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Estimating Equilibrium Models of Sorting Across Locations

Patrick Bayer and Christopher Timmins

Abstract

With the growing recognition of the role played by geography in all sorts of economic problems, there is strong

interest in measuring the size and scope of local spillovers (i.e., simple anonymous agglomeration or congestion

effects, or more complicated interactions between individuals or firms of specific types).  It is well-understood,

however, that such spillovers cannot be distinguished from unobservable local attributes using just the observed

location decisions of individuals or firms.  We propose an empirical strategy for recovering estimates of spillovers

in the presence of unobserved local attributes for a broadly applicable class of equilibrium sorting models.  This

approach relies on an instrumental variables strategy derived from the internal logic of the sorting model itself.

We show practically how the strategy is implemented, provide intuition for our instrumental variables, and discuss

the role of effective choice-set variation in identifying the model, and carry-out a series of Monte Carlo

experiments to demonstrate the instruments’ performance in small samples.

JEL Codes: H7, R0, R2, R3

Keywords: Local Spillovers, Location Choice, Economic Geography, Natural Advantage, Social Interactions,
Network Effects, Endogenous Sorting, Discrete Choice Models, Agglomeration, Congestion
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1   INTRODUCTION

Models of location choice – whether of firms or households, within or across cities – have

long been central to regional and urban economics.  From the inter-jurisdictional sorting models of

Tiebout (1956) to the models of segregation developed by Schelling (1969, 1971) to the “new

economic geography” of Fujita, Krugman, and Venables (2000), a central feature has been the role

of local interactions or spillovers, whereby the payoffs from choosing a location depend in part on

the number or attributes of other individuals or firms that choose the same or nearby locations in

equilibrium.  In some cases, these local spillovers operate through anonymous channels, with

payoffs depending upon simply the number of other individuals or firms selecting the same location,

while in other circumstances, the attributes of one’s neighbors (e.g., race, income, or education in

the case of individuals, and industry classification in the case of firms) might matter as well.  It is

the interplay between these sorts of spillovers and the natural advantages embedded in the

landscape of alternative locations that can explain, at a regional level, the geographic and size

distribution of cities, and at an urban level, the stratification of households across communities on

the basis of income, education, and race, neighborhood density patterns, ethnic enclaves, ghettos,

and problems of inner-city decay and suburban sprawl. 

Ultimately, local spillovers must derive from some underlying mechanism.  For example,

households may desire to live in large metropolitan areas because of the size and scope of the labor

market or the urban amenities that cities provide.  At the same time, congestion operating through

increased travel times and the increased price of land may detract from the welfare of individuals

in large cities.  While distinguishing the precise role of each of these mechanisms may be of interest,

often the central problem in an empirical application is simply that of distinguishing the aggregate

behavioral effect of local spillovers from that of fixed natural advantages that are tied to locations,

particularly when the latter are not observed by the researcher.  Recent empirical work attempting

to distinguish the magnitude of local interactions has focused on subjects as diverse as crime in cities
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[Glaeser, Sacerdote, and Scheinkman (1996)], racial segregation [Bayer, McMillan, and Rueben

(2002)], interjurisdicational sorting related to schooling [Epple and Sieg (1999), Bayer, Ferreira, and

McMillan (2003)], human capital spillovers in the labor market [Morretti(2002)], the general

equilibrium effects of environmental policy [Sieg et. al. (2003), Timmins (2003)], welfare

participation [Bertrand et. al. (2000)], unemployment spells [Topa (2001)], development economics

[Deichmann et. al.  (2002), Krugman (1995)] and agglomeration economies in firm locations and

investment [Henderson (1999)], among many others.

It is well-understood that there is nothing in, for example, just the observation of many

people residing in New York City or numerous high-tech firms locating in Silicon Valley that can

distinguish between local spillovers and a distribution of underlying natural advantages across

locations [Glaeser and Scheinkman (2002)].  Behavioral data alone provide no guidance as to

whether such examples of clustering of individuals or firms should be interpreted as evidence of a

strong agglomerating force or the inherent desirability of these locations.  Ellison and Glaeser (1997)

formalize this as an observational equivalence theorem, stating that “the relationship between mean

measured levels of concentration and industry characteristics is the same regardless of whether

concentration is the result of spillovers, natural advantage, or a combination of the two.”  In essence,

this result is based on the fact that the observed, aggregate decisions in any model of sorting across

locations can be entirely accounted for by a vector of location-specific fixed effects, which

intermingle the influence of both natural advantages and local spillovers.

In light of this observational equivalence, we propose a novel solution to the problem of

distinguishing local spillovers that uses an instrumental variables estimator to decompose this vector

of location-specific fixed effects into components attributable to the inherent features of locations

(including those that are unobserved by the researcher) and local spillovers.  Drawing on empirical

techniques originally developed to model differentiated product demand in Industrial Organization

applications, we model the location decision of an individual or firm with a discrete choice



4

framework that enables us to cast the problem of distinguishing local spillovers as a standard

endogeneity problem in a familiar regression context.  The tendency in these models (that is, if OLS

were used to estimate this regression) is to overstate the size of estimated agglomeration effects (or

to understate the magnitude of congestion effects), mis-attributing the role of desirable unobservable

fixed features.  This mis-attribution can have important implications when predicting the new

equilibrium distributions of individuals or firms after a significant policy change, explicitly

measuring the value of agglomeration in cities, looking for evidence of production “clusters” [Porter

(2000)], or valuing local public goods or amenities while controlling for the consequences of

agglomeration or congestion.

The requirement for an appropriate instrument in this context is a variable that is correlated

with the fraction of individuals (or firms) that selects a given location, but which is not correlated

with the unobserved fixed attributes of that location.  Because the demand for a particular location

is affected by not only its own features, but also by the way these features fit into the broader

landscape of the available locations, the logic of the choice model itself implies that a function of

the fixed attributes of other locations ought to serve as an appropriate instrument for the share of

individuals that choose a given location.  Moreover, the power of this instrument will increase with

the variation in the choice set that the researcher observes in the data – variation that will arise

naturally when geography plays an important role in individuals’ preferences.

Section 2 begins with a brief discussion of the class of equilibrium sorting models to which

our estimation strategy applies, laying-out the notation of the random utility framework and proving

the existence of a sorting equilibrium.  In Section 3, we describe our estimation algorithm and

instrumenting strategy, while in Section 4, we provide additional intuition for these instruments.

We highlight the role of choice-set variation in enhancing the information content of our

instruments, and provide heuristic examples that demonstrate how this sort of variation can discern

the presence of local spillovers in a broad class of sorting models.  In Section 5, we provide Monte



1 Developing a model of firm location decisions with local spillovers would require only modest changes to the model
specified here.  We focus on households to keep the exposition as straightforward as possible. 

2 The basic form of this utility function is based on the random utility model developed in McFadden (1978) and the
specification of Berry, Levinsohn, and Pakes (1995), which includes choice-specific unobservable characteristics.  We
use the linear form for utility to make the issues of estimation and identification as clear as possible, broader forms of
the utility function (especially with respect to the treatment of income and the form of the local spillovers) certainly fit
within the scope of the estimation procedure presented in this paper.
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Carlo evidence on the performance of our instrumenting strategy.  While we apply these instruments

in other papers to particular empirical problems [Bayer, McMillan, and Rueben (2002), Timmins

(2003)], the purpose of this paper (and of the Monte Carlo application in particular) is to

demonstrate that these instruments work well in a “controlled-data” environment, and to provide

some intuition for why this is the case.  Section 6 concludes.

2   AN EQUILIBRIUM MODEL OF LOCATION CHOICE WITH LOCAL SPILLOVERS

This section sets out an equilibrium model of residential location choice with local

spillovers.1  Consider a setting in which each individual i chooses a location (indexed by j) in order

to maximize utility, Ui,j given by:2

(2.1)

where each location j is described by (i) an observable vector of attributes, Xj, (ii) the share of

individuals who choose this location j, σϕ, and (iii) a location-specific unobservable ξj, which we

assume to be invariant to the location decisions made by the individuals in the model.  The taste

parameters in equation (2.1) may vary with observable individual characteristics Zi:

(2.2)



3This utility specification bears a strong resemblance to the class of discrete choice models used by Brock and Durlauf
(2001) to identify social interactions.  Our specification, however, differs from theirs in an important way that makes
the empirical settings in which the two models can be applied almost completely distinct.  In particular, unlike the model
Brock and Durlauf (2001) the model written here explicitly includes unobservable location-specific characteristics, ξj.
As we show below, the inclusion of this error term implies that the model is no longer identified by observed choice
behavior alone – a lack of identification that is not surprising given the conclusions of Glaeser and Scheinkman (2002)
and Ellison and Glaeser (1997).  Consequently,  it is in providing a strategy for estimating sorting models in the presence
of unobservable fixed attributes of locations that we contribute to the literature concerned with the econometric
identification of social interactions.  It is also worth noting that, as discussed in the introduction and demonstrated
below, the problem of identifying the model when unobservable fixed attributes are included reduces to that of
decomposing a choice-specific fixed effect.  Thus, the asymptotic properties of the estimation procedure that we propose
rely on the sample growing large in the dimension of the number of alternatives.  In this way, the types of applications
that we have in mind for the framework developed here are those where the researcher observes economic agents
selecting one of many possible alternatives (as is often the case in geographic sorting).  Consequently, the economic
environments we  consider will be very different from those that fit within the framework of Brock and Durlauf (2001),
which can be applied to models of with as few as two alternatives.
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and individuals can have unobserved preferences (over and above the shared component ξj) for

location j, εi,j, which are assumed to be distributed independently across individuals according to the

distribution F(0,Σ), where the covariance matrix Σ is defined over locations.

When this model is applied to the population as a whole, the inclusion of σj allows for

anonymous local spillovers that can have a positive (agglomeration) or negative (congestion) effect

on utility.3  When the model is applied to a specific group of individuals, it permits self-segregating

preferences among the individuals in that group.  Ultimately, local spillovers must derive from some

underlying mechanism.  For example, households may desire to live in large metropolitan areas

because of the size and scope of the labor market or the urban amenities that large cities provide.

At the same time, the increased congestion may detract from the utility provided by large versus

small cities.  When such mechanisms are observed in the data, they can be included directly in the

utility function.   In many empirical settings, however, the mechanisms through which local

spillovers operate are more numerous, more difficult to characterize, or less easily measured, and

the inclusion of σj in the utility function distinguishes the collective magnitude of these local

spillovers.  By framing these spillovers in the context of the utility specification shown in equation

(2.1), the goal of this paper is to provide a general estimation strategy for circumstances where it is
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4 Such a utility function might be given by:   

where is a function of the geographic location of alternative j: Rj and the geographic bliss point off i j( , , )l l θ
individual i, Ri.
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not possible to structurally characterize and measure all of the mechanisms through which local

spillovers operate.

Because of the emphasis that we will place below on the role of geography in helping to

identify local spillovers, it is important to point out how exactly geography might enter the utility

function.  While the specific role of geography will vary with the application in question, one way

in which it will naturally enter is as a preference for a geographic “bliss point”.  In models of sorting

within a metropolitan area, for example, the geographic distribution of employment serves as a

natural starting point for evaluating household preferences over locations, with a measure of

commuting distance or time entering the utility function.  In models of sorting across metropolitan

areas with costly migration, an individual’s birthplace defines a natural geographic bliss point, with

some function of distance from individual i’s birthplace to location j entering the utility function.

In such cases, geography can enter utility as an interaction between a household characteristic (e.g.,

birth location) and the location itself.  This sort of interaction is easily included in our framework,4

and can play an important role in identifying our model.

Finally, it is important to note two simplifying assumptions that we maintain throughout this

paper.  First, we assume that an individual’s utility from selecting location j is affected only by the

characteristics of that location, including the share of individuals who also choose alternative j.  In

general, the model and estimation strategy can be extended to account for the possibility of

spillovers across location (i.e., where the attributes of nearby alternatives enter directly into the

utility received from choosing location j).  Second, while it is straightforward to include other

endogenous variables in the analysis (the most important of which is a price associated with each



5 See Bayer, McMillan, and Rueben (2002) and Timmins (2003) for explicit analyses of sorting models with local
spillovers and endogenous prices.

6 Note that it is possible to incorporate other assumptions concerning the nature of idiosyncratic preferences and the
equilibrium concept within this framework.  We could, for example, treat each household’s idiosyncratic preferences
as private information and relax the assumption that each household observed in the data represents a continuum of other
households.  In this case, the choice probabilities correspond to the expected decisions of other agents (possibly masking
important elements of strategic interactions between households).  Seim (2001) uses this interpretation of the error
structure, along with a Bayesian-Nash equilibrium concept, in estimating a model of entry in retail markets. In
developing the theoretical properties of the equilibrium, the estimation procedure, and the identification strategy, we
work with the interpretation of εi specified above.

7 It is worth noting that the use of choice probabilities does not affect the attractive properties of the choice framework
related to self-selection.  Among the continuum of individuals with characteristics (Zi), those individuals that choose
each particular alternative j will be those that get a relatively high draw of εi,j relative to the other choices.  In this way,
the set of individuals predicted to choose an alternative are those that place the highest value on it, as governed by both
household characteristics (Zi) and idiosyncratic preferences.  
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location), we ignore the role of prices and other endogenous variables in the analysis presented in

this paper in order to focus attention on the key issues concerning the estimation of local spillovers.5

Equilibrium

 Throughout our analysis, we assume that individual i’s vector of unobserved preferences ε i

is observed by all of the other individuals in the model, and that agents play a static simultaneous-

move game according to a Nash equilibrium concept.  Moreover, we assume that a continuum of

individuals with different unobserved preferences exists for each vector of observed characteristics

Zi that occurs in the world.  This assumption (which is essentially that the number of agents is

sufficiently large to avoid integer problems) ensures that the unobserved components of preferences

can be integrated out.6  The resulting choice probabilities depict the distribution of location decisions

that would result from a continuum of individuals with a given set of observed characteristics Zi,

each responding to its particular unobserved preferences.7

Given the utility specification described in equation (2.1),  the probability Pi,j that individual

i chooses alternative j can be written as a function of the full vectors of choice characteristics (both



8 We present these results elsewhere rather than including them here in order to maintain the focus on the estimation
and identification of the equilibrium model in this paper.
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observed and unobserved) and individual i’s observed characteristics Zi:

(2.3)

Aggregating these probabilities over all individuals yields the share of individuals choosing location

j:

(2.4)

which, re-written in vector notation, is given by:

     

(2.5)

where  is the density of individual characteristics in the population.  This system of equationsh Z( )

implicitly defines the vector of population shares , and maps [0,1]J into itself, where J is the totalσ

number of alternatives in the discrete choice set.  In this perfect information setting, a sorting

equilibrium is defined to be a set of individual location decisions that are each optimal given the

location decisions of all other individuals in the population.  In Bayer and Timmins (2003), we

demonstrate that such an equilibrium always exists and describe the conditions under which a unique

equilibrium obtains.8  In general, conditional on the other elements of the model, multiple equilibria

arise in the presence of a large enough agglomeration effect, thus there is no way to demonstrate a

priori that a unique equilibrium obtains in a given empirical environment unless one is willing to

assume a congestion effect. 
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3   ESTIMATION

This section describes a procedure for estimating the local spillovers  model just specified

and relates applicable asymptotic results developed elsewhere in the literature.  We begin by

introducing some additional notation that simplifies the exposition, summarizing the portion of the

value provided by location j that is shared equally by all individuals as a choice-specific constant

δj (which includes the location-specific unobservable, ξj).  In this way, the utility function can be

rewritten as:

(3.1)

where

(3.2)

The choice-specific constant is essentially a fixed effect and consequently, the observed location

decisions provide no help in distinguishing the components of δj  This is the essence of the

observational equivalence result established by Ellison and Glaeser (1997) and, consequently, in

writing the likelihood of observing the location decisions in the data, we treat the vector of choice-

specific constants as parameters to be estimated.     

As we described in the previous section, uniqueness is not a generic feature of the sorting

equilibrium.  Consequently, the likelihood function L is not well-defined without an additional

assumption about how an equilibrium is chosen in the presence of a multiplicity of equilibria.  To

this end, we write the probability that the equilibrium with shares  arises conditional on theσ

exogenously given data { , } and parameters { ,α1, β1, Σ} as , where Ω  represents theX Z δ P(σ | )Ω

conditioning set for the likelihood.  The full likelihood function, then, can be written as the product
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of this equilibrium selection probability and the probability that each individual chooses the location

that he is observed to select in the data, conditional on the share of individuals that chooses each

location in the selected equilibrium:    

(3.3)

Ii,j is an indicator variable that equals one if individual i chooses alternative j in the data and zero

otherwise, and  is the probability that individual i chooses location j conditional on theP ji ( | , )σ Ω

exogenous variables and the equilibrium share of individuals that select each location.  

In describing the determination of an equilibrium in Section 2, we assumed an economic

environment with a large number of individuals, so that each individual could each effectively

integrate-out over the preferences of others when making his or her own location decision.  In this

way, the probability that a particular equilibrium is selected is not affected by any individual’s

particular tastes but is instead only a function of the full distribution of individual characteristics and

tastes.  Consequently, the two components of the likelihood function are orthogonal to one another,

as the particular individual location decisions that constitute the second component have no effect

on the set Ω upon which the first component of likelihood function is conditioned.  The

orthogonality of these two components ensures that it is possible to estimate the parameters of the

model using only the second component of the likelihood function, which is simply the likelihood

of observing the individual location decisions in the data conditional on both the exogenous

characteristics and the observed vector of location population shares, .  Put another way,σ

estimation can be based on the assumption that each individual behaves optimally given the

collective choices made by other individuals in the equilibrium that has arisen.  An added benefit

of this strategy is that the procedure does not require the explicit calculation of the model’s



9 It is important to point out that when the number of economic agents is small and perfect information is assumed, (e.g.,
in an IO model of entry), it is incorrect to estimate the model based on the optimality conditions for each agent
conditional on the equilibrium decisions of the other agents.  In this case, because the unobservable associated with each
agent actually affects the equilibrium that arises, the two components of the likelihood function shown in equation (3.3)
are not independent.    

10 It is important to note that when geographic preferences are incorporated explicitly in the utility function such that
each individual economic agent has a geographic bliss point that affects the utility associated with choosing a given
location, the parameters associated with this  form of an interaction between individual and location attributes will be
estimated as part of the first stage of the estimation procedure.  For example, for the utility specification described in
footnote 5 the parameters of the geographic preference function would be estimated in the first stage off i j( , , )l l θ
the full estimation procedure described here.
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equilibrium, which significantly reduces the computational burden.9

To estimate the full set of the model’s parameters, we propose a two-stage estimation

procedure.  In the first stage, we estimate the vector of choice-specific constants , the interactionδ

parameters {α1, β1}, and the parameters of the covariance matrix, Σ, by maximizing the second

component of the likelihood function shown in equation (3.3).10  The second step in the estimation

procedure uses the estimated vector of choice-specific constants , along with a set of appropriateδ

instruments, to estimate equation (3.2) via instrumental variables regression.  It is in estimating the

choice-specific constant regression, that we confront the fact that the share of individuals that select

each location (as well as other variables such as the price of each alternative) is determined

endogenously as part of the sorting equilibrium.

Instrumenting for Local Spillovers

Given the estimate of  obtained from maximizing the probability that each individualδ

chooses the correct alternative, equation (3.2) is simply a regression equation.  The logic of the

choice process itself, however, ensures that σj and ξj are correlated, as an increase in the unobserved

quality of a location mechanically raises the demand for that location.  In order to fully estimate the

parameters of the sorting model, therefore, it is necessary to find an instrument for σj.



11 This strategy can be extended to allow individuals to value the features of locations in a neighborhood surrounding
the chosen location, as long as the geographic extent of this ‘neighborhood’ is reasonably small relative to the full choice
set.
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The instruments that we construct arise naturally out of the sorting model when individuals

value only the characteristics of their chosen location.11  In this case, the fixed attributes of other

locations, particularly those that are close substitutes in geographic space for the given location,

make ideal instruments for the share of individuals that choose location j.  In developing this set of

instruments, we exploit an inherent feature of the sorting process – that the overall demand (as well

as relative demand of different types of individuals) for a particular location is affected by not only

the features of the location itself, but also by the way these features fit in to the broader landscape

of available alternatives.  In particular, the exogenous attributes of other locations influence the

sorting equilibrium (and, thereby, the share of individuals who choose a given location), but have

no direct effect on utility.  In this way, it is natural to use functions of the set of exogenous attributes

of location j and the exogenous attributes of other locations, f(Xj, X-j), as instruments for the share

of individuals that choose location j.

The logic of constructing an instrument in this way is particularly compelling when

geography is explicitly incorporated in the analysis. Consider, for example, a specification of

geographic preferences whereby individuals have a distinct geographic bliss point, with utility

falling in the distance from that point.  In this case, each individual will tend to substitute among

locations near the bliss point and, consequently, the share of individuals that choose any particular

location will be shaped not only by the exogenous characteristics of a particular location, but also

by how these compare to other locations close in geographic space.  In this way, two locations with

the same fixed attributes Xj will attract different numbers of individuals if these locations are

surrounded by other locations with very different levels of exogenous characteristics, and forming

an instrument for σj based on the features of these nearby locations is intuitively appealing.   
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As this example suggests, many forms of f(Xj, X-j) can potentially serve as appropriate

instruments for σj.  In choosing a specific form to use in estimating the model, we are guided by the

optimal instrument for σj, given in this case by:

(3.4)

that is, the expected share conditional on the the full distribution of exogenous choice and individual

characteristics .  Because the equilibrium in the sorting model is not generically unique,{ , }X Z

however, this expectation is not well-defined.  Still, the general logic of equation (3.4) points to a

strategy for constructing an instrument that summarizes the impact of the distribution of alternatives

in exogenous characteristic space into a single instrument for share.  We propose as an instrument

the predicted share of each alternative at an estimate of the parameter values with both (i) the vector

of unobserved characteristics  and (ii) the local spillover parameters α set equal to zero.  Thisξ

corresponds to using the predicted share of individuals that chooses a location based only on the

observed, exogenous choice and individual characteristics used in the model, ignoring the role of

local spillovers.  This instrument provides a  measure of the way that the full landscape of possible

choices impacts the demand for each alternative, combining this information in a concise manner

that is consistent with the economic behavior governed by the choice model itself.

To see the logic of this proposed instrumental variable strategy, consider again a setting in

which households have geographic preferences such that each individual has a distinct geographic

bliss point.  In this case, the nature of the sorting problem ensures that the share of individuals that

choose any particular location is shaped primarily by both the characteristics of this location and

those of other locations close in geographic space. Our proposed instrument captures exactly this

logic but uses only that portion of the  share of individuals predicted to choose a particular location



12 If data are observed from multiple markets as in the Monte Carlo simulations below, J indicates the total number of
alternatives.  This means that the methodology presented here is applicable in applications where individuals choose
from a large set of alternatives in a single market or a smaller number of alternatives in each of many distinct markets
or choice environments. 
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based on the observable, exogenous features of locations.  In this way, given an even spread of

geographic bliss points in the population, the magnitude of the instrument for two locations with

identical exogenous characteristics Xj will be greater for the location that is surrounded by fewer

high-quality alternative locations.  Clustering in the distribution of geographic bliss points or

variation in the exogenous characteristics of individuals across bliss points only serves to increase

the variation in our proposed instrument across locations.

Many of the preference parameters (in particular those associated with geography), are

recovered in the first stage of the overall estimation procedure.  Consequently, specifying values for

these parameters when developing instruments is straightforward.  The only other parameters that

are needed in order to construct our proposed instrument are the parameters of equation (3.2), which

govern household preferences for exogenous location attributes, β0.  Importantly, any initial guess

for these parameters can be used to derive valid instruments.  Because this initial guess is not likely

to be very accurate, however, an iterative procedure that forms new instruments with each iteration

based on the estimate of β0 obtained in the previous iteration can be used to improve efficiency. 

Asymptotic Properties of the Estimator

The asymptotic distribution theory for this estimator is developed in Berry, Linton, and Pakes

(2002).  In general, there are two dimensions in which a sample can grow large: I, the number of

individuals (micro-data) or simulated individuals (aggregate data), and J, the total number of

alternatives.12  For any sample of alternatives of finite size J the consistency and asymptotic

normality of the first-stage estimates (δ, α1, β1) follows directly as long as I goes to infinity.  If the

true vector  were used in the second stage of the estimation procedure, the consistency andδ



13 This statement assumes a number of additional regularity conditions.  See Berry, Linton, and Pakes (2002) for details.
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asymptotic normality of the second-stage estimates (α0, β0) would follow as long as J goes to

infinity.13  In practice, ensuring the consistency and asymptotic normality of the second-stage

estimates is complicated by the fact the vector  is estimated rather than known.  Berry, Linton, andδ

Pakes (2002) show that the consistency of the second-stage estimates follows as long as I grows fast

enough relative to J such that J log(J)/I goes to zero, while asymptotic normality at the rate of the

square root of J follows as long as J2/I is bounded.  Intuitively, these conditions ensure that the noise

in the estimate of  becomes inconsequential asymptotically, thereby ensuring that the asymptoticδ

distribution of (α0, β0) is dominated by the randomness in  as it would be if  was known.ξ δ

4   SOURCES OF VARIATION IN THE DATA AND THE PROPOSED IV STRATEGY

A natural concern with this type of structural estimation procedure is that the parameters of

the model, and especially those associated with local spillovers, might be mechanically shaped by

the researcher’s assumptions concerning the functional form of the utility function and the

distribution of the error term.  In this section, we demonstrate that, while structure does play a role

in the estimation, under appropriate circumstances, it is underlying variation in the data that drives

the identifying variation in our proposed instrument.  

Consider first an empirical setting in which a researcher possesses only aggregate shares for

a single cross section of data in which all individuals have identical geographic preferences.  In this

case, there is no hope of distinguishing heterogeneity in tastes from the idiosyncratic term εi,j and,

consequently, we consider only how the following restricted version of the model is identified:
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Without variation in the choice set or any other form of individual heterogeneity (such as variation

in geographic preferences), it is impossible to estimate any aspect of the distribution of εi,j using only

observed location decisions and, consequently, a researcher following the two-step estimation

procedure that we propose above would be required to specify εi,j’s exact distribution.  Consider the

case in which the researcher assumes that εi,j is distributed according to the Weibull distribution,

giving rise to the multinomial logit model.  In this model, the share of individuals that choose each

alternative is given by:

(4.2)

and for an initial guess of our proposed instrument is given by:$β

(4.3)

Since the denominator in equation (4.3) is identical for all alternatives, the useful information in the

instrument will come simply from the non-linear transformation of the exogenous characteristics,

exp(Xj! ).  Consequently, the only information contained in the instrument over and above the$β

exogenous choice characteristics Xj derives from the assumed distribution of εi,j. i.e., no other source

of variation in the data helps to estimate local spillovers.   An obvious concern, then, in attempting

to estimate the model without any effective variation in the choice set or in geographic preferences

is that the parameter estimates are not robust to mis-specification of the utility function (e.g., the
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inclusion of higher-order terms) or the distribution of the error term. 

In our opinion, therefore, it is only reasonable to estimate local spillovers when one observes

some form of effective variation in the choice set.  Effective variation in the choice set can arise in

data drawn from multiple geographically-distinct markets, a single market observed over many

periods, or variation in the orientation of individuals within a single market (we discuss this latter

form of variation in greater detail below).  In this way, we agree with the implication of the

observational equivalence result of Ellison and Glaeser (1997) when one observes only a single

cross-section of data with no effective choice set variation.  As we now demonstrate, however, our

proposed instrument has empirical content that goes beyond the non-linear transformation implied

by the distribution of εi,j when the researcher observes effective variation in the choice set.

Consider, for example, the case in which the researcher has aggregate data from multiple

geographically-distinct markets.  A researcher might, for example, households’ choices of

community or neighborhood in each of a number of distinct metropolitan areas (see, for example,

Bajari and Kahn (2001)).  Imagine again attempting to identify the utility function:

(4.4)

where the superscript indicates that individual i is choosing among alternatives in market m.  Again

for simplicity, consider the case in which the researcher assumes that εi,j
m is distributed according

to the Weibull distribution.  In this case, the share of individuals in market m that chooses each

alternative is given by:

(4.5)
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and for an initial guess for our proposed instrument is given by:$β

(4.6)

Notice that, unlike in the single market case, the denominator in equation (4.6) varies across markets

and, consequently, rather than reducing to a simple non-linear transformation of Xj governed by the

assumed distribution of εi,j, the instruments in this case are also affected by the particular set of

locations available within each market.  The variation in our proposed instrument is therefore

determined in part by non-linearities implied by the assumption about the error distribution, but also

by variation in the choice set across markets.  With enough variation in the choice set, then, the

majority of the additional variation in the instrument over and above the included exogenous

characteristics Xj will be driven by differences in the choice set across individuals.

A particularly intriguing form of effective choice set variation given the geographic nature

of many empirical locational choice problems derives from variation in the orientation of individuals

within a single market or among a single set of alternatives.  This form of variation arises, for

example, when individuals choose from an identical set of alternatives but have geographic

preferences governed by a distinct geographic bliss point which varies across individuals.  In this

case, the geographic distribution of bliss points generates effective variation in the choice set, as

each individual views the set of alternatives conditional on his or her own perspective as governed

by the bliss point.  In this way, when geographic preferences can be accounted for explicitly in the

location choice problem, they will provide a source of variation in the data needed to distinguish

local spillovers from unobservable location-specific attributes and, consequently, the logic of the

underlying sorting problem itself holds the key to solving the central endogeneity problem that arises
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in a broad class of sorting models.

A Pair of Heuristic Examples

We conclude this discussion with a pair of examples demonstrating that, given enough data

with varying choice sets, one could distinguish local spillovers from any general form of the utility

function and alternative distributional assumptions on unobserved tastes.  To provide the intuition

for how agglomeration effects might be distinguished, we begin by considering a political setting

somewhat akin to the 1992 US presidential election in which a location should be interpreted as a

location in policy rather than geographic space.  Consider a political election with two candidates,

A and B.  If candidate A is more popular in the absence of local spillovers, the presence of an

agglomeration effect (which here can be interpreted as a preference for picking, or putting one’s

financial resources behind, the winner) will tend to increase his share of the vote.  Now consider the

introduction of a third candidate, C.  In the presence of the agglomeration effect, the introduction

of C can actually increase the share of individuals that choose B.  This is especially likely when C

is a close substitute for A, thereby drawing most of his share away from the originally more popular

candidate A and, consequently, reducing the pull of the agglomeration effect that initially enhanced

candidate A’s share of the votes relative to B.  Such an increase in the share of individuals selecting

a particular alternative is impossible in a standard random utility model, no matter what the

functional form of utility or the assumed error structure.  In this way, the presence of an

agglomeration effect produces substitution patterns that are distinguishable from higher order forms

of the components of the utility function (e.g., introducing quadratic terms) and from alternative

assumptions about the error distribution (e.g., random coefficients).

Showing how the presence of a congestion effect can lead to a violation of this basic property

of random utility models requires a more subtle example.  In particular, consider a residential choice

between two locations, A and B, with characteristics (x1, x2).  Suppose location A is relatively
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abundant in the characteristic x1, while B has relatively more of x2.  Imagine also that there are an

equal number of individuals of two types, those that have a strong preference for x1 relative to x2 and

vice-versa.  In the absence of any local spillover, one would generally expect individuals to sort

across locations by type in such a way that there will be an equal number of individuals selecting

each.  The presence of a pure congestion effect would have very little impact on this initial

allocation, as the roughly equal proportion of individuals selecting each location would leave little

room for individuals to spread more evenly in response to their distaste for congestion.  Now

consider the introduction of a close substitute for location A, which, as in the previous example,

draws most of its residents away from A in the absence of local spillovers.  In the absence of a

congestion effect, one would expect little change in the choices of individuals with a strong

preference for x2 relative to x1.  In the presence of a congestion effect, however, the shrinking share

of individuals choosing location A will tend to draw some individuals from location B.  This, as in

the previous example, is a clear violation of the strict substitutability of alternatives in a classical

random utility model, as the introduction of a new location in this case increases the (type-specific)

share of individuals that choose an existing location.

Given a correctly specified model, the non-linearities implied by the discrete choice problem

ensure that our model will be parametrically identified.  From a practical point-of-view, however,

the identification of a particular model specification based on such non-linearities always invites

questions concerning model mis-specification.  Instead, one would like to know the source of

variation in the data that ties down the parameter estimates.  These examples demonstrate that the

presence of local spillovers can lead to substitution patterns that cannot arise in the classical random

utility model, no matter what the form of the utility function or the distribution of unobservable

tastes.  This suggests that it is generally possible to distinguish local spillovers from a classical

random utility framework as long as the researcher is able to learn about substitution patterns – that

is, as long as the researcher observes enough variation in the choice set.  Our proposed instrument
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is intended to capture this variation.  In the following section, we provide Monte Carlo evidence of

the relative bias in the estimation of local spillovers under different modeling assumptions and

degrees of variation in the choice set.

5   MONTE CARLO EVIDENCE

In this section, we conduct a series of Monte Carlo experiments designed to evaluate the

quality of our proposed instrumenting strategy in small sample settings, both according to an

objective set of criteria and relative to alternative strategies for estimating local spillovers employed

elsewhere in the literature.  We consider a sorting model with M markets and J locations in each

market.  Each location is described by a pair of exogenous and observable attributes, (x1,j
m, x2,j

m), and

an attribute which is unobserved by the econometrician but known to the individuals engaged in the

hypothetical decision-making process, ξj
m.  [x1,j

m, x2,j
m, ξj

m] are distributed identically and

independently across markets and choices according to:

(5.1)

For the purposes of our Monte Carlo exercises, we set π1 = π2 = πξ = 0 and σ1
2 = σ2

2 = σξ2 = 2, but

alternative values (as well as non-zero off-diagonal elements in the variance-covariance matrix)

could have been used instead.

We maintain the linear functional form described in the previous section for the utility of

individual i, participating in market m by choosing location j:

(5.2)



14 We consider two sets of data dimensions, which resemble different empirical contexts but which share a common
number of total observations: (J, M) = (100, 10) and (10, 100).  The first case, in which individuals choose over a wide
array of alternatives but are only observed in a limited set of markets, approximates the data dimensions in most regiona
economics applications and in Industrial Organization applications where individuals in different years or countries
choose over a large number of products (e.g., automobiles), accounting for the decisions of their neighbors out of a
desire to conform (i.e., to gain access to a network of qualified repairmen), or to be unique.  The second case describes
the opposite extreme, in which individuals are spread over many markets and choose amongst a limited set of
alternatives.  This corresponds to models of choice over  alternative information networks [Rysman (1999)], as well as
individuals choosing to live in one of a small set of sub-communities in many different SMSA’s.  Given the arguments
made in Section 4, we expect identification to be stronger in the cases with data taken from greater numbers of markets.
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where we treat Zi
m as a scalar, and assume that it is drawn from a log-normal distribution with

underlying N(0, ½), distributed identically and independently across individuals and markets as well

as independently of [x1,j
m, x2,j

m, ξj
m].  For brevity’s sake, we consider a single vector of preferences

for exogenous attributes, (β01, β02, β11, β12) = (1.0, 2.0, 0.3, 0.4), but allow α0 to take on values

representing the marginal disutility of congestion (α0 < 0), the marginal utility of agglomeration (α0

> 0), and the case in which no local spillovers are, in fact, present (α0 = 0).

For a given number (M) and size (J) of markets,14 we calculate the probability distribution

of choices over the set of locations for 10,000 individuals, each with a randomly drawn value of Zi
m.

Recall that the asymptotic properties of the estimator hold as the total number of alternatives in the

data J*M grows large.  In this way, each simulated individual is assumed to represent a continuum

of individuals with the same Zi
m, but who differ in their idiosyncratic unobservables, εi,j

m, which are

assumed to be drawn from a Weibull distribution.  Simulating these decisions involves an iterative

process whereby we (i) start with an initial guess at the distribution of individuals across choices in

each market (e.g., uniform), (ii) solve for the optimal choices of all individuals given the distribution

assumed in (i), (iii) determine new shares for each alternative as defined by these choices, and (iv)

return to (ii), inserting the share calculated in (iii) into the utility function.  We iterate over these

steps until the share of individuals choosing each alternative that enters into the utility function is

the same as that which comes out of the aggregate choice process.  We repeat this iterative
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procedure for each of the m = 1, 2, ..., M markets, and then repeat the entire process one-hundred

times, once for each simulation run in our Monte Carlo analysis.

Section 3 described our proposed instrument for σj
m, and how it is to be used in an iterative

estimation routine.  Restating, we begin with an initial guess (indicated by the superscript 0) at the

values of the parameters, e.g., (β01 
0, β02 

0, β11 
0, β12 

0) = (1.0, 1.0, 0.0, 0.0), and use them to calculate

aggregate choice shares, ignoring unobserved choice attributes (ξj
m) and local spillovers (ασj

m):

(5.3)

We use the vector of   as instruments for σj
m in the second-stage estimation of equation (3.2),~ ',σ j

m s0

yielding a vector of consistent (but inaccurate) estimates of all parameters, (β01 
1, β02

1, β11
1, β12 

1).  We

then use these parameter estimates to form new fitted shares according to (5.3), ,and repeat the~ ,σ j
m 1

estimation process.  

Tables 1 and 2 describe the outcome of this process for (J, M) =  (100, 10) and (10, 100),

respectively.  For the purpose of comparison, we also report the results of three alternative

estimation procedures: (i) OLS – a procedure that is identical to ours in every respect, except for

ignoring the endogeneity of σj
m in the estimation of equation (3.2), (ii) No Spillovers – a procedure

that simply ignores the presence of local spillovers in equation (3.2) (i.e., constraining α0 = 0), and

(iii) ML Logit – a procedure that estimates all of the model’s parameters in a single maximum

likelihood routine, treating the Weibull errors, εi,j
m, as the only unobservables (i.e., ignoring the

presence of the unobserved attribute, ξj
m).



15 Unlike the MSE, this second criterion incorporates both the point estimate of α and its standard error in each
simulation run.  According to this criterion, an estimate of α may still be “good” even if it is far from the true value, if
it has a correspondingly large standard error that reflects underlying noisy data.

16 Note that the first stage of each of these estimation procedures (i.e., in which β11 and β12 are recovered) is identical.
The only difference comes in the second-stage decomposition of δj according to equation (3.2), depending upon whether
local spillovers are ignored, included but treated as an exogenous variable, or included and instrumented in the manner
described above.

25

In addition to reporting the mean and standard deviation of the parameters recovered from

the one-hundred simulated estimations, we summarize the quality of the estimated local spillover

parameter with its mean squared error (MSE), and by reporting the percentage of estimates for

which we fail to reject the true underlying value of α0 at a 5% significance level.15 

Table 1 summarizes the outcomes of the Monte Carlo procedure applied to the data set

containing ten markets and one-hundred choices per market in each simulation run.  The first thing

to note about these results is the precision with which the coefficients on the interactions between

individual and choice attributes (i.e., β11 and β12) are estimated in the models that allow for an

unobservable choice attribute (i.e., the No Spillovers, OLS, and IV models) when such an attribute

is, in fact, present.16  The bias from ignoring the presence of the unobserved attribute is even more

apparent when considering the coefficients on the common utility terms (i.e., β01 and β02), with the

ML Logit estimates consistently underestimating the true values of these parameters by more than

68% of their values.  Of the three models that allow for an unobserved attribute, the mean IV point

estimates are quite accurate, and exhibit very little variation across simulation runs.

Turning next to the estimates of the local spillover term, the two models that include the

interaction but fail to control for its endogeneity (i.e., ML Logit and OLS) show strong upward biases

in its effect on utility, as expected.  The size of this bias, moreover, is greater in the case of

congestion than in the case of agglomeration.  For each value of α0, the IV estimate is very close to

its true value and has a MSE that is typically an order of magnitude smaller than that resulting from



17 Only in the case of the OLS model applied to α = 3 does the MSE approach that of the IV estimates.

18 Stated more formally, these estimates are based on a number of individual observations that corresponds to the double
machine precision with which shares are measured in Fortran 90.  In discrete choice models based on aggregate share
data, standard errors are adjusted to reflect the number of individual decision-makers underlying the measured shares
(see Berry, Levinson, and Pakes (1995) for an application to automotive purchase survey data).  In our application, that
number is effectively infinite.
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the other models.17   The final column of Table 1 reports the percentage of the simulation runs for

which the confidence interval around the point estimate of α0 contains that parameter’s true value.

Note first that, given the way in which the simulated share data were constructed (i.e., based on

10,000 different individuals, each of whom represents a continuum of observationally identical

individuals who differ in their values of εi,j
m), the ML Logit estimates are effectively based on an

infinite number of individual observations and thus have zero standard errors.18  Given that none of

the ML Logit estimates of α0 approach the parameter’s true value, the percentage of confidence

intervals satisfying the criterion in the final column of Table 1 is zero.  For the OLS estimates, a

small number of simulation runs typically satisfy the criterion (particularly when α0 $ 0).  In this

case, α0 is identified by the regression in (3.2) that decomposes δj into the utility effects of choice

attributes, and its precision depends upon the number of choices and markets rather than on the

number of individuals.  Increased standard errors relative to the ML Logit model mean that some

confidence intervals contain the true value of α0, but the biases in the OLS estimates that are

apparent in their MSE’s ultimately limit the number of simulation runs where the criterion is

satisfied.  In the case of the IV model, however, this bias is greatly reduced, increasing the number

of simulation runs that fail to reject the true value of α to at least 90% in every case.

Turning to Table 2, which summarizes the results derived from the data containing one-

hundred markets and ten choices in each market, the same trends found in Table 1 are evident.  The

salient difference between Tables 1 and 2 appears in the increased precision with which the effect

of local spillovers are estimated by the IV model, as evidenced by the 92% reduction in MSE for
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every value of α0.  This confirms the intuition presented in Section 4 for how local spillovers can

be distinguished from other choice models by looking at variation in substitution patterns across

markets.  Data taken from more markets increases this source of variation, with more precise

estimates as a result.

6 CONCLUSION

It is well-established that individuals’ or firms’ location decisions alone are insufficient to

distinguish the behavioral effects of spillovers (i.e., anonymous agglomeration or congestion effects,

type-specific social interactions amongst individuals, and industry- or sector-specific spillovers

amongst firms) from those of local natural advantages.  That is, what a naive model is likely to

interpret as an agglomeration effect may simply be the effect of desirable unobservable choice

attributes reflected in the decisions of others.  At the same time, determining the separate roles of

spillovers and natural advantages is at the heart of many questions in regional and urban economics

(not to mention labor, public finance, development, environmental economics, and industrial

organization).  This paper proposes an empirical strategy for recovering these separate determinants

of behavior in a broadly applicable class of equilibrium sorting models.  That strategy re-casts the

problem as one of an endogenous variable in a familiar regression context, and relies upon the

behavioral model itself to derive instruments based on alternatives’ isolation in exogenous attribute

space.  We provide intuition for that instrumenting strategy, describe practically how it is

implemented, and use a series of Monte Carlo exercises to show that it performs well in a variety

of empirical settings and in comparison to other approaches that have been used for similar

problems.

While our model specification does rely on a distributional assumption about unobserved

tastes, a virtue of our strategy is that the information content of our instruments (and, hence, the

power of the model in identifying spillovers) is enhanced by data exhibiting effective variation in
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the choice set across individuals.  We demonstrate this with our Monte Carlo exercises and with a

pair of heuristic examples which show that, with sufficient effective choice-set variation, our model

could distinguish spillovers from any other type of random utility model without relying on any

other modeling assumptions.  This is an important feature if we are to have confidence in predictions

based on our model, even in light of inevitable model mis-specification.
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Table 1 – Monte Carlo Simulation Results
Data Generation: J = 100, M = 10

α
Estimation

Method

φ1 (0.3) φ2 (0.4) γ1 (1.0) γ2 (2.0) α MSE

α

% Fail to

Reject

True α at 5%

Significanceµ σ µ σ µ σ µ σ µ σ

-3

ML Logit 0.23 0.05 0.24 0.05 0.17 0.15 0.56 0.15 4.87 1.04 63.06 0.00

No Interaction 0.30 0.01 0.40 0.02 0.77 0.03 1.71 0.03

OLS 0.30 0.01 0.40 0.02 0.97 0.03 1.93 0.04 2.06 1.19 27.00 0.00

IV 0.30 0.01 0.40 0.02 1.01 0.03 2.00 0.03 -3.20 1.38 1.95 0.94

0

ML Logit 0.21 0.05 0.21 0.06 0.20 0.17 0.63 0.18 5.05 0.71 25.98 0.00

No Interaction 0.30 0.02 0.40 0.03 1.00 0.03 2.00 0.03

OLS 0.30 0.02 0.40 0.03 0.98 0.03 1.96 0.04 3.07 0.82 10.09 0.03

IV 0.30 0.02 0.40 0.03 1.00 0.03 2.00 0.04 -0.14 1.06 1.15 0.95

3

ML Logit 0.22 0.18 0.26 0.32 0.15 0.26 0.53 0.42 6.09 0.96 10.44 0.00

No Interaction 0.31 0.11 0.43 0.17 1.27 0.03 2.36 0.03

OLS 0.31 0.11 0.43 0.17 0.99 0.08 1.96 0.13 4.50 0.46 2.45 0.08

IV 0.31 0.11 0.43 0.17 1.00 0.08 1.99 0.12 2.84 0.95 0.93 0.90
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Table 2 – Monte Carlo Simulation Results
Data Generation: J = 10, M = 100

α
Estimation

Method

φ1 (0.30) φ2 (0.40) γ1 (1.00) γ2 (2.00) α MSE

α

% Fail to

Reject

True α at 5%

Significanceµ σ µ σ µ σ µ σ µ σ

-3

ML Logit 0.22 0.02 0.23 0.03 -0.04 0.03 0.11 0.04 3.71 0.12 44.98 0.00

No Interaction 0.30 0.01 0.40 0.02 1.13 0.03 1.75 0.04

OLS 0.30 0.01 0.40 0.02 0.84 0.04 1.71 0.05 0.38 0.31 11.49 0.00

IV 0.30 0.01 0.40 0.02 1.00 0.04 2.00 0.05 -3.01 0.40 0.16 0.96

0

ML Logit 0.21 0.03 0.20 0.04 -0.01 0.04 0.18 0.06 3.92 0.10 15.4 0.00

No Interaction 0.30 0.02 0.40 0.03 1.27 0.03 2.00 0.04

OLS 0.30 0.02 0.40 0.03 0.89 0.04 1.80 0.05 2.05 0.22 4.24 0.00

IV 0.30 0.02 0.40 0.03 1.00 0.04 2.00 0.05 -0.01 0.30 0.09 0.96

3

ML Logit 0.22 0.17 0.24 0.31 0.12 0.22 0.37 0.35 4.77 0.55 3.43 0.00

No Interaction 0.31 0.07 0.41 0.11 1.44 0.04 2.30 0.04

OLS 0.31 0.07 0.41 0.11 0.92 0.06 1.87 0.09 4.20 0.15 1.47 0.00

IV 0.31 0.07 0.41 0.11 0.99 0.06 1.99 0.08 2.98 0.26 0.07 0.91


