
1  

Please note that this is an author-produced PDF of an article accepted for publication following peer review. The definitive 
publisher-authenticated version is available on the publisher Web site.  

 
Fish and Fisheries 
January 2019, Volume 20, Issue 1, Pages 189-198  
https://doi.org/10.1111/faf.12338 
https://archimer.ifremer.fr/doc/00470/58162/ 

Archimer 
https://archimer.ifremer.fr 

Estimating effective population size of large marine 
populations, is it feasible? 

Marandel Florianne 
1, *

, Lorance Pascal 
1
, Berthelé Olivier 

1
, Trenkel Verena 

1
, Waples Robin S. 

2
,  

Lamy Jean-Baptiste 
3
 

 
1
 Ifremer; Ecologie et Modèles pour l'Halieutique; Nantes ,France  

2
 Northwest Fisheries Science Center; National Marine Fisheries Service; NOAA; Seattle Washington, 

USA  
3
 Ifremer; Génétique et Pathologie des Mollusques Marin; La Tremblade ,France 

* Corresponding author : Florianne Marandel, email address : florianne.marandel@ifremer.fr  
 

Abstract :   
 
stainable exploitation of marine populations is a challenging task relying on information about their 

current and past abundance. Fisheries‐related data can be scarce and unreliable making them 
unsuitable for quantitative modelling. One fishery independent method that has attracted attention in this 
context consists in estimating the effective population size (Ne), a concept founded in population 
genetics. We reviewed recent empirical studies on Ne and carried out a simulation study to evaluate the 
feasibility of estimating Ne in large fish populations with the currently available methods. The detailed 
review of 26 studies found that published empirical Ne values were very similar despite differences in 

species and total population sizes (N). Genetic simulations for an age‐structured fish population were 
carried out for a range of population and samples sizes, and Ne was estimated using the Linkage 
Disequilibrium method. The results showed that already for medium‐sized populations (1 million 
individuals) and common sample sizes (50 individuals), negative estimates were likely to occur which 
for real applications is commonly interpreted as indicating very large (infinite) Ne. Moreover, on 
average, Ne estimates were negatively biased. The simulations further indicated that around 1% of the 
total number of individuals might have to be sampled to ensure sufficiently precise estimates of Ne. For 
large marine populations, this implies rather large samples (several thousands to millions of individuals). 
If however such large samples were to be collected, many more population parameters than only Ne 
could be estimated. 
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1 NE ESTIMATION FOR LARGE MARINE POPULATIONS 
 

Fishery science is driven by the need to produce scientific advice for the management and 

conservation of marine resources and ecosystems (Dankel and Edwards 2016). This motivates the 

collection of information on population status and biology. Increasingly, attention is paid to the 

genetic state of marine populations (Ovenden et al. 2015) with numerous studies being published on 

genetic diversity (Bryan-Brown et al. 2017), genetic population connectivity (Bryan-Brown et al. 

2017), and genetic population size (Luikart et al. 2010). For example, data from the Web of Science 

(WoS) show that between 2000 and 2017, the annual number of publications estimating effective 

population size (Ne) of marine species increased six fold (Fig. S1 in supporting information, Web of 

Sciences). Theoretically from a genetic point of view, Ne is defined as the size of an ideal population 

that is experiencing the same rate of change in allele frequencies or heterozygosity as the observed 

population (Luikart et al. 2010). Ideal populations are made of diploid organisms with sexual 

reproduction, non overlapping generations, random mating, no migration, no mutation, but also no 

natural selection (Wright 1931). Effective population size is considered a pertinent parameter for 

management as it relates to rates of genetic drift and loss in genetic variation (Hare et al. 2011). 

Moreover, Ne is a useful concept for evaluating the genetic future of marine populations (harvested or 

not) as reductions in Ne are positively correlated with reductions in population viability (Soulé 1987). 

The use of Ne in scientific studies has increased (Wang 2005, Leberg 2005, Luikart et al. 2010, 

Supplementary figure 1) which can be linked to the increased availability of molecular markers but 

also the continual improvement of estimation methods (Luikart et al. 2010; Wang 2016; Waples et al. 

2016). In the past, Ne was considered difficult to estimate but this situation has changed (Schwartz et 

al. 1998; Leberg 2005). As a consequence, Ne is nowadays commonly estimated for varied marine 

taxa: mammals (DeWoody et al. 2017), crustaceans (Watson et al. 2016), corals (Holland et al. 2017) 

and fishes (Laconcha et al. 2015; Zhivotovsky et al. 2016; Pita et al. 2017). Among commercial fish 

species, both target (Poulsen et al. 2005; Montes et al. 2016) and bycatch species  (Chevolot et al. 

2008) have been studied, representing a wide range of life history strategies, habitats, population 
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structures but also census population sizes (i.e. total number of individuals in the population including 

immatures, denoted N), from hundreds to billions of individuals. 

Many marine fish populations are very large compared to vertebrates but also present a large variety 

of reproductive strategies. In ideal populations as defined above all individuals have the same 

reproductive success making Ne equal to N. Natural populations do not have all properties of ideal 

populations, leading to variance in the reproductive success of individuals implying that some 

individuals can contribute genetically more to the next generation than others. Thus, in most natural 

populations Ne is smaller than N.   

Genetic simulations for ideal populations indicated that Ne might not be reliably estimated for 

medium sized populations (Ne>10
6
), independent of sample size (Waples 2016). In this seminal study 

Waples (2016) investigated two hypotheses which could lead to too small Ne estimates for large 

populations: unequal reproductive success (sweepstakes hypothesis, Hedgecock 1994) or biased 

estimation. He concluded that for the biological explanation to hold, few individuals would need to be 

responsible for most of the successful reproduction, i.e. the variance in reproductive success of same-

age, same-sex individuals has to be orders of magnitude higher than the mean. Without ruling-out the 

sweepstake hypothesis, Waples (2016) suggests that biased estimation seemed to be a likely cause for 

creating small Ne estimates for large populations. 

To evaluate the success in estimating Ne for natural marine populations, we analyzed 26 studies 

containing 55 empirical estimates of Ne for fish or crustaceans (tables S1 and S2 in supporting 

information). These studies correspond to all relevant studies published in 2016 or 2017 and the most 

cited studies for 2000 to 2015. Studies were separated into two categories according to the main goal 

of the study: estimating Ne (20 estimates in 14 studies) or other genetic questions (34 estimates in 12 

studies). For studies estimating Ne as a side goal, sample sizes were smaller compared to studies 

estimating Ne as the main goal (313 mean & 19 - 1833 95% range for side goal; 3481 and 50-4063 

95% range for main goal; Fig 1a & c).  Few studies in either category used sample sizes larger than 

500 individuals (25% side goal; 43% main goal; Fig 1. a & c). Only studies estimating Ne as a side 

goal reported negative or infinite Ne estimates (Fig 1.c & d). These negative or infinite Ne estimates 

corresponded to low sample sizes (<50 individuals) or very large N (>1 billion individuals). In the 



3 

 

reviewed studies N ranged from thousands of individuals (Zebra shark, southern Queensland Australia, 

Dudgeon and Ovenden 2015) to several billions (European anchovy in the Bay of Biscay, Montes et 

al. 2016) (Fig. 1b). No significant linear relationship was found between Ne and either N or sample 

size S. This was tested using a linear model with only main effects and data from the 11 studies for 

which N was available. The absence of relationship between Ne estimates and N seems to corroborate 

the simulation results obtained by Waples (2016), in particular the conclusion that Ne estimates for 

large populations can be biased to the point of becoming meaningless.  

Several factors impact Ne estimates, while increasing sample size generally improves their accuracy 

and precision (Waples and Do 2010). However, for marine populations, obtaining a large number of 

samples (tissue, scales...) can be difficult and genotyping costs can also limit sample sizes. As a 

consequence most sample sizes were under 1 000 individuals in the reviewed studies (Fig. 1a & c). 

This led to sample sizes corresponding to less than 1% of the census population (for example, 8E-

06%, for North Sea cod Poulsen et al. 2005; 2E-07% for plaice Hoarau et al. 2005, 2E-04% for 

European sardine Laurent and Planes 2007). Macbeth et al. (2013) showed by simulation that for the 

narrow-barred Spanish mackerel a sample size of 5000 individuals was necessary to estimate Ne of a 

population with census size N=10 000 using the Linkage Disequilibrium method (see below for details 

regarding this method). This result emphasizes the need for appropriate sampling designs for 

estimating Ne. Currently there are few recommendations available for appropriate sampling designs for 

estimating Ne as this is expected to be species dependent. For elasmobranchs, Dudgeon et al. 2012 

advised that 50 individuals were sufficient for Ne <200 individuals while in this paper we show by 

simulation that, for a thornback ray (Raja clavata) like elasmobranch species assuming Ne <100 

(N=1000 individuals), 300 sampled individuals would be needed for precise (though biased) 

estimation (see below). Other than the sampling design, the type (microsatellites or SNPs) and the 

number of markers can have a large effect on Ne estimates (Waples and Do 2010, F. Marandel 

unpublished results).  

Numerous methods and estimators are available for estimating contemporary Ne. However, two 

approaches dominate the field: temporal estimation which requires temporally spaced samples from a 

population and single-point estimation which requires a sample from only a single point in time. 
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Among the two approaches, the most popular method is the single-point Linkage Disequilibrium 

Method (LDM, Hill 1981, Waples et al. 2014). It was used for 22 estimates among the 55 estimates 

provided in the reviewed studies, while the Temporal Method  (TM, Jorde and Ryman 1995) based on 

temporal changes in allele frequencies was used for 12 estimates and the Pseudo Likelihood Method 

(PLM, Wang 2001) also based on temporal changes in allele frequencies for seven estimates. Only 14 

estimates used other methods. LDM, TM and PLM have been widely reviewed for various species 

(Schwartz et al. 1998; Wang 2005; Waples et al. 2014) with emphasis on the need for considering the 

life history of the studied species to obtain reliable Ne estimates or even to be able to interpret correctly 

Ne estimates. An example is the bias induced in Ne estimates by overlapping generations (which occurs 

in a natural population in contrast to an ideal population), i.e. where more than one breeding 

generation is present at any one time. There are several ways to minimize this bias in TM, notably 

using a long time lag between temporal samples (for example a generation length) or using a bias 

correction. Indeed, two decades ago, a correction factor for estimating Ne for species with overlapping 

generations was developed by Jorde and Ryman (1995) for TM. The calculation of this correction 

factor requires knowledge of life history traits, which might explain why it is not always used.  

To further explore the (non-)feasibility of estimating effective population size for large populations 

using commonly used sample sizes, we present results from a simulation study in the next section. In 

contrast to Waples (2016) we simulated overlapping generations based on life history traits of 

thornback ray (Raja clavata), an elasmobranch widely distributed in European waters. Elasmobranchs 

are generally more vulnerable to fishing than teleosts and have smaller population size. Census 

population size of this species in the Northeast Atlantic might be millions of individuals (Marandel et 

al. 2016). Thus elasmobranchs are of interest for Ne estimation both in terms of conservation and 

technical applicability of the method. For Ne estimation we chose the Linkage Disequilibrium method 

as it is still the most widely-used method. 
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2 GENETIC SIMULATION OF A LARGE POPULATION 
 

2.1 Method 

Genetic simulations were set up mimicking thornback ray life history traits, i.e. a low fecundity with 

medium to high survival (Supplementary table S3). Populations of N individuals were simulated for 

151 years but only the last year was used for estimating Ne. Life history traits were used in two ways 

as in Waples et al. (2014): (1) to calculate the expected (demographic) effective population size 𝐸[𝑁𝑒] 

(AgeNe software,Waples et al. 2011), (2) to carry out simulations to obtain age-structured genetic data 

(simuPOP module, Peng and Kimmel 2005) to which the LDM estimator of Ne was applied (Fig. S2). 

The expected (demographic) effective population size per generation 𝐸[𝑁𝑒] was calculated using the 

AgeNe software based on life history traits (Felsenstein-Hill method, Waples et al. 2011). The method 

assumes a stable population (thus stable age structure) and constant survival and fecundities at age 

(Waples et al 2014, eq. 1): 

𝐸[𝑁𝑒] =
4 𝑁1𝐺

𝑉𝑘.+2
                                                  (1) 

where N1 is the number of age 1 individuals in the population and G is the generation length (= mean 

age of parents of newborns). Both depend on survival and fecundity rates, in addition N1 depends on 

population size N. 𝑉𝑘. is the inter-individual variance of lifetime reproductive success; the mean life 

time reproductive success for a stable population is 2, hence the 2 in the denominator of equation 1.  

All modeled populations in simuPOP were simulated with a 1:1 sex ratio and random assignment of 

age at initialization (year 0). Newborn individuals were generated by drawing one male and one 

female from the pool of potential parents. All potential parents of the same sex and age had an equal 

probability to become a parent. Two hundred biallelic genetic markers corresponding to SNPs (Single 

Nucleotide Markers) were simulated with an initial allele frequency of 0.5. Preliminary simulations 

were conducted with 1 600 biallelic genetic markers showing that a plateau in terms of precision and 

accuracy of Ne estimates was reached at around 200 markers.  

Four populations sizes were simulated, N ∈ (1 000, 10 000, 100 000, 1 000 000) individuals, to 

evaluate the performance of the LDM for different census sizes. Note that the largest simulated 

population size was smaller than many real fish populations due to computational constraints. As 
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simulated populations contained immatures and overlapping generations with mature individuals 

reproducing several times, E[Ne] of each population was smaller than the simulated population size N 

(E[Ne]=0.087 N, Table 1). For each population size, 30 replicates were carried out to capture the 

stochasticity inherent in genetic simulations. For each population replicate nine sample sizes S ∈ (50, 

100, 200, 300, 500, 1000, 1500, 5000, 10 000), were investigated (Table 1); the larger sample sizes 

could only be explored for the largest population sizes. Sampled individuals were randomly drawn 

from newborns in the last year. For each population replicate and sample size, sampling was repeated 

50 times, i.e. for each population and sample size there were 1500 simulated data sets. All 200 

simulated loci were generally used for estimation, unless the minor allele frequency was <0.05 in 

which case it was removed as suggest by Waples and Do (2010) to minimize sampling bias. 

The Linkage Disequilibrium (LD) is the non-random association of alleles at different gene loci, e.g. 

allele A at SNP locus 1 with allele b at SNP locus 2. When loci are inherited independently, the 

frequency of the Ab loci association is just the product of the two allele frequencies PA and Pb in the 

population. In natural populations, overlapping generations, gene flow and linked loci will influence 

LD in addition to finite population size. 

For applying the LDM, the LD is measured by the co-variance (D) and the squared correlation (r
2
) 

between loci. The squared correlation r
2
 is defined as: 

𝑟2 =
𝐷2

𝑃𝐴𝑃𝑎𝑃𝐵𝑃𝑏
                                                                                                                                     (2) 

where A and a are the major et minor alleles (in frequency) at SNP locus 1 and B and b are the major 

et minor alleles at SNP locus 2, 𝐷 = 𝑃𝐴𝐵 − 𝑃𝐴𝑃𝐵 and PA, Pa, PB and Pb are the frequencies of alleles A, 

a, B and b respectively. PAB is the haplotype (joint) frequency of the gamete/chromosome carrying the 

allele A at locus 1 and the allele B at the locus 2. Thus the calculation of LD is based on allele and 

haplotype frequencies. However in most fishery studies, haplotype frequencies are not available as the 

data does not contain information on which one of the pair of chromosomes holds which allele making 

the exact calculation of r
2
 impossible. To circumvent this obstacle, a proxy is used, called the 

composite measure of linkage disequilibrium. The full explanation of this proxy is out of scope of this 

article and it reviewed in Hamilton and Cole (2004).  
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For estimating Ne based on the proxy estimate �̂�2 adjusted for sample size S related sampling error 

according to Weir (1979), the following relationship was used (Waples 2006): 

�̂�𝑒 =
1

3⁄ +√1
9⁄ −2.76�̂�²′

2�̂�²′          with          �̂�²′ = �̂�² − 1
𝑆⁄ − 3.19

𝑆²
⁄                                                       (3) 

Equation (3) shows that if 1/S is larger than �̂�2 a negative estimate of �̂�𝑒 is obtained. Thus negative 

estimates occur when sampling error is larger than the genetic signal (correlation between loci, eq 1), 

without invoking any genetic effect. The usual practitioner interpretation made is that negative Ne 

estimates indicate a very large effective population size, hence negative estimates are replaced by 

infinity (Laurie-Ahlberg and Weir 1979; Nei and Tajima 1981). In reality, negative estimates can also 

simply be caused by an insufficient sample size. 

The estimator in eq 3 is implemented in NeEstimator V2 (Do et al. 2014) which was used for the 

simulated data sets. As this software does not account for overlapping generations Ne estimates will be 

biased to an unknown degree depending on the simulated life history (Waples et al. 2014). 

Quantifying accuracy (or bias) and precision of estimates of effective population size is complicated 

because �̂�𝑒 has a skewed distribution and can be arbitrarily large (or even negative as discussed 

above).  Accordingly, we followed Wang (2001, 2009), who focused on bias and precision of the 

inverse 1/Ne, which is proportional to the rate of genetic drift and is the signal for effective size that is 

detected by all genetic estimation methods. The estimates of 1/Ne were then compared to the inverse of 

the expected value 𝐸[𝑁𝑒] (eq 1). Thus we analyzed the distribution of 
1/�̂�𝑒

1/𝐸[𝑁𝑒]
=

𝐸[𝑁𝑒]

�̂�𝑒
 . Note that the 

effect for �̂�𝑒 is then the inverse of that for 1/�̂�𝑒, e.g. underestimation instead of overestimation. 

Relative bias and coefficient of variation (CV) of 1/Ne estimates were calculated as: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑏𝑖𝑎𝑠 =
𝜇−1/𝐸[𝑁𝑒]

1/𝐸[𝑁𝑒]
      𝐶𝑉 =

𝜎

𝜇
,                                                                                              (4) 

where μ was the mean and σ the standard deviation of the 1500 1/ �̂�𝑒  estimates.  

 

2.2 Distribution of Ne estimates  

For all simulated population sizes the interquartile range of relative estimates (𝐸[𝑁𝑒]/�̂�𝑒) decreased 

with sample size and for a given sample size was largest for the larger population sizes (Fig. 2, note 
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different scales for y-axis). Estimates were generally positively biased though negative values 

occurred for the larger population sizes when sample size was small.  

No negative Ne estimates for population size N=1000 were found, whatever the sample size S≥50 

(Fig. 3). For N=10 000, only the smallest sample size (S=50) led to negative �̂�𝑒 estimates (3.5%). For 

N=100 000 and N=1 000 000, negative �̂�𝑒  estimates were absent when respectively at least 1000 or 10 

000 individuals were sampled, which represents 1% of N. For sample sizes <100 individuals (the most 

common sample size found in the literature review above), the percentage of negative �̂�𝑒 reached a 

maximum of 53% for S=50 for N=1 000 000. Comparing results for N=10 000 with N=100 000, for 

sample size S=50, the number of negative Ne estimates increased by 1618%. The same comparison 

between N=100 000 and N=1 000 000 showed an increase of 120% of negative estimates. Thus with 

usual samples sizes (Fig. 1), a population of 1 000 000 individuals could easily be evaluated having an 

infinite Ne due to the high probability of obtaining a negative Ne estimate (>50%). Indeed, 

Zhivotovsky et al. (2016) attempted to estimate Ne for cod in the Barents Sea using a small sample (S= 

43) and few microsatellites (13). As expected they found that all estimation methods gave negative Ne 

estimates. 

 

2.3 Bias and precision of Ne estimates 

In terms of relative bias, all simulated population sizes converged to a mean relative positive bias of 

around +50% (Fig. 4a). For all N, precision increased (CV decreased) with increasing sample size 

(Fig. 4b). As expected, the worst precision was obtained for N=1 000 000 and S=50 for which 1/�̂�𝑒 

was overestimated as much as 88 times for certain replicates and samples. Globally for all simulated 

population sizes, given a sufficient sample size, the CV for 1/�̂�𝑒 was smaller than 0.2. Thus the 

sample sizes needed for stabilizing mean relative bias estimates and achieving a CV of less than 0.2 

were around 1% of N for N ∈ (10 000, 100 000 and 1 000 000). For N=1 000 it was S=50 as we did not 

test smaller sample sizes. 
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2.4 Discussion  

Most marine fishes have overlapping generations and may have large population sizes (millions to 

billions of individuals), whereas genetic effective population size estimators generally assume 

discrete generations but also implicitly small population sizes. Using a simulation approach, we 

examined the feasibility of estimating the effective population size of a realistic fish species taking 

thornback ray as an example and using the popular LD method. For a given sample size, the results 

showed a large increase in the percentage of negative estimates with census population size. For 

example, in simulations for a population size of one million individuals, 200 SNPs and sample size 50 

individuals, 53% of Ne estimates were negative. This means that a study attempting to estimate Ne for 

a real thornback ray population of one million individuals would have a 50% chance of producing a 

negative estimate, which could lead to the wrong conclusion that the effective population size was 

very large, i.e. infinite. Thornback ray populations in the Northeast Atlantic are thought to range from 

half a million to more than three millions individuals (F. Marandel unpublished results). Thus the 

percentage of negative estimates of Ne for a real thornback ray population can be expected to be even 

higher than what we found here if a sample of only 50 individuals is used. Waples (2016) simulated 

an ideal population of one million individuals and estimated Ne with 5000 sampled individuals and 

100 SNPs. In this case, the percentage of negative estimates reached also 50%. Again this result for 

an ideal population corroborates that estimating Ne for large real fish populations can be challenging 

already because of sampling difficulties. Moreover, in Waples (2016), even when Ne was estimated to 

be positive, the values were underestimated by as much as 99%. Thus, for real applications even when 

positive finite estimates of Ne are found, these estimates can still be hugely biased and imprecise (Fig 

4). Note that the simulations assumed perfect genotyping, any genotyping errors will further decrease 

precision. 

The probability of obtaining negative Ne estimates value can be reduced by increasing sample size. 

Our simulation study suggests that a sample size of around 1% of the census population size N might 

be sufficient to obtain precise (but biased) estimates using LDM, which at the same time avoids 

negative estimates. However, in the case of ray populations this means that appropriate samples sizes 
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can reach several thousands of individuals. Much larger sample sizes might be necessary for teleost 

fish populations which obviously limits the economic and logistic feasibility of genetic effective 

population size studies.  

A single sample method such as the LD method can easily be applied opportunistically in studies 

where Ne estimation is a side goal (for example, in population genetics studies), and thus, rely on 

small sample sizes that are not fit for this purpose. For example, Watson et al. (2016) studied the 

population genetic structure of the European lobster in the Irish Sea jointly with the estimation of Ne 

for nine sampling locations. For six locations using the LD method, Ne was estimated to be negative 

(with confidence intervals including infinity) and thus interpreted to be infinite. The sample sizes used 

in this study varied between 29 and 48 individuals which suggests that the negative Ne estimates were 

a consequence of the small sample sizes used rather than infinite effective population size.  

In this study simulations were carried out for a thornback ray like species. While 1/�̂�𝑒 estimates 

were rather variable we found that for an appropriate sample size, the mean relative bias was around 

+50%. As overestimation of 1/�̂�𝑒 means that �̂�𝑒 is underestimated, a 50% overestimation of 1/�̂�𝑒 

corresponds to an underestimation of �̂�𝑒 of around 31%.  The existence of underestimation is a well-

known property of the LD method for species with overlapping generations (Waples et al. 2014). The 

reported amount of underestimation for random samples of adults lies between 50% (mosquito) and 

10% (cod) (Waples et al. 2014) with the 30% found for a ray like species for random samples of 

newborns lying in between. Assuming the simulations were sufficiently realistic for thornback ray, 

the correction of Ne estimates obtained with the LDM for a thornback ray like population might be 

attempted, but only if a sufficiently large sample size was used.  

We now briefly discuss the assumptions made in the simulation study and their possible impacts on 

the results. Populations were simulated for 151 years and newborns were sampled in the final year 

only to estimate Ne with the LDM. The 150 first years can be considered a long burn-in to ensure 

reaching the equilibrium for population dynamics but also for the allele frequencies of the genetic 

markers. We used 200 SNPs with an allele frequency of 0.5 at the start. Using more SNPs might  

increase precision (Waples and Do 2010), though initial trials showed that the gain should be small, 

while using a different allele frequency, i.e. <0.5 minor allele frequency, would lead to more SNPs 
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being excluded due to thresholding (SNPs with minor allele frequency <0.05 in the last year were 

excluded). No physical link between SNPs was assumed; technically this was achieved by coding 

each SNP on a different chromosome. This is an ideal situation which is not likely to happen when 

using empirical genetic markers. Physical linkage is expected to increase the downward bias of 𝑁�̂� 

estimates (Waples et al. 2016). Further, we only used samples from newborns but results were similar 

using samples stratified by age for all ages or only mature ones (F. Marandel results not shown). We 

only studied the effect of sample size and its interaction with census population size and ignored other 

sources of errors such as genotyping errors, particular genomic or ecological features such as 

polyploidization, which will also impact real life estimates and probably imply that even larger 

samples are needed to stabilize bias and precision. Lastly, only the LDM was used for estimating Ne. 

Numerous other genetic estimators are available (see Wang 2016 for a complete review) but all are 

expected to perform poorly for small sample sizes (and several need corrections for overlapping 

generations). 

 

3 CONCLUDING REMARKS 
 

Numerous methods for estimating effective population size are available but they all suffer from 

different sources of bias and uncertainty. They also all demand high sampling effort, sometimes 

explicitly (e.g. the temporal method requires several samples separated in times) and sometimes 

implicitly (e.g. the Linkage Disequilibrium method requires a large number of individuals to be 

sampled). The amount of bias in genetic estimates of effective population size depends on the life 

history traits of the studied species (Waples et al. 2014). Thus, particular attention should be paid to 

the interpretation of positive finite 𝑁�̂� estimates as large underestimation or overestimation can occur. 

Moreover, due to large population sizes in the marine environment, negative Ne estimates are 

commonly found and should be interpreted with care as they might indicate insufficient sample sizes 

rather than infinite true Ne. In our simulations, for N=1 000 000 and S=50, half of all replicates led to 

negative Ne estimates suggesting sample size was insufficient. However, if by chance a positive finite 
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Ne is estimated, it cannot be interpreted as a proof that the sample size is sufficient as half of the 

estimates were indeed positive for this sample size. 

While theoretically it might be possible to correct Ne estimates, in practice at least two conditions 

need to be met. First, simulations reproducing the species life history sufficiently well will need to be 

carried out to estimate a species-specific bias correction factor. For a thornback ray like species we 

found NeEstimator underestimated Ne by 31%, while Waples et al. (2014) found a 10% bias for cod. 

Second, a sufficiently large number of individuals needs to be sampled, probably around 1% or more 

of census population size. While the first condition is time consuming, it remains feasible. However, 

given the large population sizes of many marine fishes, sampling 1% will require samples sizes which 

are often neither practical nor financially feasible. Thus, while the effective population size concept is 

suitable for evaluating the genetic status of marine populations, popular tools and sampling designs 

often miss the target (small sample size, too large population). If however precise bias-corrected 

estimates of effective population size can be obtained, declines in Ne track declines in N and thus, can 

be informative for management (Ovenden et al. 2016).  

In conclusion, for large marine populations either appropriate sample sizes are used or Ne should not 

be estimated and reported. This study found that for a thornback ray like species sample size should be 

around 1% of absolute population size for the Linkage Disequilibrium method. If however such large 

samples are collected, other population quantities can be estimated using the same data. Absolute 

abundance and demographic parameters (fecundity, mortality) can be estimated with the close-kin 

mark-recapture (CKMR) method (Bravington et al. 2016a, 2016b). This method is based on the 

identification of pairs of close relatives (parents-offspring or half sibling pairs). Pairs of related 

individuals sampled at different locations can also on inform on migration (Feutry et al. 2017) and be 

used for estimating Ne (Waples et al. 2018). However, as these approaches have not been much used, 

further studies are needed to evaluate their merits and limits. 
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8 Tables 
 

Table 1: Simulation design. N is the simulated population size used in simuPOP; E[Ne] is the 

expected Ne estimated with AgeNe. 

Simulated N E[Ne] Tested sample sizes (S) 

1000 87 50, 100, 200, 300 

10 000 870 50, 100, 200, 300, 500, 1000 

100 000 8700 50, 100, 200, 300, 500, 1000, 1500 

1 000 000 87 000 50, 100, 200, 300, 500, 1000, 1500, 5000, 10 000 
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9 Figures 
 

Figure 1: Meta-analysis of literature reported estimates of effective population size (�̂�𝑒) in relation 

to sample size for a) studies with Ne estimation as main goal and c) studies with other goals, and in 

relation to census population size for b) studies with Ne estimation as main goal and d) studies with 

other goals.  Infinite Ne estimates (∞) in the original publications were plotted at 30 000 while 

reported negative estimates were plotted in grey at 30 000. Sources for census population size 

estimates are provided in table S2. Points in common between panels a), b) and panels c),d) are filled 

in. 
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Figure 2:  Ratio of inverse effective population size 1/𝑁�̂� estimated with the Linkage Disequilibrium 

method for simulated genetic samples using NeEstimator (Do et al. 2014) and expected effective 

population size 1/𝐸[𝑁𝑒] for chosen simulation parameters calculated by AgeNe (Waples et al. 2011). 

Sample sizes go from 50 to 10 000 individuals (newborns). Panels: simulated population size. Box: 75 

and 25 percentiles, vertical line: 95 and 5 percentiles; horizontal bar: mean estimates. Dashed line: 

1/𝑁�̂�=1/𝐸[𝑁𝑒] 

 

 

Figure 3: Percentage of negative effective population size estimates (�̂�𝑒) for a simulated thornback 

ray like population estimated with the Linkage Disequilibrium method (NeEstimator, Do et al. 2014). 

Shapes: simulated population size.   
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Figure 4:  a) Relative bias and b) CV of inverse effective population size estimates (1/𝑁�̂�) calculated 

by Linkage Disequilibrium method for simulated genetic samples using NeEstimator (Do et al. 2014). 

Relative bias is with respect to expected effective population size 1/𝐸[𝑁𝑒] for chosen simulation 

parameters calculated by AgeNe (Waples et al. 2011). Sample sizes go from 50 to 10 000 individuals 

(newborns). Shapes: simulated population size. 

 

 

 


