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Abstract

Background

Repeated measurements of cross-sectional prevalence of Polymerase Chain Reaction (PCR) positivity or
seropositivity provide rich insight into the dynamics of an infection. The UK Office for National Statistics
(ONS) Community Infection Survey publishes such measurements for SARS-CoV-2 on a weekly basis based
on testing enrolled households, contributing to situational awareness in the country. Here we present esti-
mates of time-varying and static epidemiological quantities that were derived from the estimates published
by ONS.

Methods

We used a gaussian process to model incidence of infections and then estimated observed PCR prevalence by
convolving our modelled incidence estimates with a previously published PCR detection curve describing the
probability of a positive test as a function of the time since infection. We refined our incidence estimates using
time-varying estimates of antibody prevalence combined with a model of antibody positivity and waning that
moved individuals between compartments with or without antibodies based on estimates of new infections,
vaccination, probability of seroconversion and waning.

Results

We produced incidence curves of infection describing the UK epidemic from late April 2020 until early 2022.
We used these estimates of incidence to estimate the time-varying growth rate of infections, and combined
them with estimates of the generation interval to estimate time-varying reproduction numbers. Biological
parameters describing seroconversion and waning, while based on a simple model, were broadly in line with
plausible ranges from individual-level studies.

Conclusions

Beyond informing situational awareness and allowing for estimates using individual-level data, repeated
cross-sectional studies make it possible to estimate epidemiological parameters from population-level mod-
els. Studies or public health surveillance methods based on similar designs offer opportunities for further
improving our understanding of the dynamics of SARS-CoV-2 or other pathogens and their interaction with
population-level immunity.
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Introduction

Infectious disease surveillance serves to monitor the health of populations and identify new threats as quickly
as possible after they arise (Murray & Cohen, 2017). It is often based on healthcare-based reporting systems
whereby primary care providers or hospitals report numbers of individuals identified as likely cases of a
disease to central authorities where these numbers are collated and reported as aggregates. During the
Covid-19 pandemic in the United Kingdom, reporting of cases has mostly involved collating numbers of
laboratory-identified infections with SARS-CoV-2 via self-reporting, community testing sites or hospitals.

A separate and independent system of collating information on the state of the pandemic has been run
by the Office for National Statistics (ONS) via its Community Infection Survey, which conducts repeated
cross-sectional surveys of Polymerase Chain Reaction (PCR) positivity indicating infection with SARS-
CoV-2, as well as antibody seroprevalence via household visits (Pouwels et al., 2020). By adjusting for
biases in the sampled population, the study has been used to estimate daily population-wide estimates of
infection prevalence, unaffected by testing capacity or reporting behaviour that often varies by age as well
as sociodemographic or other factors.

While repeated randomised cross-sectional sampling of positivity and antibodies provides utility in themselves
for tracking an epidemic in real time, they can also be used for estimating epidemiological quantities by
combining them with information on infection kinetics and immunological responses. Here we present a
semi-mechanistic model that combines PCR positivity curves, generation interval estimates and vaccination
data with ONS PCR positivity and antibody data to estimate infection incidence and its growth rates,
reproduction numbers and rates of antibody waning.

Methods

Data

We obtained the published estimates of daily prevalence of Polymerase Chain Reaction (PCR) positivity
beginning on 26 April, 2020, from the ONS Community infection survey separately by nation, region, age
group and variant, alongside their 95% credible intervals, from the published spreadsheets on the ONS
web site. ONS estimates of a given prevalence vary between publication dates as the internal model to
calculate prevalence involves smoothing, such that new data points in the present affect the estimates of
times past. We aggregated estimates of PCR positivity for a single day produced for different publication
dates by calculating the central estimate and credible intervals as the medians of the different respective
central estimates and credible intervals.

Model

We developed a Bayesian model to estimate epidemiological quantities from ONS PCR positivity estimates
and, optionally, population level antibody prevalence estimates and vaccination coverage.

PCR positivity

We estimated the population proportion newly infected in the population I(t) as a latent variable that is
convolved with a PCR positivity curve p(s), the probability of someone infected at time s = 0 to test PCR
positive to yield prevalence of PCR positivity P (t).

P (t) =
tp,max∑

s=0
p(s)I(t − s)
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where tp,max = 60 is the maximum time modelled for which a person can stay PCR positive. We assumed
each p(s) to have an independent normal prior distribution at each time s after infection with given mean and
standard deviation estimates from the posterior estimates of another study (Hellewell et al., 2021). Infection
incidence I(t) is distinct from the estimates of PCR positivity incidence provided by ONS alongside the
prevalence estimates, as it allows for the probability of infections yielding negative PCR results as a function
of the time since infection and is indexed by date of infection rather than the date of first testing positive.

We used Gaussian Process (GP) priors to ensure smoothness of the estimates and deal with data gaps,
whereby alternatively either I(t) is has a GP prior with exponential quadratic kernel. To reduce the com-
putational requirements of our approach we used an approximate rather than exact GP (Riutort-Mayol et
al., 2020).

logit (I(t)) ∼ i0 + i(t)
i(t) ∼ GP(t)

where i0 is the estimated mean of the GP, or the GP prior is applied to higher order differences when
infections are non-stationary, for example the growth rate such as

i(t) − i(t − 1) ∼ GP(t)

which implies that growth tends to zero when outside the range of the data, usually leading to better real-
time performance (Abbott et al., 2020). The results shown here were obtained using this formulation with
a GP prior on the growth rate.

We assumed that the probability of observing prevalence YP,t at time t was given by independent normal
distributions with mean P (t) and standard deviation

σP,t =
√

σ2
P + Y σ

P2,t

where σP was estimated as part of the inference procedure and Y σ
P,t calculated based on the reported credible

intervals in the ONS data, assuming independent normal errors. For data sets where only weekly estimates
were reported by ONS, for example at the sub-regional level, we calculated average prevalence across the
time period reported from our daily prevalence estimates.

Using the estimate infection incidences I(t) we estimated growth rates r(t) as

r(t) = log I(t) − log I(t − 1)

and reproduction numbers R(t) using the renewal equation as

R(t) = I(t)∑tg,max
s=0 g(s)I(t − s)

where g(s) is the distribution of the generation interval since the time of infection (Fraser, 2007). We assumed
a maximum generation interval of tg,max = 14. We use re-estimated generation intervals from early in the
pandemic in Singapore as reported previously (Abbott et al., 2020).

Antibodies

When additionally using antibodies we convolve the modelled infections I(t) as well as input data on vacci-
nations YV,t with distributions quantifying the delay to generating detectable antibodies following infection
(by default set to 4 weeks for both infection and vaccination), yielding potentially antibody-generating time
series from infection IA and VA. We then calculate antibodies from infection as

AI(t) = AI(t − 1) + βIA(t)(1 − A(t − 1))k − γIAI(t − 1)

and antibodies from vaccination as

AV(t) = AV(t − 1) + δVA(t)(1 − A(t − 1))l − γVAV(t − 1)
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with the total population proportion with antibodies given as the sum of the two,

A(t) = AI(t) + AV(t)

Here, the additional parameter β can be interpreted as proportion of new infections that does not increase
the population proportion with antibodies, either due to lack of seroconversion or because they are break-
through infections in those with existing antibodies, and parameters k and l govern the degree to which new
seropositives preferentially arise in those not seropositive so far. Additional parameters γI and γV can be
interpreted as rates of waning from natural infection and vaccination, respectively. This formulation implies
simplifying assumptions that the rate of waning of detectable antibodies is exponential, that vaccine doses
are allocated randomly amongst those with or without existing antibodies, and that the proportion of new
vaccinations that lead to seroconversion δ is constant and independent of age, vaccine use, and dose number.

Implementation

The model was implemented in Stan and using the cmdstanr R package (Gabry & Češnovar, 2021; Stan
Development Team, 2022). All code needed to reproduce the results shown here is available at https:
//github.com/epiforecasts/inc2prev.

Results

Figure 1: Model posteriors for England. A. Estimates of daily modelled prevalence and modelled prevalence
as published by ONS. B. Estimated incidence of new infections. C. Estimated antibody prevalence and
estimes as published by ONS. D. Estimated reproduction numbers.

The model was able to reproduce the daily prevalence estimates and weekly antibody prevalence estimates
published by ONS with reasonable accuracy when run until 15 November 2021 (Figure 1). The peaks of the
corresponding incidence curve are earlier, higher and sharper. Estimated reproduction numbers highlight
some key phases of the UK pandemic between April 2020 and November 2021, in particular rapid increases
due to emergence of the Alpha variant in December followed by a period of low transmission during lockdown
until March 2021, and rapid spread of the Delta variant in May-July 2021 followed by a period of relatively
steady transmission.
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Table 1: Estimates and credible intervals (CIs, as quantiles of the posterior distribution) of biological pa-
rameters.

Parameter Description Estimate (90% CI)
beta Proportion infected that seroconvert 0.82 (0.66–0.94)
delta Proportion vaccinated that seroconvert 0.98 (0.96–0.99)
gamma (infection) Antibody waning following infection (per month) 0.032 (0.0055–0.059)
gamma (vaccination) Antibody waning following vaccination (per month) 0.014 (0.0024–0.029)
k Efficacy adjustment of immunity following infection 1 (0.85–1.2)
l Efficacy adjustment of immunity following vaccination 0.67 (0.61–0.75)

Posterior estimates of recovered biological parameters are shown in Table 1. Some of the parameter estimates
show high levels of correlation suggesting issues of identifiability (Figure 2).

Discussion

We have presented a method to estimate epidemiological parameters such as infection incidence, time-
varying reproduction numbers and growth rates from repeated cross-sectional PCR positivity estimates. The
estimates of infection incidence are distinct from estimates of PCR positivity incidence that are reported
alongside the positivity prevalence estimates, as the probability of detecting infections is low early in the
course of an infection, and more generally varies over said course (Hellewell et al., 2021). When additionally
using antibody and vaccination data, we refine our estimates of infection incidence and recover estimates
of relevant parameters such as seroconversion and waning rates that can be used to estimate antibody
prevalence where infection and vaccination data is available but antibody data is not.

Our estimated parameters of antibody dynamics are averages across a various combinations of vaccine types
and individual factors that are known to affect immunological responses to either infection or vaccination,
particularly age (Ward et al., 2022). We estimated that 18% (90% credible interval, CI: 6–34) of individuals
do not seroconvert after infection, consistent with the 24% estimated from the same study population, but
also lower estimates such as 10% in a different study (Gudbjartsson et al., 2020). We further estimated
that 98% (90% CI: 99–96) of individuals seroconverted following vaccination, in line with high such propor-
tions estimated in healthcare workers (Eyre et al., 2021). Our estimates of waning suggest that detectable
antibodies decrease by 3.2% (90% CI: 0.55–5.9) following infection and 1.4% (90% CI: 0.24–2.9) following
vaccination. All these values depend on the specific cutoff used for seropositivity and combine a range of
vaccines, and they ignore additional effects from receiving multiple doses of vaccine, becoming infected as
well as vaccinated. They cannot be compared directly to estimates of vaccine efficacy or waning thereof.

As currently implemented, our method suffers from a number of limitations that risk biasing the results.
Several of the key parameters in our model, especially the estimates of PCR positivity over time from in-
fection, generation interval distributions, are fixed and based on estimates derived from wildtype virus in a
particular cohort of healthcare workers and may well be incorrect for other circulating variants or popula-
tions. Furthermore, generation times have been shown to change over time due to behavioural changes and
epidemiological dynamics, which would affect our reproduction number estimates (Champredon & Dushoff,
2015; Hart et al., 2021; Park et al., 2021). PCR detection probabilities as a function of time since infection
were based on independent normal distributions, whereas in reality they are likely to be correlated over time.
We modelled the growth of infections as a stationary Gaussian process, whereas in reality variation over time
has changed between periods of stability and rapid change due to changes in contact behaviour in response
to the epidemic. Lastly, we assumed that antibody waning was exponential, and ignored any consequences
of multiple rounds of vaccination or infection apart from converting those without detectable antibodies to
having detectable antibodies.

Future directions of this work should help address some of these limitations, for example by including more
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Figure 2: Scatter plots and histograms of posterior parameter samples.
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detail on antibody levels, or by including antibody measurements that may be able to distinguish between
natural and vaccine-acquired immunity (Amjadi et al., 2021). It could further make use of more compre-
hensive information on PCR detection curves taking into account correlations in detectability since time
from infection and pointly jointly estimating these curves using individual level data. Combined with other
data streams, for example on test-positive community cases, or severe outcomes resulting in hospitalisations
or deaths, our method could be used to understand rates of notification or sever disease given infection,
or to generate forecasts of expected burden. Lastly, more detailed information on the infections detected,
for example viral loads via Cycle threshold (Ct) values, could be used to improve real-time performance of
growth rates and reproduction numbers (Hay et al., 2021).

There is enormous potential for understanding epidemiological dynamics from repeated cross-sectional sur-
veys, whether to identify current or past infection (Metcalf et al., 2016). Where the generation interval
distribution is the same or close to the distribution of detectability after infection, this could be done using
recently developed methods for unified modelling of incidence and prevalence (Pakkanen et al., 2021). The
methods presented here and related ones could be applied to other infections monitored in a similar way,
and thus in combination with such data collection and publication become a tool for monitoring epidemic
and endemic infectious diseases in the future.
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