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Estimating Effects and Making Predictions
from Genome-Wide Marker Data
Michael E. Goddard, Naomi R. Wray, Klara Verbyla and Peter M. Visscher

Abstract. In genome-wide association studies (GWAS), hundreds of thou-
sands of genetic markers (SNPs) are tested for association with a trait or phe-
notype. Reported effects tend to be larger in magnitude than the true effects
of these markers, the so-called “winner’s curse.” We argue that the classical
definition of unbiasedness is not useful in this context and propose to use
a different definition of unbiasedness that is a property of the estimator we
advocate. We suggest an integrated approach to the estimation of the SNP
effects and to the prediction of trait values, treating SNP effects as random
instead of fixed effects. Statistical methods traditionally used in the predic-
tion of trait values in the genetics of livestock, which predates the availability
of SNP data, can be applied to analysis of GWAS, giving better estimates of
the SNP effects and predictions of phenotypic and genetic values in individ-
uals.

Key words and phrases: Genome-wide association study, prediction, esti-
mation.

1. INTRODUCTION

The rules for the genetic inheritance of traits, dis-
covered by Mendel, are most obvious for traits con-
trolled by a single gene, for example, individuals who
carry two defective variants in the gene CFTR develop
cystic fibrosis. However, most of the traits that are of
importance in medicine, agriculture and evolution are
influenced by many genes and by nongenetic or “envi-
ronmental” factors. For example, height in humans in-
volves many physiological processes and many genes
but is also influenced by nongenetic factors such as nu-
trition and health care. These traits are called quanti-
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tative or complex traits and include common genetic
diseases such as heart disease, breast cancer, diabetes
and psychiatric disorders.

Until recently few of the genes which harbor vari-
ants for complex genetic traits had been identified. The
availability of genome-wide panels of densely spaced,
genetic markers has led to a revolution in the study of
the genetics of complex traits. These genetic markers
are single nucleotide polymorphisms (SNPs) which are
positions in the DNA sequence where the nucleotides
can vary (e.g., G or T). Individuals carry pairs of ho-
mologous chromosomes and so have one of three geno-
types at a G/T SNP—GG, GT or TT. Assays are now
available that determine the genotype of an individual
at 100,000 to over 1 million SNPs spread over all of
the chromosomes of the species.

SNPs usually have no direct effect on a trait un-
der study. However, any polymorphism that does af-
fect the trait will be located on a chromosome close to
one or more of the genotyped SNPs because the geno-
typed SNPs are chosen to cover all chromosomes in,
at least, moderate density. Polymorphisms that are lo-
cated close to each other on a chromosome can occur
together more often than expected by chance, so that
they are correlated or in linkage disequilibrium (LD).
Thus, for every polymorphism that affects a trait, there
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is likely to be a SNP nearby that is in LD with the
causal polymorphism and hence correlated or associ-
ated with the trait. Since the SNPs cover the whole
genome, experiments that test for association between
a trait and a panel of SNPs that cover the whole genome
are called genome wide association studies (GWAS).
GWAS have discovered numerous SNPs that are as-
sociated with, for example, complex diseases such as
Crohn’s disease and type II diabetes [35, 56]. Typi-
cally there are multiple SNPs associated with a com-
plex trait, each one with a small effect, or a small in-
crease in the risk of a particular disease.

One purpose of a GWAS might be to find the genes
and polymorphisms that affect the trait. Hopefully this
will elucidate the biology of the trait and, in human
medicine, may lead to new therapeutics. In this case
we would like to have unbiased and accurate estimates
of the effects of SNPs on the trait on which to base fur-
ther experimentation. Another use of the GWAS is to
use the SNPs to predict the phenotypic or genetic value
of individuals. For example, in agriculture it would be
very useful to predict the genetic merit of bulls for
milk production using DNA markers such as SNPs, be-
cause it is not possible to observe the phenotype (milk
yield) in bulls and, even if it were possible, it is the
genetic value of the bull that will be passed on to his
descendants. Also, if we could predict the risk of a spe-
cific disease in individuals based on DNA markers this
would be useful in diagnosis, treatment, prognosis and
prevention. The DNA markers cannot predict the en-
vironmental effect on a complex trait, only the genetic
value for that trait. Hence, the genetic value and pheno-
typic value predicted from DNA markers are the same.
The question to be considered is as follows: how can
this prediction be made as accurately as possible?

Statistical analysis of GWAS may test hypotheses
(e.g., there are no SNPs associated with this trait) or es-
timate the effect of a SNP on the trait (e.g., how much
does this SNP affect the probability that a person will
develop diabetes). In such estimation problems the ten-
dency has been to treat the effect of a SNP as a fixed
effect and use estimators that are classically unbiased,
at least approximately, such as the maximum likeli-
hood estimate of the relative risk of disease. However,
in GWAS hundreds of thousands of SNPs are tested,
but frequently the estimated effects are reported only
for the significant markers, for example, [56]. Under
these conditions, it has been known for some time that
the reported effects tend to be larger in magnitude than
the true effects of these markers. This effect is known
as the “Beavis effect” in agricultural genetics [4, 5] as

cited in [53], and has been described as a form of the
“winner’s curse” [55]. Methods to correct for this bias
have been published [1, 5, 7, 14, 18, 30, 38, 41, 45, 50,
55]. We argue that the classical definition of unbiased-
ness is not useful in this context and propose to use a
different definition of unbiasedness that is a property of
the estimator we advocate in this paper. This definition
of unbiasedness has a strong theoretical underpinning
[24, 25] and has traditionally been used and applied in
agricultural genetics [24, 25, 33, 37, 40].

Another motivation for the statistical analysis of
GWAS might be to use the SNP genotypes to predict
the value of a trait that has not yet been observed, for
example, to predict the future risk of a disease for an in-
dividual person. This has parallels to predicting a per-
son’s risk of disease based on their family history of
that disease. Generally, when such prediction is carried
out, the variable being predicted is regarded as a ran-
dom variable. Then the prediction might use the mul-
tiple regression of the trait or phenotypic value on the
SNP genotypes. If the biased estimates of the SNP ef-
fects described in the previous paragraph are used in
this regression equation, then the predictions will ex-
aggerate the variation in risk between individuals.

In this paper we suggest an integrated approach to
the estimation of the SNP effects and to the prediction
of trait values that overcomes the bias in both. It relies
on treating the SNP effects as random, instead of fixed,
effects. There is a well-established statistical tradition
of prediction of trait values in the genetics of livestock
and we introduce this methodology in the first section
of the paper. This methodology predates the availabil-
ity of SNP data and uses the equivalent of family his-
tory, that is, phenotypic values on relatives of the indi-
vidual whose phenotype we wish to predict. Then we
show how this approach can be applied to analysis of
GWAS giving better estimates of the SNP effects and
predictions of phenotypic and genetic values in indi-
viduals. In fact, there is equivalence between models
of genetic value based on SNPs and one based on re-
lationships between individuals, and this equivalence
is explained. We then give results from the analysis of
GWAS. Finally we discuss how this approach will cope
with future developments such as whole genome rese-
quencing.

2. PREDICTION

2.1 Prediction of Phenotypic Values from Pedigree
Data

To illustrate our approach, we will describe a specific
example and then generalize. Imagine that we have
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data consisting of the milk yields of cows that belong to
a number of half-sib families (all cows within a half sib
family have the same sire) and we wish to predict the
milk yields of future cows within any of these half-sib
families. The milk yields of cows within a family are
correlated and we can use this to predict the yield of a
future cow from the same family (yfuture). In general,
the predictor of a random variable that has the low-
est mean square error of prediction is the conditional
mean given the data available for prediction [24, 25,
37, 43]. This predictor is called the best predictor [24,
40]. In the case of predicting the milk yield of a future
cow conditional on the milk yields observed on exist-
ing cows in the same family (yexisting), the best predic-
tor (ŷ) is the expected value of the milk yield of a future
cow. That is,

ŷ = E(yfuture|yexisting).

If the y follows a multivariate normal distribution, then
E(yfuture|yexisting) is the linear regression of yfuture on
yexisting. If

V (yfuture yexisting ) = V =
[
Vfuture v

v′ Vexisting

]
,

then ŷ = v′V−1
existingyexisting. Since all cows within a

family share the same relationship with each other, the
diagonal elements of V are all equal, as are the off-
diagonal elements. That is, V = Iσ 2

e + Jσ 2
s , where I is

the identity matrix, J is a matrix of all ones, σ 2
e + σ 2

s

is the variance of milk yield and σ 2
s is the covariance

between the milk yields of cows from the same family.
An equivalent model, generalized to n milk yield

records from f sire families, that leads to the same pre-
diction is as follows:

y = Zs + e,

where

y is an n × 1 vector of milk yields for all cows over
f families,
Z is an n × f matrix that allocates cows to families,
s is an f × 1 vector of sire effects ∼ N(0, Iσ 2

s ),
e is an n × 1 vector of independent errors or envi-
ronmental effects ∼ N(0, Iσ 2

e ).

The best predictor of s is

ŝ = Z′(ZZ′σ 2
s + Iσ 2

e )−1y

and the best predictor of y for a future cow is

ŷ = z′
futureŝ,

where zfuture is a vector of zeros with a single one, to
indicate to which family the future cow belongs.

For the ith sire, ŝi can also be written as yini/(ni +
λ)), where yi is the mean of y for the ni cows in the
ith family and λ = σ 2

e /σ 2
s . This is a linear model and

ŝi is an estimate of the sire effect (si), but it is not the
conventional estimate derived from treating sire effects
as fixed effects which would be s̃i = yi . Estimates such
as s̃ are unbiased in the traditional sense, that is, they
have the property

E(s̃|s) = s.(1)

By contrast, ŝ is not unbiased in the sense of (1) be-
cause it is a “shrunk” estimate.

In what respect is ŷ the best predictor of y? It has the
minimum prediction error variance var(ŷ − y). Sim-
ilarly, ŝ has the minimum var(ŝ − s). ŝ also has the
property [25, 37, 40, 43]

E(s|ŝ) = ŝ.(2)

Equation (2) defines a type of unbiasedness which is
only meaningful when s is regarded as a random ef-
fect. It can be stated as follows: If, on the basis of this
analysis, one selects a group of sires whose average
value of ŝ is k and one produces one more daughter
from each of these sires, then the expected mean milk
yield of these future daughters is k.

In practice, the statistical model for milk yields
would include some fixed effects (c), as well as the ran-
dom effect of sire, in a mixed model. That is,

y = Xc + Zs + e.

Also, the sires might be related and so s ∼ N(0,Asσ
2
s ),

where As is the numerator relationship matrix (which
is twice the kinship matrix [33]) derived from the pedi-
gree of the animals. The solutions from the equations[

X′X X′Z
Z′X Z′Z + A−1

s λ

]−1 [
X′y
Z′y

]

are Best Linear Unbiased Estimates (BLUEs) of the
fixed effects and Best Linear Unbiased Predictors
(BLUPs) of the random effects [25, 40]. In fact, we can
model the observed phenotypes in terms of the genetic
value of each individual (a) as

y = Xc + Ta + e,

where a is a vector of additive genetic values
∼N(0,Aσ 2

a ) where A is a numerator relationship ma-
trix like As but recording the relationships between in-
dividuals, including the relationships caused by cows
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with the same sire. The BLUP equations become

[
X′T X′T
T′X T′T + A−1 σ 2

e

σ 2
a

]−1 [
X′y
T′y

]
.

In livestock genetics this is known as an “animal
model” because the genetic value of each individual
is explicitly included in the model together with the
relationship between all animals. This model has also
been used in evolutionary genetic studies [29] and in
QTL linkage mapping studies in human pedigrees [2].
For linear mixed models containing fixed and random
effects, property (2) holds when the estimates are ob-
tained using BLUP, provided the effects are normally
distributed with known variances [24, 25].

2.2 Prediction of Phenotype from SNP Genotypes
and Estimation of SNP Effects

In the analysis of a GWAS we would like to both
predict the phenotype of individuals with observed
genotypes but no observed phenotype and to estimate
the effects of the SNPs. Both these objectives can be
achieved in a consistent manner if we treat the SNP ef-
fects as random, just as we did the sire effects above.
The structure of the data is typically as follows. There
is a reference or discovery sample of individuals who
have been typed for the SNPs and recorded for the
phenotype. From this data a prediction equation is de-
rived that predicts phenotypes from SNP genotypes.
This prediction equation is then used on a validation
sample and the accuracy of prediction that we wish to
maximize is the accuracy of predicting phenotypes in
this sample.

What properties would an ideal predictor have and
what measure of accuracy should be maximized? We
propose that the ideal predictor is the expectation of
the phenotype conditional on the SNP genotypes. That
is, if the phenotype is y, the predictor ŷ should be

ŷ = E(y|SNP genotypes).

This property has many advantages. It maximizes the
correlation between y and ŷ, minimizes the error mean
square and results in a regression of y on ŷ, β(y, ŷ) =
1 [25, 40]. Consistent with this approach, we would
estimate the SNP effects (b) such that

b̂ = E(b| data on phenotypes and genotypes).

This estimator is also unbiased in the sense of (2) and
has the same properties as listed for ŷ above.

2.3 Comparison with Traditional Fixed Effect
Estimators

Usually the effects of SNPs in GWAS have been es-
timated by methods that are unbiased in the traditional
sense of having property (1). To demonstrate that an
estimator is unbiased in this sense, we would test the
same marker in numerous replicate experiments and
average the estimates over these replicates. The sim-
ple least squares estimate of b is unbiased in this sense.
(We use “least squares” throughout as an example of
an estimation procedure that does not shrink estimates.
Other estimation procedures, for example, maximum
likelihood to estimate odds ratios using logistic regres-
sion, fall in the same category.) However, this unbiased
property is lost if we only average the estimates over
the replicates in which the marker effect was declared
“significant” according to some arbitrary threshold of
the test statistic. This effect is illustrated in Figure 1
where a SNP with effect 1.0 and standard error 1.0 is
declared significant only if the estimated effect b̂ ex-
ceeds 2.0. In those significant replicates, the mean esti-
mate of b is ∼2.5. Methods such as [14, 54, 55] attempt
to correct for this bias so that the average of b̂ over the
significant replicates is b.

Conversely, we recommend estimators of SNP ef-
fects which are unbiased in the sense of (2) rather than
the usual estimators which are unbiased in the sense
of (1). Which type of unbiased estimator do we want?
We argue that unbiasedness of type (2) is more use-
ful. Estimators of type (2) maximize the correlation
between b and b̂, minimize the error mean square and
result in a regression of b on b̂, β(b, b̂) = 1. Estima-
tors of type (1) do not have these properties because
var(b̂) > Cov(b, b̂), that is, the variance of the predic-
tor is larger than its covariance with the true value.

Generally a GWAS, using 100,000s of markers, is
not conducted to estimate the effect of a single marker.
If it was and we wanted an unbiased estimate of its
effect in the sense of (1), we could simply use the
least squares estimate regardless of whether or not it
was significant. Generally, the GWAS is used to select
markers which have the largest or most significant ef-
fects (we will assume b > 0 since the sign is arbitrary).
The markers might be selected for further experimen-
tation or for use to predict disease risk [52]. When es-
timators of type (2) are used to select the “best” mark-
ers, this maximizes the mean true effect of the group of
selected markers [10]. In addition, the expected mean
true value of b in this group of markers is equal to the
mean b̂ of the selected markers. Hence, E(b|b̂) = b̂.
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FIG. 1. The mean value of b̂ (∼ 2.5) from significant replicates when b = 1.0, the threshold for significance is 2.0 and the SE of b̂ is 1.0.

This is illustrated by simulation in Figure 2. Here
100,000 markers effect (b) and their least squares es-
timates (b̃) are simulated by b̃ = b + e , b ∼ N(0, σ 2

b ),
e ∼ N(0, σ 2

e ). We arbitrarily chose σ 2
b = σ 2

e = 1/2. b̃

is an unbiased estimator of b in the classical sense that
E(b̃|b) = b. However, if we now select the SNPs with
the largest |b̃| (|b̃| > 4), then this over-estimates the
true value |b|. This is an example of the winner’s curse
and occurs because b̃ is not unbiased in the sense of (2).
On the other hand, if we estimate b by b̃ = b̃/(1 + λ),

with λ = σ 2
e

σ 2
b

, we see that the average value of |b̃| among

the selected SNPs is equal to the true average value of
|b| because b̃ is unbiased in the sense of (2). That is,
estimators of the kind recommended here do not suffer
from the winner’s curse. This property holds irrespec-
tive of the threshold chosen to select the SNPs.

The advantages of the properties of type (2) estima-
tors [i.e., those with property (2)] can be illustrated
using two examples. First, suppose the purpose of se-
lecting the markers is to predict the disease risk faced

FIG. 2. Comparison of conventional least squares (LS) estimates (i) and BLUP estimates (ii) of the effects of SNPs. The true SNP ef-
fects were simulated ∼N(0, 0.5) and estimated with sampling error ∼ N(0,0.5). The SNPs with the largest magnitude of effect are plotted
(|LS(b)| > 4). The BLUP estimates are unbiased, while the least squares estimates overestimated the magnitude of the largest effects. The
dashed line shows y = x and the solid line is the regression of b on the LS(b) or BLUP(b). BLUP estimates are unbiased irrespective of the
threshold chosen for selection.
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by individual people. It is known from prediction the-
ory that when estimators of type (2) are used to pre-
dict the phenotype of individuals, this maximizes the
correlation between predicted risk and true risk [10].
Second, suppose we want to design a validation exper-
iment to confirm the effects of the selected markers and
must decide on the size of this experiment. The design
needed for a given power depends on the true effect of
the selected markers. If conventional estimates such as
b̃ are used, we will overestimate the size of effect and
so design an experiment which is too small to detect
the true effects. However, an estimate with property (2)
does not overestimate the magnitude of the effects and
so will lead to a design appropriate to detect the true ef-
fects. In fact, in general, if some decision is to be made
(such as to invest time and money in further experi-
ments) and if there is a cost to making a bad decision,
then estimators with property (2) are desirable [8]. For
instance, estimators with property (2) are used exten-
sively in artificial selection programs in agriculture to
rank individuals on genetic merit [23, 24] because this
maximizes the genetic improvement when the highest
ranking animals are used as parents of the next genera-
tion [10].

Thus, property (2) is useful and it is also, we believe,
what scientists implicitly mean when they use the word
“unbiased” in this context. In classical or frequentist
statistics we usually seek estimators of fixed effects
with property (1) and predictors of random effects with
property (2). For example, BLUP is a well-established
method for simultaneous estimation fixed effects and
prediction of random effects [33, 37]. Bayesian statis-
ticians treat all effects as random and so usually seek
estimators with property (2) for all effects. Regardless
of whether one is a frequentist or Bayesian, if one is go-
ing to select the best markers from among many tested
and use them for some purpose, then it is best to use an
estimator with property (2) for the reasons discussed
above.

Another advantage of estimators derived from (2)
is that they can be applied to the joint data obtained
from the initial GWAS and the validation study and
yield estimates which are still unbiased of type (2). The
estimator b̂ = E(b| data on phenotypes and genotypes)
is unbiased in the sense of (2) by definition, regard-
less of the amount of data used. That is, one does not
need to distinguish between the discovery data and the
validation data. Therefore, in a two stage experiment
in which the markers with largest estimated effect are
chosen from stage 1 and further data collected on them
in stage 2, all the data can be combined into one data

set and analyzed without discriminating the stage 1 and
stage 2 data. In contrast, classical estimates of SNP ef-
fects combining the initial GWAS and the validation
study (as in [39]) will still be biased for SNPs selected
on the basis of the GWAS.

3. MODELS FOR PREDICTION OF SNP EFFECTS

Three difficulties underlie the prediction of SNP ef-
fects and phenotypes. First, the number of SNPs (p) is
typically 10–100 times the number of individuals (n)
in the sample, the so called p > n (or large p small n)
problem, which leads to difficulty of an oversaturated
model. Second, it is not the SNPs that are genotyped
that directly affect phenotype but unknown polymor-
phisms that are often called quantitative trait loci or
QTL. Third, the QTL may affect phenotype in a com-
plicated and unknown manner. For example, the QTL
may interact in their effects on phenotype (a phenom-
enon called epistasis).

3.1 Linear Models

We will begin by considering only predictors that are
linear in the SNP genotypes.

Let y = b′x + e, where

x is a p × 1 vector of SNP genotypes coded 0, 1 or
2 according to the number of copies of an arbitrarily
chosen reference allele,
b is a p×1 vector of regression coefficients. We will
call b the effects of the SNPs on the trait, although in
reality it is the unknown QTL in LD with the SNPs
that actually affect the trait, and
e is an independent error.

Then ŷ = b̂′x = E(y|x) implies

b̂ = E(b|x,y) =
∫

bp(b)p(y|b,x) db(3)

/∫
p(b)p(y|b,x) db,

where

p(b) = the probability density of b,

p(y|b,x) = the likelihood.

This makes it clear that prediction of y depends on
p(b), that is, the distribution of the “effects” of the
SNPs. This can be considered in a Bayesian framework
as the prior information or distribution, but it can also
be put in a frequentist framework if the effects of SNPs
are considered a random variable. Since there are (hun-
dreds of) thousands of SNPs, it is not unreasonable to
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consider the effect of any one SNP as being drawn from
a distribution of SNP effects p(b).

Meuwissen et al. (2001) [36] considered several pos-
sible forms of p(b) in a Bayesian framework so that af-
ter specifying the distribution of b, the distribution pa-
rameters are estimated from the data simultaneous with
the estimate of individual SNP effects. If b ∼ N(0, σ 2

b ),
then b̂ is the best linear unbiased predictor or BLUP
of b and ŷ is BLUP of y. This implies that all SNP
effects are drawn from the same distribution. The to-
tal genetic variance explained by the SNPs is σ 2

g =
σ 2

b

∑
2pi(1 − pi), where pi = allele frequency at SNP

i and summation is across all SNPs. This implies that
many SNPs have a small effect on the trait but none
have a big effect.

Alternatively, one can assume bi ∼ N(0, σ 2
bi

), where

σ 2
bi

is drawn from an inverse scaled χ2 distribution.
The use of this hyper-prior distribution implies the as-
sumption that a large number of SNP effects are small
or extremely close to zero with a few larger effects.
This assumption is reflected in the results of Hayes and
Goddard (2001) [36] and Weller et al. (2005) [51] who
examined the distribution of QTL effects in livestock
populations. This method (called Bayes A by the au-
thors) can be implemented using a Gibbs chain. The
use of the normal—inverse scaled χ2 mixture distribu-
tion results in a Student t distribution for b. This allows
b to have a distribution with a longer tail than a normal
distribution. A third method (called Bayes B by the au-
thors) described by Meuwissen et al. (2001) [36] had
the same assumptions as Bayes A about a proportion
q of the SNPs but, in addition, assumed 1 − q of the
SNPs have zero effect, such that

σ 2
bi

∼ χ−2(r, s) with probability q,

σ 2
bi

= 0 with probability 1 − q.

The use of this prior means that the dimensionality of
the model is changing as the number of SNPs included
in the model varies. As such, a reversible jump MCMC
algorithm [19] is needed to communicate across all
possible models and their differing dimensionality ac-
cording to the proper acceptance ratio. This acceptance
ratio is identical to that of the Metropolis–Hastings
algorithm when the Jacobian (which appears due to
the deterministic transformation used in the proposal
mechanism) is equal to one. This occurs even though
the dimensions are varying because the Jacobian itself
is not an inherent component of the dimension chang-
ing MCMC.

All these methods “shrink” the estimate in some
way. BLUP is a linear function of the data and shrinks
all estimates with the same standard error by the same
amount, whereas the other methods are nonlinear func-
tions of the data and shrink small estimates more than
big ones.

Other methods such as LASSO (least absolute
shrinkage and selection operator) also give shrunk es-
timates and can sometimes be interpreted as approxi-
mations to (2). For example, the LASSO approximates
the estimates when the distribution p(b) is a mixture
distribution in the form of a normal exponential result-
ing in a Laplace (double exponential) distribution [11,
12, 44]. Hoggart et al. [28] use a penalized maximum
likelihood approach combined with stochastic search
methods to demonstrate efficient simultaneous analy-
sis of genome-wide SNPs. They showed that a normal-
exponential-gamma prior led to improved SNP selec-
tion in comparison with single-SNP tests. Lewinger et
al. [32] proposed a hierarchical Bayes marker associa-
tion prioritization to select markers for subsequent in-
vestigation. They used a prior for the true noncentrality
parameter of association with a large mass at zero and
a continuous distribution of values that are nonzero. In
simulated data, methods without an explicit assump-
tion about p(b) have also performed well. For exam-
ple, Wray et al. [52] used multiple regression on only
highly significant SNPs and Lande and Thompson [30]
used multiple regression and cross-validation.

3.2 Nonlinear Models

Models that are nonlinear in the SNP effects might
be used for two reasons. First, a combination of SNPs
might be a better predictor of the allele at the QTL than
a linear combination of SNPs. The alleles that occur
at adjacent loci on the same chromosome are known
as a haplotype. Considering a group of m SNPs each
with two alleles, there are a maximum of 2m haplo-
types, although often the number actually observed is
less than this due to LD. For each haplotype, the fre-
quency of the positive allele at the QTL may vary. In
simulated data, Goddard (1991) [16] showed that hap-
lotypes of markers predicted the QTL allele better than
a linear combination of the markers and in real cattle
data, Hayes et al. (2006) [21] showed that a haplotype
predicted the allele at an additional marker better than
the individual SNPs. The value of haplotypes depends
on how well the genotyped SNPs tag the genomic vari-
ation; the use of haplotypes may increase the chance
of a tested variant having the same frequency and be-
ing coupled with the causal variant. However, fitting
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haplotypes in the prediction equation is equivalent to
fitting the main effects and all interactions among the
SNP alleles on one chromosome and so can reflect a
more complex genetic model. But, fitting haplotypes is
not equivalent to fitting all interactions among geno-
types. For example, an individual with the genotype
AT at one SNP and CG at the next could have hap-
lotypes (A-C) and (T-G) or haplotypes (A-G) and (T-
C). An analysis based on genotypes would not distin-
guish between these two situations, but one based on
haplotypes would. Although fitting haplotypes implies
fitting interactions between alleles at different SNPs, it
is only SNPs close together on the chromosome that
are assumed to interact. Thus, the haplotype model is a
limited nonlinear model, based on the known biology.
The value of the fitting haplotypes is likely to depend
on the structure of the genotyped sample since the use
of haplotypes serves to exacerbate the “large p small
n” problem and unless full pedigrees are genotyped,
haplotypes cannot be estimated without uncertainty.

A second reason for using nonlinear models is that
the QTL may interact in their effects on the trait,
and this would generate interactions among the SNPs
in their apparent effects. Such interactions might oc-
cur between QTL or SNPs located anywhere in the
genome, so all possible interactions need to be consid-
ered. If there are 106 SNPs, there are 1012 two-locus
interactions and larger numbers of higher order inter-
actions. Estimating so many effects could decrease the
accuracy of the prediction equation, especially if they
are not needed. Interactions between QTL (epistasis)
are known to occur, but the proportion of the genetic
variance due to nonadditive gene action is controver-
sial. Hill et al. (2008) [26] argue that the nonadditive
variance is typically smaller than the additive genetic
variance and, if so, this would suggest that additive
models would be at least the first step in predicting phe-
notype. Lee et al. (2008) [31] found no improvement in
their prediction of unobserved phenotypes from geno-
type data when fitting epistasis in their models.

As well as interactions between QTL (epistasis),
there can be interactions between alleles at the same
QTL (dominance). For example, if a SNP has alleles T
and A, there are three genotypes—AA, TA and TT. If
the mean of the TA individuals is half way inbetween
the mean of the TT and AA individuals for some trait,
then the alleles act additively and there is no domi-
nance. Departure from the additive model due to dom-
inance can be included but, if the dominance variance
is small, estimation of the additional effects may make
the accuracy of prediction worse instead of better. Lee

et al. (2008) [31] found that including dominance did
improve the accuracy of predicting coat color in mice
from SNPs, but this may not be a typical trait because
there were a few genes of major effect segregating in
the population. The improvement in the prediction by
fitting dominance for two other quantitative traits was
much smaller.

An alternative form of the nonlinear model is the
semi-parametric model used by Gianola et al. (2006)
[15]. They used a reducing Hilbert space kernel regres-
sion and obtained good accuracy of prediction in simu-
lated data, but they assumed relatively few QTL in their
simulation.

3.3 An Equivalent Model

The simple linear model of p SNP effects on n phe-
notypes (y), used above, can be written

y = Wb + e

or, equivalently, as

y = a + e and

a = Wb so that V (a) = WW′σ 2
b = G,

where

a = n × 1 vector of additive genetic values,
e = n × 1 vector of environmental effect,
b = p×1 vector of SNP effects assumed ∼N(0, σ 2

b ),
W = an incidence matrix allocating SNP effects to
individuals.

The commonly used “animal model” for estimating ge-
netic value in livestock and natural populations is also
y = a + e as above, but with V (a) = Aσ 2

a , where A is
the numerator relationship matrix defined by the rela-
tionships between individuals known from their pedi-
grees. Thus, our model is the same as the normal an-
imal model but with the relationships between indi-
viduals estimated from the markers (WW′) rather than
from the pedigree [20]. The A matrix assumes that an
individual inherits exactly 1

4 of its genes from each
grandparent. Although this is correct on average, indi-
viduals deviate from this expectation and WW′ tracks
these deviations from expectation. Thus, the prediction
of phenotype described above uses the average rela-
tionship between individuals and deviations from this
relationship specific to a part of the genome. For ex-
ample, Visscher et al. (2006) [49] showed that these
deviations from the average relationship among full-
sibs could be used to estimate heritability and Hayes
et al. (2009) [22] showed that the phenotype of a new
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sibling could be predicted accurately if the reference
sample contained a large number of full-sibs.

A GWAS among members of a family (e.g., a fam-
ily of full-sibs) would normally be described as a link-
age analysis. In such an analysis markers some dis-
tance from a QTL would show an association with the
trait because there has only been one generation of re-
combination between the parents (or common ances-
tors) and the full-sibs. Consequently, a marker allele
and a QTL allele on the same chromosome will be
inherited together much of the time. Most GWAS in
humans use individuals who have no known relation-
ship and are presumably only distantly related. How-
ever, distant common ancestors still exist and markers
closely linked to the QTL will still be inherited together
with the QTL in modern descendants of these com-
mon ancestors. GWAS in livestock typically use related
animals and so the common ancestors are more re-
cent, the size of chromosome segments inherited from
these common ancestors is greater and so markers a
greater distance from the QTL will show an associa-
tion with the trait. In general, QTL-marker disequilib-
rium is larger in populations with a smaller effective
population size.

3.4 Application of Prediction of Phenotype from
SNPs

Meuwissen et al. (2001) [36] presented methods to
predict genetic value for a complex trait based on
genome wide markers. Using simulated data, they re-
ported correlations between predicted genetic value
and true genetic value as high as 0.85. In practice,
such high values have not been obtained, although Van
Raden et al. (2008) [47] reported a correlation of 0.7
for milk yield in dairy cattle and Lee et al. (2008) [31]
a correlation of 0.4–0.8 for three quantitative traits in
mice. Two features of the simulation in Meuwissen et
al. (2001) [36] favored highly accurate prediction of
genetic value. First, the population simulated had an
effective population size (Ne) of 100 and hence a high
level of LD between the markers and the QTL. Second,
the authors based their prediction on haplotypes of two
multi-allelic markers. These haplotypes should explain
more of the variation at QTL than single SNP mark-
ers which are bi-allelic. The simulation study also con-
firmed that the accuracy was highest when the distrib-
ution of effects used in the prediction of genetic value
matched the true distribution (that was used to simulate
the data).

When the results of GWAS are published they usu-
ally focus on a few highly significant SNPs. But GWAS

also contain information about the overall genetic ba-
sis for complex traits, for example, the number of genes
affecting a trait, the number of polymorphisms at these
genes, their allele frequencies and their effects on the
trait. This information is of interest in its own right and
is also useful in setting prior distributions such as p(b)

used in predicting phenotype. Figure 3 presents the dis-
tribution of SNP effects for a range of diseases pub-
lished to date from GWAS. These estimates are from
the validation experiment so that they minimize the
bias described above for significant SNPs in the dis-
covery experiment. Typically, SNPs increase the risk of
disease by 1.1–1.3. The number of independent SNPs
of this effect size needed to explain all the observed ge-
netic variance depends on the allele frequencies of the
SNPs and the genetic variance of the trait. Assuming
the SNPs that have been discovered and reported are
typical in effect size and allele frequencies, 100–1000
SNPs would be needed to explain the genetic variance
of the diseases in Table 1 [52]. In fact, the SNPs discov-
ered are likely to have larger than average effect sizes
and so the total number of genes needed to explain
the observed genetic variance is probably very large.
Similar conclusions can be reached from the published
GWAS on human height. The effect sizes are small
(0.1–0.3 cm per allele) and so 100s of such SNPs are
needed to explain the genetic variance of height [48].

There have been no published reports of the ac-
curacy of predicting complex traits from GWAS in
humans. However, 41 SNPs associated with human
height have been reported from 3 large GWAS. Collec-
tively, these explain only ∼6% of the variance, giving
a correlation between phenotype of predicted genotype
of

√
(0.06) = 0.23. This is disappointing and typical

of other traits, leading to the question “Where are the
missing genes?” [34]. Even when we have attempted
to use all available SNPs, we do not observe high cor-
relations (Yang, Goddard, Visscher and others, unpub-
lished).

Goddard (2009) [20] and Hayes et al. (2009) [22] de-
veloped analytic methods to calculate the accuracy of
prediction of genetic value from markers. A small Ne,
a small number of QTL affecting the trait, a high heri-
tability, a large number of markers and a large number
of individuals in the reference sample lead to a high
correlation between predicted and true genetic value.

Which of the statistical methods gives the most accu-
rate prediction depends on which distribution of b cor-
responds most closely to the real world. In the analysis
of data on milk production traits in cattle, Van Raden
et al. (2008) [47] found that other methods gave only
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FIG. 3. Distribution of validated effect sizes identified in case-control GWAS [27] for a range of common diseases.

a small improvement over BLUP, implying that many
SNPs, each with a small effect, give the best predic-
tion. Lee et al. (2008) [31], using data on mouse coat
color and other quantitative traits and a method sim-
ilar to Bayes B, found that only a small proportion
of markers were needed, as might be expected given
the small number of known genes affecting coat color.
More markers were needed for two other quantitative
traits.

Ne in dairy cattle has been about 100 for the last 6–
40 generations but was 1000–2000 prior to that [9].
On the other hand, Ne in humans went through a
bottleneck of about 3000, approximately 500 gener-
ations ago, and has since expanded enormously [42].
The recent small Ne in cattle has generated some long
range LD which increases the accuracy of prediction.
The equivalent model described above suggests an-
other way to describe this situation: in cattle there are
many individuals that have inherited the same chromo-
some segment from a common ancestor and the mark-
ers track this relationship. In most human populations
there are few of these close relationships and so the
markers cannot so easily track the inheritance of identi-
cal chromosome segments. The mouse data came from
the heterogeneous mouse line [46] derived from cross-
ing inbred strains and consequently has long range LD,
making it possible for markers to predict genetic value
by tracing large chromosome segments.

The milk yield data analyzed by VanRaden et al.
(2008) [47] was the average milk yield of the daughters

of each bull and, consequently, the heritability of these
“phenotypes” is high, approximately 0.8. The heritabil-
ity of human height is also about 0.8, so this does not
explain the lower accuracy of predicting height [3].
However, a number of diseases have lower heritabil-
ity and this partly explains the difficulty in predicting
them. VanRaden et al. (2008) [47] reported that in-
creasing the number of individuals and increasing the
number of markers both increased the accuracy of pre-
dicting genetic value, as would be expected from the
theory described here and elsewhere.

4. FUTURE DEVELOPMENTS

The theory in Goddard (2009) [17] and Hayes et al.
(2009) [20] is supported by the limited data on the ac-
curacy with which genetic value can be predicted from
SNPs. However, the proportion of genetic variance ex-
plained by SNPs for human height is still lower than
expected, begging the question “Where are the missing
genes”? Future research must try to answer this ques-
tion. The explanation that there is substantial epistasis,
or that de novo mutants (including de novo copy num-
ber variants) or epigenetic effects are important, is un-
satisfactory. The heritability of human height (∼0.8) is
the narrow sense heritability, that is, it is the proportion
of phenotypic variance that is due to the additive effect
of genes. Epistasis does not contribute to the narrow
sense heritability, de novo mutations are by definition
not inherited and few inherited epigenetic changes are
known. In any case, an inherited stable epimutation,
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for example, a mutation that changes the methylation
status at a locus and affects the phenotype, would in
practice behave just like a mutation that changes a nu-
cleotide, in terms of the resemblance between relatives
and the SNP-phenotype correlation in gene mapping
experiments.

There appear to be three possible explanations. First,
the genetic markers (i.e., SNPs) may not be track-
ing the QTL. That is, the SNPs may not be in high
enough LD with the QTL. Since we have not iden-
tified most of the QTL, we cannot answer this ques-
tion directly. If we assume that the QTL are similar to
SNPs in their properties, we can use the LD between
SNPs as a guide to the LD between SNPs and QTL.
The SNPs on commercial “SNP chips” are considered
to represent about 68–92% of the known common ge-
netic variation when compared to variation in sam-
ples representing 120 Caucasian chromosomes geno-
typed in the human HapMap project [13]. However,
near complete sequencing of 76 genes on the same
subjects [6] has identified more common variants, sug-
gesting that only 57–79% of common variation is rep-
resented by the current generation of SNP chips. Thus,
the coverage is good but not perfect. However, QTL
may have different properties to SNPs. For example,
they may be under stronger selection, and therefore be
younger polymorphisms with lower minor allele fre-
quency. This would decrease LD with SNP markers.
Alternatively, QTL may often be deletions or duplica-
tions of DNA which interfere with the ability to as-
say SNPs near enough to be in LD with the deletion
or duplication. Some copy number variants (DNA se-
quences which vary between individuals in the num-
ber of copies they carry on a chromosome, e.g., inser-
tion/deletion variants) can also be typed using the latest
generation of SNP chips.

Second, the variance explained by individual QTL
may be so small that experiments with 10,000s of indi-
viduals are not powerful enough. The finding in dairy
cattle, that a prediction method designed for the situa-
tion where all SNPs have small effects performs well,
gives some support to this explanation. Even if every
one of the 3 × 109 bases of DNA had a tiny effect on a
trait, LD among these QTL would create “super-loci,”
each consisting of a chromosome segment inherited
as a block and it would only be necessary to estimate
the combined effects of the QTL on this segment. As
pointed out by Goddard (2009) [20], the size of these
segments depends on the Ne of the population and
the recombination rate. The genome can be divided
into approximately 4NeL segments or effective QTL,

where L is the length of the genome in recombination
units or Morgans. Thus, a population with a large Ne

can have a large number of effective QTL but a popu-
lation with small Ne cannot.

Both of these first two explanations of the low accu-
racy with which genetic value can be predicted from
SNPs might apply to humans. The third explanation is
that there are some phenomena explaining inheritance
of which we are totally unaware.

Assuming that the first two explanations are enough,
we should be able to explain a larger proportion of the
genetic variance by increasing the number of individu-
als in the reference sample and by increasing the den-
sity of markers. In fact, complete sequencing of the
genome is likely to replace or complement genotyp-
ing of known polymorphism in the foreseeable future.
This should allow causal polymorphisms to be used in
prediction instead of linked markers. However, it will
also increase the number of variable sites whose effects
must be estimated by an order of magnitude or more.
Despite this increase in data quantity and quality, the
methods of predicting genetic value and of estimating
the effect of polymorphisms, discussed in this paper,
will still be relevant. We expect that as the number of
polymorphisms increases and includes the causal vari-
ants, methods of prediction that assume many mark-
ers have no effect on the trait will perform better than
methods that assume all markers have some effect. This
is because we expect markers with no direct effect to
cease to be useful predictors when the causal poly-
morphism, to which they are linked, is included in the
model. However, whether the data will be sufficiently
powerful to distinguish causal variants from markers in
LD with them remains to be seen.
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