analyses of nonlinear, sector-specific impacts, sup-

plemented with detailed energy system, inunda-

tion, and cyclone models. Built upon a calibrated

distribution of downscaled climate models, this

approach is probabilistic and highly resolved

across geographic spacewhile taking into account

the spatial and sectoral covariance of impacts in

each possible future. Our framework is designed

to continuously integrate new empirical find-

ings and new climate model projections as the

supporting subfields of research advance in the

future. When applied to the U.S. economy, this

approach provides a probabilistic and empirically

derived “damage function,” linking globalmean

surface temperature (GMST) to market and non-

market costs in the United States, built up from

empirical analyses using micro-level data.

System architecture

Wedeveloped theSpatialEmpiricalAdaptiveGlobal-

to-LocalAssessment System(SEAGLAS) todynam-

ically integrate and synthesize research outputs

across multiple fields in near-real time. We use

SEAGLAS to construct probabilistic, county-level

impact estimates that are benchmarked to GMST

changes. [See section A of the supplementary

materials (SM) for additional details (18).]

County-level projections of daily temperature

and precipitation are constructed and sampled

following a three-step process that simultaneously

captures the probability distribution of climate

responses to forcing, spatiotemporal structures

within each climate realization, and spatiotem-

poral autocorrelation of weather (19): (i) For

each forcing pathway considered [Represen-

tative Concentration Pathways (RCPs) 2.6, 4.5,

and 8.5] (20), a probability distribution for GMST

change is constructed based on an estimated

distribution of equilibrium climate sensitivity,

historical observations, and a simple climatemodel

(SCM) (19). (ii) The joint spatiotemporal distribu-

tion ofmonthly temperature and precipitation is

constructed from a broad range of global climate

models (GCMs), statistically downscaled from the

CoupledModel IntercomparisonProject 5 (CMIP5)

archive (21) and assigned a probability of realiza-

tion such that the distribution of 21st-century

GMST changemirrors the distribution from the

SCM. Tails of the distribution beyond the range

present in the CMIP5 archive are represented by

“model surrogates” constructed by scaling pat-

terns from CMIP5 models using the GMST pro-

jections from the SCM. Together, we refer to the

union of monthly resolution GCM and model

surrogate output as the set of climate realizations

that are each weighted to reflect a single prob-

ability distribution (Fig. 1A). These weights are

used when we compute damage probability dis-

tributions for specific RCP scenarios. (iii) We then

construct a set of 10 daily projections for each

climate realization by superimposing dailyweather

residuals relative to monthly climatologies that are

resampled in yearly blocks from the period 1981 to

2010 (Fig. 1B).

A distribution of empirically grounded econom-

ic impacts is computed for each joint realization

of county-level daily temperature and precipita-

tion: (iv) Econometrically derived dose-response

functions (13) estimating the nonlinear effects

of temperature, rainfall, and CO2 on agriculture

(22, 23), mortality (24, 25), crime (26, 27), labor

(28), and energy demand (24) are constructed via

Bayesian meta-analysis (29) (e.g., Fig. 1, C to H,

and SMsections B andC). Following the approach

andcriteria laidout in (30),weonly employ studies

that are nationally representative, spatially dis-

aggregated, and account for temporal displacement

and unobserved heterogeneity across locations,

along with the additional criterion that studies

statistically identify marginal distortions in the

distribution of experienced daily temperatures

(13, 14). (v) Econometric uncertainty is accounted

for by resampling from the 26 posterior functions

in (iv) (fig. S4). (vi) County-level daily projections

from (iii) are mapped onto the distribution of pos-

sible responses from (v) to construct 3143 county-

level joint distributions for 15 impacts across 29,000

possible states of the world during 2000 to 2099

(SM sections D and E), although for display pur-

poses we primarily summarize 2080 to 2099 im-

pacts here.

A parallel approach is necessary to estimate

energy demand changes and coastal impacts: (vii)

Energy demand estimated in (iv) is used as a

partial calibration for the National Energy Mod-

eling System (NEMS) (31) (SM section G). NEMS

is then run with different weather realizations

to estimate energy supply costs. (viii) Cyclone
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exposure is simulated via analytical wind field

models (32) that force a storm surge model (33),

with cyclogenesis and storm tracks generated via

either (i) semiparametrically resampling histori-

cal activity (34) or (ii) resampling from projected

storm tracks and intensities (35) (SM section H).

(ix) Inundation from localized probabilistic sea

level rise projections (36) interacting with storm

surge andwind exposure in (viii) aremapped onto

a database of all coastal properties maintained

by Risk Management Solutions, where engineer-

ing models predict damage (SM section H).

Finally, economic impacts are aggregated and

indexed against the GMST in their corresponding

climate realization to construct multidimensional

probabilistic damage functions suitable for ap-

plication in integrated assessment modeling: (x)

Direct impacts from (vi), (vii), and (ix) are ag-

gregated across space or time within each sector.

Monetizing the value of nonmarket impacts

(deaths and crime) using willingness-to-pay or

accounting estimates (37, 38), impacts across all

sectors are aggregated to compute total damages

(SM sections I and J).

Importantly, for clarity, our approach holds

the scale and spatial distribution of the U.S.

population and economy fixed at values ob-

served in 2012, since current values are well

understood and widely agreed on. Various pre-

vious analyses [e.g., (39)] note that natural de-

mographic change and economic growth may

dominate climate change effects in overall mag-

nitude, although such comparisons are not our

focus here. Because we compute impacts using

scale-free intensive measures (e.g., percentage

changes), future expansion of the economy or

population does not affect our county-level esti-

mates, and our aggregate results will be un-

biased as long as this expansion is balanced

across space. If such expansion is not balanced

across space, then our aggregated results will re-

quire a second-order adjustment with a sign that

depends on the spatial covariance of changes in

climate exposure and changes in economic or pop-

ulation structure, as shown in (40). In previous

work (41), we demonstrated how results for some

direct impacts might change if future rates of

adaptation to climate mirror historical patterns

and rates. The paucity of existing quantitative

studies on adaptation prevents us from currently

applying this approach to all sectors, although such

additions are expected in future work.

Distribution of costs and benefits

Standard approaches to valuing climate damage

describe average impacts for large regions (e.g.,

North America) or the entire globe as a whole.

Yet examining county-level impacts reveals major

redistributive impacts of climate change on some

sectors that are not captured by regional or global

averages. Figure 2 and fig. S2 display the median

average impact during the period 2080 to 2099

due to climate changes in RCP8.5, a trajectory

consistent with fossil-fuel–intensive economic

growth, for each county. In caseswhere responses

to temperature are nonlinear (e.g., Fig. 1, C, E,

and H), the current climate of counties affects

whether additional warming generates benefits,

has limited effect, or imposes costs. For example,

warming reduces mortality in cold northern

counties and elevates it in hot southern counties

(Fig. 2B). Sectors with roughly linear responses,

such as violent crime (Fig. 1G), havemore uniform

effects across locations (Fig. 2H). Atlantic coast

counties suffer the largest losses from cyclone

intensification andmean sea level (MSL) rise (Fig.

2F and fig. S10). In general (except for crime and

some coastal damages), Southern andMidwestern

populations suffer the largest losses, while North-

ern and Western populations have smaller or

even negative damages, the latter amounting

to net gains from projected climate changes.

Combining impacts across sectors reveals that

warming causes a net transfer of value fromSouth-

ern, Central, andMid-Atlantic regions toward the

Pacific Northwest, the Great Lakes region, and

New England (Fig. 2I). In some counties, median

losses exceed 20% of gross county product (GCP),

while median gains sometimes exceed 10% of

GCP. Because losses are largest in regions that

are already poorer on average, climate change tends

to increase preexisting inequality in the United

States. Nationally averaged effects, used in pre-

vious assessments, do not capture this subnation-

al restructuring of the U.S. economy.

Nationally aggregated sectoral impacts

We recover sector-specific damages as a function

ofGMST change by nationally aggregating county-

level impacts within each state of the world

defined by an RCP scenario, climate realization,

resampled weather, and econometrically derived

parameter estimate (SM sections D and E). The

distribution of sectoral impacts is compared with

GMST change in each realization in Fig. 3 (SM

section J). Although several sectors exhibit micro-

level responses that are highly nonlinear with

respect to county temperature (e.g., Fig. 1C), ag-

gregated damages exhibit less-extreme curvature

with respect to GMST change, as was hypothe-

sized and derived in (42).

Average yields in agriculture declinewith rising

GMST, but higher CO2 concentrations offset much

of the loss for the coolest climate realizations in

each of the three RCP scenarios. Accounting for

estimated effects of CO2 fertilization (SM section

B) and precipitation, warming still dominates, re-

ducing national yields ∼9.1 (±0.6 SEM) % per °C

(Fig. 3A). Because effects of CO2 are highly un-

certain and not derived using the same criteria

as other effects, we evaluate the sensitivity of

these projections by computing losses without

CO2 fertilization (Fig. 3B) and find that temper-

ature and rainfall changes alonewould be expected
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Fig. 1. Recombining previous research results

as composite inputs to SEAGLAS. (A) Forty-

four climate models (outlined maps) and model

surrogates (dimmed maps) are weighted so that

the distribution of the 2080 to 2099 GMST

anomaly exhibited by weighted models matches

the probability distribution of estimated GMST

responses (blue-gray line) under RCP8.5.

Analogous display for precipitation in fig. S1.

(B) Example of 10 months of daily residuals in

New York City, block resampled from historical

observations at the same location and

superimposed on monthly mean projections for

a single model (GFDL-CM3) and scenario

(RCP8.5) drawn from (A). (C to H) Examples of

composite (posterior) county- level dose-

response functions derived from nonlinear

Bayesian meta-analysis of empirical studies

based on selection criteria in (30). Median

estimate is black, central 95% credible interval is

blue-gray. To construct probabilistic impact pro-

jections, responses for each category are inde-

pendently resampled from each distribution of

possible response functions and combined with

resampled climate realizations, as in (A), and

weather realizations, as in (B). [(C) and

(D)] Estimated causal effect of (C) 24 hours

temperature and (D) seasonal rainfall on maize

yields. (E) Daily average temperature on

all-cause mortality for the 45- to 64-year-old

population. (F) Daily maximum temperature on

daily labor supply in high-risk industries exposed

to outdoor temperatures. [(G) and (H)] Daily

maximum temperature on (G) monthly violent

crime rates and (H) annual residential electricity

demand. All sources are detailed in SM section B.

RESEARCH | RESEARCH ARTICLE

o
n
 O

c
to

b
e
r 5

, 2
0
1
7

 
h
ttp

://s
c
ie

n
c
e
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m
 

http://science.sciencemag.org/


to reduce yields ∼12.1 (±0.7) % per °C (see also

figs. S11 and S12 and tables S10 and S11).

Rising mortality in hot locations more than

offsets reductions in cool regions, so annual na-

tional mortality rates rise ∼5.4 (±0.5) deaths per

100,000 per °C (Fig. 3C). For lower GMST changes,

this is driven by mortality between ages 1 and 44

and by infant mortality and ages ≥45 for larger

GMST increases (fig. S13 and table S12).

Electricity demand rises on net for all GMST

changes, roughly 5.3 (± 0.14) % per °C, because

rising demand from hot days more than offsets

falling demand on cool days (Fig. 3D and table

S13). Because total costs in the energy sector are

computed using NEMS, demand is not statistical-

ly resampled as other sectors are (SM section G).

Total hours of labor supplied declines ∼0.11

(±0.004) % per °C in GMST for low-risk workers,

who are predominantly not exposed to outdoor

temperatures, and 0.53 (±0.01) % per °C for high-

risk workers who are exposed (∼23% of all em-

ployed workers, in sectors such as construction,

mining, agriculture, and manufacturing) (Fig. 3,

E and F, and table S14).

Property crime increases as the number of cold

days—which suppress property crime rates (fig.

S4)—falls but then flattens for higher levels of

warming because hot days do not affect property

crime rates. Violent crime rates increase linearly

at a relatively precise 0.88 (±0.04) % per °C in

GMST (Fig. 3, G and H, and table S15).

Coastal impacts are driven by the amplifica-

tion of tropical cyclone and extratropical cyclone

storm tides by local MSL rise and by the alter-

ation of the frequency, distribution, and intensity

of these cyclones (SM section H). Rising MSL

increases the storm tide height and floodplain

during cyclones: Fig. 4, A to D, illustrates how 1-

in-100-year floodplains evolve over time due to

MSL rise (RCP8.5) with and without projected

changes in cyclones for two major coastal cities.

Coastal impacts are distributed highly unequally,

with acute impacts for eastern coastal states with

topographically low cities; MSL rise alone raises

expected direct annual economic damage 0.6

to 1.3% of state gross domestic product (GDP) for

South Carolina, Louisiana, and Florida in the

median case, and 0.7 to 2.3% for the 95th per-

centile of MSL rise (Fig. 4E) (RCP8.5). Nation-

ally, MSL rise would increase annual expected

storm damages roughly 0.0014% GDP per cm if

capital and storm frequency remain fixed (Fig.

4F). Accounting for the projected alteration of

the TC distribution roughly doubles the damage

from MSL rise, the two combined costing an es-

timated additional 0.5 (±0.2) % of GDP annually

in 2100 when aggregated nationally (Fig. 4G).

Uncertainty

At the county level, conditional upon RCP, un-

certainty in direct damages is driven by climate

uncertainty (both in GMST and in the expected

spatiotemporal distribution of changes conditional

on GMST), by within-month weather exposure,

and by statistical assumptions and sampling used

to derive dose-response functions, as well as by
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Fig. 2. Spatial distributions of projected damages. County-level median

values for average 2080 to 2099 RCP8.5 impacts. Impacts are changes

relative to counterfactual “no additional climate change” trajectories.

Color indicates magnitude of impact in median projection; outline color

indicates level of agreement across projections (thin white outline, inner

66% of projections disagree in sign; no outline, ≥83% of projections agree

in sign; black outline, ≥95% agree in sign; thick white outline, state

borders; maps without outlines shown in fig. S2). Negative damages

indicate economic gains. (A) Percent change in yields, area-weighted

average for maize, wheat, soybeans, and cotton. (B) Change in all-cause

mortality rates, across all age groups. (C) Change in electricity demand.

(D) Change in labor supply of full-time-equivalent workers for low-risk

jobs where workers are minimally exposed to outdoor temperature.

(E) Same as (D), except for high-risk jobs where workers are heavily

exposed to outdoor temperatures. (F) Change in damages from

coastal storms. (G) Change in property-crime rates. (H) Change

in violent-crime rates. (I) Median total direct economic damage across

all sectors [(A) to (H)].
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uncertainty generated by the interaction of these

factors. Figure 2 displays county-level uncer-

tainty in the impact on each sector by indicating

the level of agreement among 11,000 projections

on the overall sign of impacts in each county.

Notably, process models (e.g., NEMS) and other

variables, such as baseline work hours or the VSL,

contain uncertainty that remains uncharacterized.

Aggregating results nationally, we decompose

uncertainty into contributions from climate, within-

month weather, and dose-response relationships

by resampling each individually while holding the

others fixed (43), recovering how these variances

combine to produce the total variance across pro-

jections (figs. S6 and S7). In general, climate un-

certainty dominates, contributing 41 to 104% of

the total variance by end of century, with econo-

metric uncertainty in low-risk labor (88% of total

variance) being the only exception.Within-month

weather uncertainty has a negligible effect on

20-year averages. The interaction between climate

and dose-response uncertainty also contributes to

the total variance (negatively in somecases), because

impact functions are nonlinear (SM section F).

Nationally aggregated total damage

Impacts across sectors can be aggregated into a

single measure of overall economic damage if

suitable values can be assigned to each impact

category. For nonmarket costs, we use current

U.S. Environmental Protection Agency values for

the value of a statistical life (37) and published

estimates for the cost of crime (38), which we com-

bine with current average market valuations of

market impacts (SM section I). Summing across

impacts, we estimate the conditional distribution

of total directdamages asa functionofGMSTchange

(Fig. 5A), finding that expected annual losses in-

crease by ∼0.6% GDP per 1°C at +1°C of GMST

warming (relative to 1981 to 2010) to 1.7% GDP per

1°C at +5°C GMST (SM section J). This response

is well approximated by a quadratic function (fig.

S14) that is highly statistically significant for

changes above 1°C (P < 0.001) (table S16). Com-

bined uncertainty in aggregate impacts grows

with warming, so the very likely (5th to 95th per-

centile) range of losses at 1.5°C of warming is −0.1

to 1.7%GDP, at 4°C ofwarming is 1.5 to 5.6% GDP,

and at 8°C warming is 6.4 to 15.7% GDP an-

nually (gray band, Fig. 5A and table S17). Ap-

proximating this damage function with a linear
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Fig. 3. Probabilistic national aggregate

damage functions by sector. Dot-whiskers

indicate the distribution of direct damages in

2080 to 2099 (averaged) for multiple realiza-

tions of each combination of climate models

and scenario projection (dot, median; dark line,

inner 66% credible interval; medium line, inner

90%; light line, inner 95%). Green are from

RCP2.6, yellow from RCP4.5, red from RCP8.5.

Distributions are located on the horizontal axis

according to GMST change realized in each

model-scenario combination (blue axis is

change relative to preindustrial). Black lines are

restricted cubic spline regressions through

median values, and gray shaded regions are

bounded (above and below) by restricted cubic

spline regressions through the 5th and 95th

quantiles of each distribution, all of which are

restricted to intercept the origin. (A) Total

agricultural impact accounting for temperature,

rainfall, and CO2 fertilization (CO2 concentration

is uniform within each RCP, causing disconti-

nuities across scenarios). (B) Without CO2

effect. (C) All-cause mortality for all ages.

(D) Electricity demand used in process model,

which does not resample statistical uncertainty

(SM section G). (E and F) Labor supply for (E)

low-risk and (F) high-risk worker groups.

(G) Property-crime rates. (H) Violent-crime rates.
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form suggests losses of ∼1.2% GDP per 1°C on

average in our sample of scenarios (table S16).

The greatest direct cost forGMST changes larger

than 2.5°C is the burden of excessmortality, with

sizable but smaller contributions from changes

in labor supply, energy demand, and agricultural

production (Fig. 5B). Coastal storm impacts are

also sizable but do not scale strongly with GMST

because projections of globalMSL are dependent

on RCP but are not explicitly calculated as func-

tions of GMST (36), causing the coastal storm

contribution to the slope of the damage function

to be relatively muted. It is possible to use alter-

native approaches to valuing mortality in which

the loss of lives for older and/or low-income indi-

viduals are assigned lower value than those of

younger and/or high-income individuals (44), an

adjustment that would alter damages differently

for different levels of warming based on the age

and income profile of affected individuals (e.g.,

fig. S13). Here, we focus on the approach legally

adoptedby theU.S. government for environmental

cost-benefit analysis, in which the lives of all indi-

viduals are valued equally (37). Because the VSL

parameter is influential, challenging to measure

empirically, and may evolve in the future, its in-

fluence on damages is an important area for fu-

ture investigation.

Risk and inequality of total

local damages

Climate change increases the unpredictability and

between-county inequality of future economic out-

comes, effects that may alter the valuation of cli-

mate damages beyond their nationally averaged

expected costs (45). Figure 5C displays the prob-

ability distribution of damage under RCP8.5 as a

fraction of county income, ordering counties by

their current income per capita. Median damages

are systematically larger in low-income counties,

increasing by 0.93% of county income (95% confi-

dence interval = 0.85 to 1.01%) on average for

each reduction in current income decile. In the

richest third of counties, the average very likely

range (90% credible interval, determined as the

average of 5th and 95th percentile values across

counties) for damages is −1.2 to 6.8% of county

income (negative damages are benefits), whereas

for the poorest third of counties, the average

range is 2.0 to 19.6% of county income. These

differences are more extreme for the richest 5%

and poorest 5% of counties, with average inter-

vals for damage of −1.1 to 4.2% and 5.5 to 27.8%,

respectively.

We note that it is possible to adjust the aggre-

gate damage function in Fig. 5A to capture socie-

tal aversion to both the risk and inequality in Fig.

5C. In SMsectionK,wedemonstrate one approach

to constructing such inequality-neutral, certainty-

equivalent damage functions. Depending on the

parameters used to value risk and inequality,

accounting for these factors may dramatically

influence society’s valuation of damages in aman-

ner similar to the large influence of discount rates

on the valuation of future damages (46). This find-

ing highlights risk and inequality valuation as cri-

tical areas for future research.

Discussion

Our results provide a probabilistic, national dam-

age function based on spatially disaggregated,

empirical, longitudinal analyses of climate im-

pacts and available global climate models, but

it will not be the last estimate. Because we use

stringent selection criteria for empirical studies,
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Fig. 4. Economic costs of sea level rise interacting with cyclones.

(A) Example 100-year floodplain in Miami, Florida, under median sea

level rise for RCP8.5, assuming no change in tropical cyclone activity.

(B) Same, but accounting for projected changes in tropical cyclone

activity. (C) Same as (A), but for New York, New York. (D) Same as (B), but

for New York, New York. (E) Annual average direct property damages from

tropical cyclones and extratropical cyclones in the five most-affected

states, assuming that installed infrastructure and cyclone activity is

held fixed at current levels. Bars indicate capital losses under current

sea level, median, 95th-percentile and 99th-percentile sea level rise in

RCP8.5 in 2100. (F) Nationally aggregated additional annual damages

above historical versus global mean sea level rise holding storm

frequency fixed. (G) Annual average direct property damages nationally

aggregated in RCP8.5, incorporating mean sea level rise and either

historical or projected tropical cyclone activity. Historical storm

damage is the dashed line.
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there are multiple known sectors of the U.S. eco-

nomy for which no suitable studies exist and

were thus omitted from this analysis [e.g., ef-

fects of morbidity (47), worker productivity (48),

or biodiversity loss (49)]. The SEAGLAS archi-

tecture is constructed around the idea that rigo-

rous future studies will quantify climate impacts

in these “missing sectors” and thus should be in-

cluded in future assessments. Our approach there-

fore allows for updating based onneweconometric

results or climate model projections, and our re-

sults should be interpreted as current best esti-

mates thatwill be dynamically adjusted as research

in the community advances.

We stress that the results presented here are

projections relative to a counterfactual baseline

economic trajectory that is unknown and will

evolve based on numerous factors unrelated to

climate change. As constructed, knowledge of this

baseline trajectory is not essential to estimat-

ing the relative first-order impact imposed by

climate change.

We should expect that populations will adapt

to climate change in numerous ways (14). Some

actions, such as use of air conditioning (25), like-

ly limit the impact of climatic exposure, whereas

other actions, such as social conflict (30), likely

exacerbate impacts. Because the empirical results

that we use describe how populations have

actually responded to climatic conditions in the

past, our damage estimates capture numerous

forms of adaptation to the extent that populations

have previously employed them (50). For exam-

ple, if farmers have been adjusting their planting

conditions based on observable rainfall, the ef-

fect of these adjustments will be captured by our

results. Although, if there are trends in adaptive

behaviors, previously unobserved adaptation “tip-

ping points,” or qualitative gains in adaptation-

related technologies, then our findingsmay require

adjustment. In previous work, we demonstrated

how to employ empirical approaches to project

trends in adaptive behaviors and recomputed im-

pacts in some sectors (41), but sufficient data do

not yet exist to estimate these effects in all the

sectors we cover here. Yet in cases where suffi-

cient data do exist to simulate these adaptations,

the net effect of this correction is small in mag-

nitude relative to the large uncertainty that is

introduced by such adjustments (41), a result of

thehighuncertainty in current estimates for trends

in adaptation (25, 51).

As mentioned above, populations may move

across space in response to altered climate con-

ditions. This response will not alter our local

projections, but it will cause our estimates to over-

or underpredict nationally aggregated impacts,

depending on the spatial covariance between popu-

lation changes and local economic losses caused

by climate change. This adjustment will tend to

be second order relative to the direct effect of cli-

mate change (13); nonetheless, accounting for this

adjustment is an area for future investigation.

Another possible adjustment that may occur

in response to climate damages is for the econo-

my to reallocate nonlabor resources, partially shift-

ing the locations of economic activity, to cope with

these changes. We consider the extent to which

this responsemight alter the direct economic dam-

ages that we characterize above by developing a

computable general equilibrium (CGE) model

that reallocates capital across locations and indus-

tries in response to the capital and productivity

losses described above during each period of a

century-long integration (SM section L). Theo-

retically, it is possible for these reallocations to

reduce damages, as production migrates away

from adverse climates, or for them to increase

damages, as losses in one location alter economic

decisions in other locations and/or later periods

by influencingmarkets through prices. We simu-

late the trajectory of the future economy under

each RCP8.5 climate realization, imposing our

computed direct damages each period. When di-

rect damages are imposed on only one sector at

a time, the total end-of-century economic lossmay

be larger or smaller than the corresponding direct

damages estimate, depending on the sector and

climate realization (Fig. 5D). Market costs of mor-

tality computed with this approach are dramat-

ically lower than nonmarket costs described

above because the foregone earnings in the mar-

ket equilibrium are much smaller than the VSL

used to compute direct damages. Overall, in a

complete simulation where national markets are
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Fig. 5. Estimates of total direct economic damage from climate change. (A) Total direct

damage to U.S. economy, summed across all assessed sectors, as a function of global mean

temperature change. Dot-whisker markers as in Fig. 3. The black line is quadratic regression through

all simulations (damage = 0.283 DGMST + 0.146 DGMST2); the shaded region is bounded by quantile

regressions through the 5th and 95th percentiles. Alternative polynomial forms and statistical

uncertainty are reported in fig. S14 and tables S16 and S17. (B) Contributions to median estimate of

aggregate damage by impact category. (Coastal impacts do not scale with temperature.) (C) Probability

distribution damage in each of 3143 U.S. counties as a fraction of county income, ordered by

current county income. Dots, median; dark whiskers, inner 66% credible interval; light whiskers,

inner 90%. (D) Distributions of GDP loss compared with direct damages when a CGE model is

forced by direct damages each period. Black line, median (labeled); boxes, interquartile range;

dots, outliers. Energy, Ag., Labor, and Mortality indicate comparisons when the model is forced by

damages only in the specified sector and GDP losses are compared with direct damages in that

sector under the same forcing. CGE mortality only affects GDP through lost earnings, but direct

mortality damages in (A) to (C) account for nonmarket VSL. “All” indicates the ratio of total

costs (excluding mortality for consistency) in complete simulations where all sectors in the CGE

model are forced by direct damages simultaneously.
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simultaneously forced by direct damages in all

sectors, net market losses in general equilibrium

tend to be larger than direct damages by ∼50%

(mortality is excluded from both). These simu-

lations are relatively coarse approximations of

the complex national economy and do not cap-

ture international trade effects, but they suggest

that the spatial reallocation of economic activity

within theUnited Statesmay not easilymitigate

the economic damage from climate change.

Our results are “bottom-up” micro-founded

estimates of U.S. damages, although parallel analy-

ses have employed “top-down” macro-level ap-

proaches that estimate how overall productivity

measures (such as GDP) directly respond to tem-

perature or cyclone changes without knowledge

of the underlying mechanisms generating those

losses. This alternative approach can be compared

to our estimates of market losses only, as they will

not account for nonmarket valuations. Our mar-

ket estimates are for a 1.0 to 3.0% loss of annual

national average GDP under RCP8.5 at the end

of the century. Previous top-down county-level

analysis of productivity estimates that national

output would decline 1.2 to 3.1% after 20 years

of exposure to RCP8.5 temperatures at the end of

the century (52). In top-down global analyses of

all countries, the 10.3% intensification of average

U.S. tropical cyclone exposure in emissions scenar-

io A1B (roughly comparable to RCP8.5) (35) is

estimated to reduce GDP ∼0.09% per year (53)

(not accounting for MSL rise), and the cumu-

lative effect of linear national warming by an

additional 1°C over 75 years is estimated to re-

duce GDP ∼2.9% (2080 to 2099 average) (42). In

comparison, we estimate that losses to cyclone

intensification are ∼0.07% of annual GDP per

1°C in global mean temperature change and that

economy-wide direct damages are ∼1.2% of annual

GDP per year per 1°C. Overall, such comparisons

suggest that top-down and bottom-up empirical

estimates are beginning to converge, although im-

portant differences—in accounting procedures

as well as recovered magnitudes and temporal

structure—remain. Future investigation should

reconcile these differences.

Wehave focused on theU.S. economy, although

the bulk of the economic damage from climate

change will be borne outside of the United States

(42), and impacts outside the United States will

have indirect effects on the United States through

trade, migration, and possibly other channels. In

ongoing work, we are expanding SEAGLAS to

cover the global economy and to account for

additional sectors, such as social conflict (30), in

order to construct a global damage function that

is essential to estimating the global social cost

of carbon and designing rational global climate

policies (7, 9).
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