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Abstract

As evaporation of water is an energy-demanding process, increasing evapotranspiration rates decrease the surface 

temperature (Ts) of leaves and plants. Based on this principle, ground-based thermal remote sensing has become one 

of the most important methods for estimating evapotranspiration and drought stress and for irrigation. This paper 

reviews its application in agriculture. The review consists of four parts. First, the basics of thermal remote sensing are 

briefly reviewed. Second, the theoretical relation between Ts and the sensible and latent heat flux is elaborated. A mod-

elling approach was used to evaluate the effect of weather conditions and leaf or vegetation properties on leaf and 

canopy temperature. Ts increases with increasing air temperature and incoming radiation and with decreasing wind 

speed and relative humidity. At the leaf level, the leaf angle and leaf dimension have a large influence on Ts; at the vege-

tation level, Ts is strongly impacted by the roughness length; hence, by canopy height and structure. In the third part, an 

overview of the different ground-based thermal remote sensing techniques and approaches used to estimate drought 

stress or evapotranspiration in agriculture is provided. Among other methods, stress time, stress degree day, crop 

water stress index (CWSI), and stomatal conductance index are discussed. The theoretical models are used to evalu-

ate the performance and sensitivity of the most important methods, corroborating the literature data. In the fourth and 

final part, a critical view on the future and remaining challenges of ground-based thermal remote sensing is presented.

Key words: Canopy temperature, corn, grapevine, infrared thermography, leaf temperature, non-contact thermocouple, thermal 
camera, wheat.

1 Introduction

Evapotranspiration is the process in which water stored in the soil 

or vegetation is converted from the liquid into the vapour phase 

and is transferred to the atmosphere. Because the energy required 

to break the hydrogen bonds in this phase transition is withdrawn 

from the soil or vegetation, evapotranspiration decreases the eco-

system’s surface temperature (Ts) (Jones, 1992, 1999b).

Therefore, since the 1960s, researchers tried to apply canopy 

surface temperature for assessing plant-water and plant-health 

status (see Fuchs and Tanner, 1966, for an early overview). This 

pioneering research revealed the extreme difficulties in using sur-
face temperature measurements, caused by the large influence of 

meteorological conditions and crop characteristics on Ts (Idso, 

1982). It wasn’t until measurement instruments became cheaper 

and new methods were developed to correct Ts for meteorological 

conditions that thermal remote sensing techniques could be applied 

in irrigation management and planning. The availability of thermal 

cameras led to a new boom in methods and applications of thermal 

remote sensing in the 2000s, an evolution that is still ongoing.

In this article, the application of ground-based thermal remote  

sensing in agriculture is reviewed. First, the basic principles and meas-

urement techniques are introduced (section 2). Next, the theoretical 

relation between surface temperature and the evapotranspiration/
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energy balance is elaborated at leaf and crop scale (section 3), after 

which the most important application methods are discussed (sec-

tion 4). Finally, remaining knowledge gaps and future challenges 

for ground-based thermal remote sensing in agriculture are briefly 
discussed in section 5. A list of all abbreviations is given in Table 1.

This review focuses on ground-based thermal remote sensing 

and does not consider satellite or (high-altitude) airborne remote 

sensing techniques, as these are covered by several recent 

review papers (e.g. Gowda et al., 2008; Kalma et al., 2008;  

Li et al., 2009).

Table 1.  Abbreviation list

Symbol Meaning Unity

α Albedo [–]

αaero Aerodynamic adjustment parameter [–]

αl Albedo of lower leaf side [–]

αPT Priestley-Taylor coefficient [–]

αu Albedo of upper leaf side [–]

aH Parameter in equation 34 [–]

apot Parameter (intercept) of non-water stressed baseline (equations 45, 47)  [–]

βaero Aerodynamic adjustment parameter (equation 38) [–]

B Sublayer-Stanton number (equation 35) [–]

BIOTIC Biologically Identified Optimal Temperature Interactive Console (ST) [min or hours]

bpot Parameter (slope) of non-water stressed baseline (equations 45, 48) [–]

Br Sublayer-Stanton number adjusted for radiometric roughness length (equation 37) [–]

cp The heat or thermal capacity of the air [J kg–1 K–1]

CTD Canopy Temperature Depression (Tc – Ta) [K or °C]

CTV Critical Temperature Variability (Tc,max – Tc,min) [K or °C]

CWSI Crop Water Stress Index (equation 41)  [–]

CWSIa CWSI obtained with analytical approach [–]

CWSId CWSI obtained with direct approach (equation 49) [–]

CWSId,high CWSId estimated from Tl, Tdry,high and Twet,high [–]

CWSId,low CWSId estimated from Tl, Tdry,low and Twet,low [–]

CWSIe CWSI obtained with empirical approach [–]

δe Vapour pressure deficit [Pa or kPa]

△T Difference between canopy and air temperature (Tc – Ta) [K or °C]

△Tdry △T of a non-transpiring crop [K or °C]

△Tpot △T of a potential crop (crop not experiencing drought stress) [K or °C]

d Zero displacement height [m]

D Characteristic leaf dimension [m]

Di Proportion of diffuse light [–]

ε Overall emissivity [–]

εapp Apparent emissivity (equation 8)  [–]

εc Canopy (or crop) emissivity [–]

εclr Clear-sky emissivity (equation 6) [–]

εeff Effective emissivity of the sky (equation 6) [–]

εl Leaf emissivity [–]

εsoil Soil emissivity [–]

ea Vapour pressure in the air [Pa or kPa]

e*
s(T0) Saturated vapour pressure at temperature T0 [Pa or kPa]

ϕ Viewing angle [°]

F Factor (≥1) accounting for sky cloudiness (equation 6) [–]

fc(ϕ) Fractional vegetation cover (equation 9) [–]

γ Psychrometric constant [kPa K–1]

Γi Gi Rn
–1 (equation 31) [–]

G Factor relating gs and Ig (equation 58) [mmol s–1 m–2 or mm s–1]

Gi Soil heat flux [W m–2]

gc Crop stomatal conductance [mmol s–1 m–2 or mm s–1]

gs Leaf stomatal conductance [mmol s–1 m–2 or mm s–1]

gs,l Stomatal conductance on lower leaf side [mmol s–1 m–2 or mm s–1]

gs,u Stomatal conductance on upper leaf side [mmol s–1 m–2 or mm s–1]

H Sensible heat flux (equation 14) [W m–2]

hat Indicator of drought stress derived from 3T method (equation 62) [–]

hc Vegetation (canopy) height [m]
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Table 1. continued

Symbol Meaning Unity

Hdry H of a completely dry leaf [W m–2]

Hr Relative humidity [%]

Hsoil H of soil layer in TSM

Ig Stomatal conductance index (equation 57) [–]

IRT Infrared Thermometer: general name for non-imaging thermal infrared devices (temperature guns or 

stand-alone sensors) 

Kin Incoming shortwave radiance [W m–2]

Kin,l Kin at lower leaf side [W m–2]

Kin,u Kin at upper leaf side [W m–2]

Kout Outgoing shortwave radiance [W m–2]

k von Karman constant for momentum (0.41) [–]

λE Latent heat flux (evapotranspiration flux density) [W m–2]

λEc λE of canopy layer in TSM [W m–2]

λEpot λE of potential crop (crop not experiencing drought stress) [W m–2]

λEsoil λE of soil layer in TSM [W m–2]

L Leaf length [m]

Lemitted Longwave radiation emitted by a system [W m–2]

Lin Incoming longwave radiance [W m–2]

Lreflected Reflected longwave radiation [W m–2]

Lout Outgoing longwave radiance (equation 3) [W m–2]

LAI Leaf area index [m2 m–2]

LAIshade LAI of shaded canopy [m2 m–2]

LAIsun LAI of sunlit canopy [m2 m–2]

NDVI Normalized difference vegetation index [–]

OSM One-source model

ψH Monin-Obukhov stability function for heat flux [–]

ψM Monin-Obukhov stability function for momentum [–]

ρa Air density [kg m–3]

rae Effective aerodynamic resistance (equation 36) [s m–1 or s mm–1]

raH Leaf or canopy resistance to sensible heat transport [s m–1 or s mm–1]

raH,l Resistance to sensible heat transport on lower leaf side [s m–1 or s mm–1]

raH,u Resistance to sensible heat transport on upper leaf side [s m–1 or s mm–1]

raH,u(free) Leaf resistance to free convection of H on upper leaf side [s m–1 or s mm–1]

raH,u(forced) Leaf resistance to forced convection of H on upper leaf side [s m–1 or s mm–1]

raM Canopy resistance to momentum exchange [s m–1 or s mm–1]

raV Resistance to vapour transport in the boundary layer/air [s m–1 or s mm–1]

rc Crop stomatal resistance [s m–1 or s mm–1]

rc,pot rc of potential crop (crop not experiencing drought stress) [s m–1 or s mm–1]

rHR Leaf resistance to sensible heat transport and radiative heat loss [s m–1 or s mm–1]

rl Total resistance of leaves to vapour losses [s m–1 or s mm–1]

rR (Virtual) leaf resistance to radiative transfer (equation 53) [s m–1 or s mm–1]

rs Leaf stomatal resistance [s m–1 or s mm–1]

rsoil Resistance to heat flow between the soil layer and the canopy layer in TSM [s m–1 or s mm–1]

rv Total resistance to vapour transport [s m–1 or s mm–1]

Rn Net radioation [W m–2]

Rni Isothermal net radiation [W m–2]

Rn,c Rn of the canopy layer [W m–2]

Rn,dry Rn of a completely dry leaf [W m–2]

Rn,soil Rn of the soil layer [W m–2]

σ Stefan-Boltzmann constant (5.675 10–8 W m–2 K–4) [W m–2 K–4]

σ(ε) Standard deviation of ε between leaves [–]

σ(Tc) Canopy temperature variability [K or °C]

σ(Tl) Standard deviation on Tl measurement [K or °C]

s Slope of the curve relating T with e*
s(T) (equation 17) [Pa K–1]

S Total aboveground energy storage [W m–2]

SAVI Soil-adjusted vegetation index [–]

SDD Stress degree day (equation 40) [K or °C]
ST Stress time index [min or hours]
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2 Basics of thermal remote sensing

2.1 Basic principles and terminology of thermal 
remote sensing

According to Planck’s Fundamental Radiation law and Wien’s 

Displacement law, every system with a temperature above 0 K 

emits radiation, of which the intensity and the spectral distribution 

are determined by the temperature of the system (Fuchs, 1990). 

The energy flux density of all ecosystems peaks at ~10 µm and 
can be detected optimally in the thermal infrared optical window 

between 7 and 14 µm (Fuchs and Tanner, 1966; Fuchs, 1990).
The total amount of radiation energy flux density emitted by 

a system [Lemitted, W m–2)] is a function of its temperature (in K), 

according to the Stefan-Boltzmann law:

 Lemitted = σ Tbb
4 = εσ Ts

4 (1)

with Tbb the blackbody temperature (K), Ts the surface 

radiometric temperature (K), σ the Stefan-Boltzmann constant 

(5.67 10–8 W m–2 K–4), and ε the overall emissivity (–) of the 

system.

A blackbody is an idealized object that is a perfect absorber 

of all incoming radiative energy and a perfect emitter of radi-

ation. The blackbody temperature corresponds with the tempera-

ture that a blackbody would have if it emits the same radiation 

energy flux density as the system (Norman and Becker, 1995). 
In reality, however, systems are not perfect emitters or absorbers 

of radiation. The overall emissivity ε is a dimensionless variable 

between 0 and 1 that indicates how well a system resembles a 

blackbody in emitting radiation. Although ε is wavelength spe-

cific and depends on the viewing angle (Fuchs, 1990; Norman 
and Becker, 1995; Jones et al., 2003), a constant overall emissiv-

ity can be assumed in agricultural research (Fuchs, 1990) with 

negligible error (see Norman and Becker, 1995, for a discussion).

(Eco)systems are not perfect absorbers of radiation (i.e. they 

are not blackbodies), which implies that they reflect some of 
the incoming longwave radiation Lin (W m–2). According to 

Kirchhoff’s law of thermal radiation, the absorption in the ther-

mal wavelengths is equal to the emissivity and the reflected long-

wave radiation (Lreflected) is:

 Lreflected = (1 – ε) Lin (2)

Table 1. continued

Symbol Meaning Unity

θ Leaf inclination angle [°]

T0 Aerodynamic temperature [K or °C]

Ta Air temperature [K or °C]

Tbb Blackbody temperature (equation 1) [K or °C]

Tbg Background temperature (equation 6) [K or °C]

Tbr Brightness temperature (equation 4) [K or °C]

Tc Canopy surface temperature [K or °C]

Tdry Surface temperature of dry reference surface [K or °C]

Tdry,high Higher estimate of Tdry due to difference between reference and measured leaves in weather conditions or 

leaf characteristics

[K or °C]

Tdry,low Lower estimate of Tdry due to difference between reference and measured leaves in weather conditions or 

leaf characteristics

[K or °C]

Tl Leaf surface temperature [K or °C]

Tpot Surface temperature of the potential crop [K or °C]

Ts (Radiometric) Surface temperature (equation 5) [K or °C]

TSD Temperature stress day [K or °C]

TSM Two-source model

Tsoil Soil surface temperature [K or °C]

Twet Surface temperature of wet reference surface [K or °C]

Twet,high Higher estimate of Twet due to difference between reference and measured leaves in weather conditions or 

leaf characteristics

[K or °C]

Twet,low Lower estimate of Twet due to difference between reference and measured leaves in weather conditions or 

leaf characteristics

[K or °C]

TTT Temperature-time threshold (= ST) [min or hours]

u Wind speed [m s–1]

uc Wind speed at the top of the canopy [m s–1]

usoil Wind speed just above the soil layer [m s–1]

W Leaf width [m]

WDI Water deficit index [–]

z0H Roughness length for sensible heat exchange [m]

z0H,r Radiometric thermal roughness length [m]

z0M Roughness length for momentum exchange [m]

zu Height of wind speed measurement [m]

zT Height of air temperature measurement [m]
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The total outgoing longwave radiation (Lout, (W m–2)] from a 

system, i.e. the radiation measured by the thermal sensor, is:

 Lout = Lemitted + Lreflected = ε σ Ts
4 + (1 – ε) Lin (3)

Equation 3 can be rewritten in terms of temperature by analogy 

 with the Stefan-Boltzmann law (L = σ T4, see equation 1):

 Tbr
4 = ε Ts

4 + (1 – ε) Tbg
4 (4)

In equation 4, Tbg is the background temperature, defined as

T
L

bg =
in

σ

4 , and Tbr the brightness temperature (both in K). Tbr 

is not the same as Tbb: Tbb is the temperature of a blackbody that 

emits the same amount of radiation as the actual system emits; 

Tbr is the temperature of a blackbody emitting the same amount 

of radiation as what the actual system emits and reflects (Norman 
and Becker, 1995; Jones et al., 2003), or, from equations 1 and 4, 

Tbr
4 = (1 – ε) Tbg

4 + Tbb
4. Tbr is the ‘temperature’ actually meas-

ured by the infrared radiometer. Tbb, on the other hand, is a purely 

theoretical concept that is not measured directly.

In thermal remote sensing, one is not interested in the bright-

ness temperature but in the surface radiometric temperature or 

surface temperature Ts, because it is Ts that reflects the internal 
energy status of the system. From equation 4, it follows that:

 
T

T T
s

br bg
=

− −
4 4

4
1( )ε

ε

 (5)

2.2 Measuring surface temperature

Ts can be measured with non-imaging and with imaging devices. 

Non-imaging devices or infrared thermometers (IRTs) make 

use of non-contact thermocouples and can be either portable, 

hand-held ‘temperature guns’, or continuously monitoring cylin-

drical stand-alone sensors, which have to be connected to a data 

logger. They measure the average Tbr within the field of view of 
the sensor. They are fast, cheap, do not require an external power 

resource, and can be installed permanently in the field. On the 
other hand, the measured Tbr is often a composite of vegetation 

and background (soil/sky) temperatures, which makes the inter-

pretation difficult and can cause large estimation errors (Jackson 
et al., 1981; Gardner et al., 1992b; Moran et al., 1994).

Imaging devices or thermal cameras predominantly use 

microbolometer sensors. They are more delicate, can often not 

be installed permanently on the field (because of price consider-
ations, and because they are often not waterproof) and are much 

more expensive than IRTs, although prices have decreased in 

recent years. On the other hand, they provide images, are very 
precise and often give Ts rather than Tbr as direct output (although 

Tbg and ε must still be supplied by the user).

Indeed, equation 5 shows that background temperature Tbg and 

ε are required to calculate Ts. Tbg can be assessed in several ways:

   Directly: by measurement of Tbr of overhead sky, without 

including the sun in the field of view (Loheide and Gorelick, 
2005), with an infrared thermometer, sensitive in the same 

wavelengths as the thermometer used to measure Ts (Blonquist  

et al., 2009).

   Indirectly: measurement of Tbr of blotted aluminum foil: as 

aluminium foil has an emissivity of 0.03, close to 0, Tbr will be 

almost equal to Tbg (see equation 4) (Jones et al., 2002, 2003).

   By estimation: Tbg can be estimated from the air temperature 

Ta (K) as (Flerchinger et al., 2009; Sedlar and Hock, 2009):

 Tbg
4 = εeff TS

4 = εclr F TS
4 (6)

 with εeff the effective sky emissivity, εclr the sky emissivity at clear 

sky, and F a unitless factor (≥1) accounting for the cloudiness of 

the sky. Methods to estimate εclr and F are reviewed and evalu-

ated by Flerchinger et al. (2009) and Sedlar and Hock (2009). As 

a rule of thumb, εclr is close to 0.7. Hence, at Ta = 20 °C and for 

clear skies (F = 1), Tbg will be around 268 K or –5 °C. Tbg is close 

to Ta in greenhouses and with fully overcast skies and is lowest 

with clear skies.

2.2.1 Measuring leaf emissivity and leaf surface 
temperature
Values of leaf emissivity (εl) are available for a large number of 

plant species (see Gates et al., 1965 and Salisbury and D’Aria, 

1992, for an overview) and are generally 0.95 or higher (Fuchs, 

1990); 0.97 is a good approximation (Kustas et al., 2004).

Leaf emissivity can be estimated if Tl, Tbr, and Tbg are known:

 

ε 1

4 4

4 4
=

−( )
−( )

T T

T T

br bg

1 bg

 (7)

For the most precise measurements, leaves can best be put 

in well-stirred water baths with controlled temperatures; Tl can 

then be assumed to be equal to the temperature of the water, and 

Tbr and Tbg can be measured.

Very often, Tbg is not measured or known and Tl is calcu-

lated as Tl = Tbr or T T
br1 1

44
= ε  with εl taken from literature. 

However, both methods introduce significant error, as shown in 
Fig. 1a. When Tl is assumed equal to Tbr, Tl is underestimated by 

0.6–0.8 °C in clear-sky conditions; in cloudy conditions or inside 

greenhouses, errors are negligible. Applying εl without incorpor-

ating Tbg leads to a significant overestimation of Tl, which will 

be larger in cloudy conditions or inside greenhouses (Fig. 1a).

An alternative method in case Tbg cannot be measured uses 

an apparent emissivity (εapp). εapp is estimated from Tl (measured 

in a stirred bath or directly with contact thermocouples) and Tbr 

only, as εapp = Tbr
4 Tl

–4 (Jones et al., 2003; Blonquist et al., 2009). 

Combining equation 4 with Tbr
4 = εapp Tl

4 gives:

 

ε app
bgT

T
= + −ε ε1 1

4

1

4
1( )  (8)

Hence, εapp is higher than εl and (εapp – εl) is larger when Tbg 

is high and when εl and Tl are low. Tl estimated with εapp gives 

only an unbiased estimate of Tl when Tl and Tbg are the same as 

they were when εapp was estimated. The error for deviating Tl  
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Fig. 1. (a) The error in the estimation of Tl when background temperature (Tbg) is not measured and Tl is estimated (i) as brightness 
temperatures, (ii) by using of the literature value of ε from literature, and (iii) by using εapp (apparent emissivity). The error is calculated 
for open-sky and cloudy/greenhouse conditions and expressed as a function of Tl. (b) The precision of the Tl estimate, expressed as 
standard deviation of the Tl measurement (σ(Tl)), when ε and Tbg are known for open-sky and cloudy/greenhouse conditions. See text 
for details. In both parts, Ta = 25 °C and Tbg = (0.7 Ta

4)0.25 (equation 6) for clear-sky conditions and Tbg = Ta for clouded/greenhouse 
conditions. In part a, it was assumed that ε = 0.97, Ta = 25 °C, and Tl = 28 °C; from equation 8, εapp = 0.9910 in clear sky and 
εapp = 0.9988 in greenhouse/cloudy conditions.

values is up to ~0.2 °C and is larger in cloudy conditions or inside 
greenhouses (Fig. 1a). Still, it is lower than the error introduced 

when either only Tbr or only Tbr and εl are used. Deviating Tbg 

values will not lead to significant errors (not shown). Overall, if 
Tbg cannot be assessed, the εapp-method is recommended.

Apart from avoiding measurement bias, it is important to 

know the measurement precision (or standard deviation, σ(Tl)) 

of Tl measurements. This depends on the measurement preci-

sion of Tbr and Tbg and on the standard deviation of εl between 

the leaves [σ(εl)]. The measurement precision is sensor specific; 
precise sensors have a standard deviation of about 0.1 °C. σ(ε) 

is species specific and ranges from 0.004 to 0.010 (e.g. Rubio 
et al., 1997; López et al., 2012), although these estimates might 

also include measurement errors rather than true differences in ε 

between leaves.

σ(Tl) was calculated with a Monte Carlo approach from 5000 

random values of εl, Tbg, and Tbr, each having a normal distribu-

tion with a standard deviation of 0.1 °C (for Tbg and Tbr) and 

0.005 (for ε). In open-sky conditions, σ(Tl) increases with Tl 

and is between 0.15 and 0.21 °C; the average σ(Tl) is 0.18 °C 

(Fig. 1b). σ(Tl) is lower (0.11 °C on average) in cloudy condi-

tions or inside greenhouses and reaches a minimum of 0.10 °C 

when Tl = Tbg.

A linear regression analysis, fitted through the Tl – εl, Tbg, and Tbr 

scatterplot, indicates that, with open-sky conditions, small devia-

tions in εl have a relatively large impact on Tl: a decrease as small 

as 0.0035 in εl causes a 0.1 °C error in Tl; in cloudy conditions, this 

is a decrease of 0.0191. Tl is much less influenced by Tbg; in fact, 

only an error in Tbg of above 5.6 °C (open sky) or 9.8 °C (cloudy/

greenhouse) causes an error in Tl of 0.1 °C (Table 2).

2.2.2 Measuring canopy surface temperature
Tl can vary with several degrees within and between plants 

as a consequence of differences in leaf angle, dimension, and 

radiation (see section 3.2.2). It is therefore often preferable to 

measure the canopy surface temperature (Tc) as an aggregate of 

all leaf temperatures (Jones et al., 2009). Measurements of Tc 

differ in several ways from those of single leaves. First, canopy 

emissivity (εc) is larger than εl, because of the partial cavities in 

the foliage, entrapping the radiation (Fuchs, 1990; Jones et al., 

2003). Estimating εc is more difficult than in the case of εl and 

requires night measurements; see Fuchs and Tanner (1966) or 

Huband and Monteith (1986) for a description of the method-

ology. Fortunately, because εc of dense canopies is very high 

(0.98–0.99; Huband and Monteith, 1986; Sobrino et al., 2001, 

2002), measurement of Tbr or precise knowledge of εc are of 

lesser importance; estimating Ts by either assuming Ts = Tbr or 

by assuming εapp = 0.99 will normally cause negligible error, in 

particular in cloudy conditions.

A second difference with leaf temperature measurements is 

the fact that the measured signal is a composite of surface tem-

peratures of several objects, including leaves and branches, 

Table 2. Correlation (R2) between the measurement error in Tl and 
ε, Tbg and Tbr, and the increase in ε, Tbg, and Tbr that causes an 
increase in Tl of 0.1 °C, in open sky and cloudy conditions.

Calculated using a Monte Carlo approach for ε = 0.970 ± 0.005, 
Tbr = 21.18 ± 0.1, and Tbg = –10 ± 0.1 °C in open-sky conditions and 
Tbr = 22.09 ± 0.1 and Tbg = 25 ± 0.1 °C in cloudy conditions (in both 
cases, Tl = 22 °C),

Open sky Cloudy

R
2

△x causing a △Tl  

of 0.1 °C

R
2

△x causing a △Tl  

of 0.1 °C

ε 0.66 -0.0035 0.032 –0.0191

Tbg 2 10–4 5.6 4 10–4 –9.8

Tbr 0.32 0.1 0.96  0.1
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which make up the canopy, and soil (Kustas and Daughtry, 1990; 

Sánchez et al., 2008):

 
ε φ ε φ εT T Ts c c c c soil soil

4 4 4
1= + −f f( ) ( ( ))  (9)

with ε and εsoil the overall and soil emissivity, Tsoil the soil 

surface temperature, and fc(ϕ) the portion of the field of view 
occupied by the vegetation as influenced by viewing angle ϕ. In 

general, Tsoil is higher than Tc (Kustas and Daughtry, 1990); the 

difference can be up to 30 °C in very sunny conditions and for 

dry, bare soils (Jackson, 1985). Hence, Ts is usually higher than 

Tc. Particularly in orchards or in croplands at the beginning of the 

growing season, when the canopy cover is low, this can make Ts 

measurements unreliable.

Several ways exist to estimate Tc instead of Ts. The first way is 
to simply delay the measurements until the canopy is fully closed 

and fc(ϕ) is (close to) 1. Obviously, delaying the measurements 
is not always an option.

Second, the viewing angle ϕ can be adjusted to increase fc(ϕ). 

fc(ϕ) is in general smallest for nadir measurements (when the 

sensor is looking straight down) (Jones et al., 2003; Luquet 

et al., 2004) and highest for oblique views (Chehbouni et al., 

2001; Koksal, 2008). However, increasing ϕ is often not feasible 

and holds the risk of including air.

A third approach uses the angle-dependence of fc(ϕ) to esti-

mate Tsoil and Tc separately. Under the assumption εsoil = εc = ε, 

Tsoil and Tc can be estimated separately from two simultaneous 

Ts measurements made under different viewing angles (Sánchez 

et al., 2008).

A fourth way to reduce the influence of Tsoil is by using a ther-

mal camera and by separating canopy from soil pixels combin-

ing visual and thermal images (e.g. Leinonen and Jones, 2004; 

Möller et al., 2007; Wang et al., 2010a).

3 Relation between surface temperature 

and sensible and latent heat flux

3.1 General relations between surface temperature 
and sensible and latent heat flux

The energy balance of a leaf or vegetation is given by:

 Rn = H + λE + Gi + S (10)

with Rn the net radiation, λE the latent heat flux, Gi the  

soil heat flux, and S the total aboveground energy storage (all  
in W m–2).

The net radiation Rn is the sum of incoming (positive) and out-

going (negative) shortwave (0.3–3 µm) and longwave (3–50 µm) 
radiation, or:

 Rn = Kin – Kout + Lin – Lout (11)

with Kin the incoming and Kout the outgoing shortwave radia-

tion. For vegetations, Rn is given by:

 Rn = Kin (1 – α) + ε Lin – ε σ Ts
4 (12)

where α is the albedo (the fraction of incoming radiation  

that is reflected or reradiated). For leaves, Rn is still expressed 

per unit area (i.e. the leaf area on one side of the leaf), but  

the two leaf sides must be taken into account (Guilioni et al., 

2008); in addition, Rn is influenced by the transmittance (the 
fraction of incoming radiation that passes through the leaves)  

of the leaf:

 Rn = Kin,u (1 – αu – τ) + Kin,l (1 – αl – τ) 

 + εu Lin,u – εu σ Tl
4 + εl Lin,l – εl σ Tl

4 (13)

where the subscript u refers to the upper side and the subscript 

l to the lower side of the leaf.

The sensible heat flux H (W m–2) from a surface to the air is 

given by (see derivation in Supplementary Data S1.1, available 

in JXB online):

 

H c
T T

r
a p

a

aH

=
−

ρ
( )0  (14)

with ρa the air density (kg m–3), cp the specific heat of the air 
(J kg–1 K–1), T0 the aerodynamic temperature, Ta the air tem-

perature, and raH the resistance of diffusive heat transfer to air (s 

m–1). ρa and cp can be considered constants. T0, the aerodynamic 

temperature, is defined by equation 14. For leaves, T0 = Tl 

(Huband and Monteith, 1986). In vegetations, T0 is not a dir-

ectly measurable variable. Although Ts is also commonly used 

as a surrogate for T0 in vegetations (Colaizzi et al., 2004), the 

relationship between T0 and Ts is a complex function of viewing 

angle, atmospheric stability and vegetation structure. This will 

be discussed in section 3.3.4.

The latent heat flux (λE; (W m–2) describes the energy transfer 

related to transpiration/evapo transpiration of water from a leaf/

vegetation to the air. It is given by (see Supplementary Data S1.2 

for derivation):

 

λ
ρ

γ
E

c T

r

a p s a

v

=
−( ( ) )*

e e0  (15)

where γ is the psychrometric constant (kPa K–1), which is a 

function of Ta, ea the vapour pressure in the air (kPa), rv the total 

resistance to vapour transport (s m–1), and es
*(T0) the saturated 

vapour pressure (indicated by *) at the surface (indicated by sub-

script s) (kPa).

The total aboveground energy storage S covers the phys-

ical storage (the energy for heating/cooling the biomass and 

the air in the canopy) and the energy stored in photosynthesis. 

At leaf scale, the storage term simplifies to the sum of the 
energy stored in photosynthesis and the physical (heat) stor-

age of the leaves. Compared with the other terms in equation 

10, this term is generally small and is most often ignored in 

leaf energy balance calculations, as is the soil heat flux Gi 

(Jones, 1992). In vegetations, however, S and Gi can make up 

a significant part of the energy budget (see section 3.3.4 for a 
discussion).
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T0 can be expressed as a function of the energy flux terms by 
combining equations 10 and 14:

 

T
r

c
R E G S TaH

a p
n a0 1= − − − +

ρ
λ( )  (16)

It follows that T0 decreases linearly with increasing evapo-

transpiration. The relation between T0 and λE is not as straight-

forward as it appears from equation 16. First of all, from equation 

12, it follows that Ts and Rn (thus, also T0 and Rn) are interrelated. 

Second, the resistance of the air to heat transfer, raH, is a complex 

function of leaf/vegetation characteristics and meteorological 

conditions. This issue will be discussed in more detail in sections 

3.2 and 3.3.

It is often more convenient to express T0 as a function of 

rV rather than λE. This can be done by applying the Penman 

transformation:

 
( ( ) ) ( )*
e e s es aT T Ta0 0− −= + δ  (17)

in which s is the slope of the curve relating T with the satu-

rated vapour pressure e*(T). δe is the vapour pressure deficit (Pa 

or kPa) or the difference between the maximal possible amount 

and the actual amount of water vapour in an air volume at tem-

perature Ta. δe can be calculated from relative humidity (Hr; %) 

and Ta as:

 

δ e a
b

c
= −









 +












1
100 2

H T

T

r aexp  (18)

with Ta in °C and e*
s(Ta) in Pa and, under normal atmospheric 

pressure, a = 613.75, b = 17.502, and c = 240.97.

Combining equations 10, 14, 15 and 17 gives:

 

( )
( )

( )
T T

r r R G S r c

c r r
a

aH v n i aH a p

a p v aH
0 − =

− − −

+

γ ρ

ρ γ

δ e

s
 (19)

It follows that if (Rn – Gi – S) increases or δe decreases, (T0 – Ta)  

increases linearly. The relation between (T0 – Ta) and raH and rV 

is less straightforward.

3.2 The relations between Ts, stomatal conductance, 
and weather at leaf scale

3.2.1 Resistances associated with energy processes 
at leaf scale
The resistance terms raH and rV can be estimated by applying 

the electric circuit theory to transfer processes in leaves (Jones, 

1992). The resistance terms are schematized in Fig. 2. raH is 

the parallel sum of raH,u and raH,l. As raH,u = raH,l (Guilioni et al.,  

2008), raH is:

 
r r r raH aH u aH l aH u= +( ) =

− −
−

, , ,.
1 1

1

0 5  (20)

Sensible heat exchange can occur either through free or 

through forced convection, which are also parallel processes. 

Forced air convection, with resistance raH,u(forced), is caused by 

wind flowing over the leaves altering the boundary layer; free 
air convection, giving rise to raH,u(free), occurs when air above a 

heated surface expands and rises. raH,u is then given by:

 
r r forced r freeaH u aH u aH u, , ,( ) ( )= +( )− −

−
1 1

1
 (21)

The stomatal resistance at each leaf side (rs,u and rs,l) expresses 

the degree of stomatal closing (Jones, 1992); the reciprocal of 

the stomatal resistance is stomatal conductance (gs,u and gs,l). It 

can be assumed that the resistance of the leaf to water vapour 

losses on each side is equal to its stomatal resistance (Jones, 

1992). However, after the water has left the leaf, it still has to 

pass through the boundary layer of the air before it reaches the 

free-flowing air. This boundary layer is characterized by a resis-
tance to vapour transport (raV,l and raV,u; subscript a stands for 

air). It can also be assumed that raV,l = raV,u. Consequently, the 

total roughness length for water vapour transport of leaves, rV, 

is a parallel sum of two serial sums (Fig. 2), or (Guilioni et al., 

2008):

 

r
r r r r

r r r
V

s u aV u s l aV u

s u aV u s l=
+

+
+













=

+
−

1 1
1

, , , ,

, , ,( )( ++

+ +

r

r r r

aV u

V u s l s u

,

, , ,

)

2 2

 (22)

For isolateral leaves (leaves with rs,l = rs,u), equation 22 becomes:

 
r

r r
V

s,l aV,l
=

+

2
 (23)

In hypostomatous leaves (leaves with stomata only on the 

lower leaf side), rs,u = ∞ and rv is:

 
r r rV s l aV l= +, ,  (24)

Fig. 2. Schematic overview of the resistances associated with 
sensible and latent heat transfer and radiation at leaf scale (this 
figure is available in colour at JXB online).
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3.2.2 Modelling the influence of leaf characteristics 
and weather on Tl

Model description Tl was estimated from equation 19, with 

Tl = T0, Gi = 0, and S = 0. Equations from Jones (1992) were 

used to calculate ρa, γ, and s as a function of Ta. raH,u(free) and 

raH,u(forced) were calculated from empirical relations of Monteith 

(1973) and Jones (1999a), respectively:

 

r free
T T

aH,u

1 2

( ) .=

−

400
33

0
 (25)

 

r forcedaH,u ( ) .=








100 5

0
D

u
 (26)

In equation 26, D is the characteristic leaf dimension (m) and 

u the wind speed (m s–1). The model assumes ellipsoid shape 

with leaf length L and width W. Based on D = +( )L W
2 2  (Dauzat 

et al., 2001), D was calculated from leaf size (Al) and W/L as:

 

D = +














A

W
L

W
L

1 1

π
 (27)

raH,u was calculated from equations 22, 25, and 26, raH from 

equation 20. The model assumes hypostomatous leaves; rs,l 

and gs,l will further be denoted simply as rs and gs. rV was cal-

culated from equation 24, with raV,l = 0.92 raH,l (Jones, 1992). 

Conductances in mmol m–2 s–1 were converted to resistances in s 

m–1 as a function of Ta with equations from Jones (1992).

Rn was calculated from equation 13, with the following 

assumptions:

Kin,u is a function of Kin on a horizontal plane (Kin,hor; W m–2), 

as would be measured by a pyranometer, the angle between the 

leaf and the horizontal plane (θ; °) and the proportion of diffuse 

light (Di; –) (Maes et al., 2011):

 
K K Di Diin u in hor, , (( ) cos )= − +1 ϑ  (28)

Di was estimated as 0.15, typical for open-sky conditions 

(Gates, 2003; Jones et al., 2009).

Kin,l was modelled as Kin,l = α Kin,hor. This equation is obtained 

by assuming that the modelled leaf is a top leaf: hence, Kin,l is the 

reflected radiation by the lower canopy. This reflected radiation 
is assumed to be perfectly diffuse (hence, not a function of θ).

αu = αl = α.

α and τ are not influenced by θ. Standard values for α and τ 

were 0.25 and 0.28, respectively, derived from the LOPEX93 
library as the average α and τ of 10 crop species (Hosgood  

et al., 1994).

εu = εl = ε = 0.97 (Kustas et al., 2004).

Lin,u = 0.7 σ TS
4 (equation 6), also corresponding to open sky.

It was assumed that Lin,l is the radiation coming from the can-

opy below, which had the same Tl as the actual leaf, or Lin,l = ε σ 

Tl
4. Note that in this (common) case, Lin,l = Lout,l.

Rn was estimated as:

 

R K Di

Di T T

n in hor= − − −

+ + + −

, ( ) (( ) cos

) .

1 1

0 7 2
4

1
4

α τ

α σ εσ

ϑ

 (29)

The mutual dependency of Tl and Rn (equations 19 and 

29) required an iterative procedure, in which Rn, rah(free) (and 

raH, raV, and rV), and Tl were iteratively calculated, after a first 
assumption of (Tl – Ta) = 2, until the difference in subsequent 

estimates of (Tl – Ta) was less than 0.001 °C.

The influence of Ta on (Tl – Ta) was modelled for different 

levels of gs by calculating (Tl – Ta) for varying Ta, while assum-

ing constant standard values for all other factors. The influence 
on (Tl – Ta) of Kin, u, and δe and of the leaf properties θ, Al, W/L, 

and α was simulated similarly. The 95% confidence intervals for 
measurement of (Tl – Ta) are indicated by the colour bars, with 

a width of 2 σ(Tl – Ta) on each side. σ(Tl – Ta) was 0.206 °C, 

obtained from σ2(Tl – Ta) = σ2(Tl) + σ2(Ta) = 0.182 + 0.12 (see 

section 2.2.1).

Results
The influence of weather conditions on (Tl – Ta) is shown in 

Fig. 3. (Tl – Ta) decreases non-linearly with increasing gs; the 

rate of decrease depends on the weather conditions.

Ta and δe influence (Tl – Ta) in an analogous way (Fig. 3a, 3g); 

at low gs, (Tl – Ta) does not depend on Ta or δe. The relationship 

between (Tl – Ta) and δe when gs is not zero, is linear (see also 

equation 19), an important characteristic first described by Ehrler 
(1973) and used as a basis for the calculation of the empirical 

crop water stress index (CWSIe; see section 4.3.3). (Tl – Ta) rises 

linearly with increasing Kin with larger slopes for leaves with 

low gs (Fig. 3c).

At high Ta, Kin, and δe and low u, differences in (Tl – Ta) between 

leaves with different gs are large; hence these are ideal conditions 

for thermal remote sensing. Overall, even modest changes in Kin, 

Ta, u, and δe can have a profound impact on (Tl – Ta).

With the exception of θ, leaf characteristics have a much 

smaller impact on (Tl – Ta) than weather conditions (Fig. 4). 

There is little difference in (Tl – Ta) between ‘horizontal’ leaves 

(with θ = 0) and leaves with angles up to 30%. At higher θ, how-

ever, (Tl – Ta) can decrease with several degrees and the influ-

ence of gs on (Tl – Ta) becomes less explicit (Fig. 4a, 4b).

(Tl – Ta) increases slightly with increasing leaf size. (Tl – Ta) 

of very small leaves tends to zero, regardless gs (Fig. 4c, 4d). 

Similarly, for a constant Al, leaf shape (W/L) has a rather limited 

influence on (Tl – Ta), except for very thin, needle-like leaves.  

(Tl – Ta) decreases slightly and steadily with increasing α (Fig. 4g, 

4h). ε, finally, has very limited impact on (Tl – Ta) (not shown).

Even if all leaves within the canopy have the same gs, (Tl – Ta) 

can be very heterogeneous because θ and Al tend to vary within 

the canopy and because shaded leaves, which receive lower Kin 

and experience lower Ta and δe, have a lower (Tl – Ta). As a 

consequence, it is often preferred to measure the temperature of 

(parts of) the entire canopy, rather than that of single leaves.
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Fig. 3. Influence on the mean and 95% confidence interval of (Tl – Ta) of weather conditions air temperature (Ta), incoming shortwave 
radiation (Kin,), wind speed (u), and vapour pressure deficit (δe) for a low, medium, and high level of gs (left column) and of gs for a 
low, medium, and high level of Ta, Kin, u, and δe (right column). See section 3.2.2 for model description. Standard conditions included 
Ta = 25 °C, Kin = 700 W m–2, u = 2 m s–1, and δe = 1590 Pa (Hr = 50%). Standard leaf characteristics were θ = 0 °, ε = 0.97; τ = 28%, 
α = 25%, Al = 39.3 cm2 (L = 10 cm), and W/L = 50%.
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Fig. 4. Influence on the mean and 95% confidence interval of (Tl – Ta) of leaf characteristics (leaf angle, size, shape, and albedo) for a 
low, medium, and high level of gs (left column) and of gs on for a low, medium, and high level of leaf angle, size, shape, and albedo (right 
column). See Fig. 3 for model descriptions and standard conditions. Leaf shape = 100 leaf width/leaf length.
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3.3 Relation between Ts and evapotranspiration at 
canopy level

Equation 19 can be applied to estimate T0 at field scale. In that 
case, the canopy (and soil) are represented as one single layer 

with one side (the ‘upper’ side), so raH = raH,u and rV = rc + raV = rc 

+ raH, with rc the canopy stomatal resistance:

 

T T
r r r R G S r c

c r r r
a

aH c aH n i aH a p

a p c aH aH
0 − =

+ − − −

+ +

( ) ( )

( [( ] )

γ ρ

ρ γ

δ e

s ))
 (30)

3.3.1 Soil heat flux (Gi ) and aboveground energy 
storage (S)
The soil heat flux (Gi) follows a daily trend that lags several  

hours behind Rn (Jarvis et al., 1976; Samson and Lemeur,  

2001). Gi is most often calculated as a fraction of Rn and is then 

denoted as Γi:

 Γi = Gi Rn
–1 (31)

Whereas Γi is usually small (~0.05) and is in practice often 
ignored in ecosystems with dense canopies (Clothier et al., 

1986), it is significantly larger in ecosystems with sparse can-

opies (Norman et al., 1995; Su, 2002) or with very wet or perma-

frost soils (Chapin et al., 2002) Often, a value of 0.1 is often used 
for Γi (Choudhury et al., 1986; Jackson et al., 1988).

When thermal measurements are performed around and short 

after solar noon, the aboveground energy storage term S can be 

ignored (Meesters and Vugts, 1996; Samson and Lemeur, 2001), 

except in very dense woody vegetation (McCaughey, 1985; 

Samson and Lemeur, 2001; Lindroth et al., 2010).

3.3.2 Canopy stomatal resistance rc and  
conductance gc

The canopy stomatal conductance (gc) can be interpreted as the 

stomatal conductance of the ‘big leaf’ that represents the canopy 

and is composed of the stomatal conductances of all individual 

leaves. The most practical way to calculate gc is by discerning a 

sunlit and a shaded layer (Blonquist et al., 2009):

 gc = gs,sun LAIsun + gs,shade LAIshade (32)

where LAIsun and LAIshade are the leaf area index of the sunlit 

and the shaded canopy, respectively (LAIsun + LAIshade = LAI). 

LAIsun can be calculated, provided data of the solar zenith angle 

and canopy structure are available (Lemeur, 1973); else, gc can 

be roughly estimated for crops as (Allen et al., 1998):

 gc = 0.5 gs LAI (33)

with gs measured on sunlit leaves.

3.3.3 Resistance to sensible and latent heat transport 
in air (raH and raV)
Based on the calculation of momentum flux and the observed 
logarithmic profile of wind speed close to surfaces, raH of 

ecosystems is given by (see Supplementary Data S2.3,  

equation S34):

 

r
aH

M

H

H

=

−
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a k u
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2
 (34)

where zu and zT are the heights at which u and Ta were meas-

ured, d is the zero displacement height, z0M the roughness 

length of momentum, z0H the roughness length of sensible heat 

exchange, k the dimensionless von Karman constant (k = 0.41), 

ψM and ψH the Monin-Obukhov stability functions for momen-

tum and latent heat exchange, and aH a parameter.

The displacement height d and roughness length z0M are com-

plex functions of the vegetation height and architecture. They 

can be estimated precisely with drag partition models, taking 

canopy height (hc; m), width, and element spacing into account 

(Raupach, 1992, 1994). Other methods estimate d and z0M as 

a function of hc and leaf area index (LAI) (e.g. Pereira et al., 

1999; Colaizzi et al., 2004) or of hc alone. Estimates of d/hc 

and z0M/hc can be found for a wide variety of vegetations (e.g. 

Stanhill, 1969; Jarvis et al., 1976; Dolman, 1986). For dense 

crops, the values d = 0.64 hc and z0M = 0.13 hc (Stanhill, 1969) 

are universally used.

The roughness length for sensible heat z0H is usually expressed 

as a function of z0M as (Owen and Thomson, 1963; Chamberlain, 
1968; Colaizzi et al., 2004):

 ln(z0M z0H
–1) = k B–1 (35)

with B the dimensionless sublayer-Stanton number. Although 

k B–1 is a complex function of the time of day, weather, and 

the vegetation type (Garrath and Hicks, 1973; Mölder and 

Lindroth, 2001), constant values for z0H/z0M of 0.0907 or 0.1  

for dense crops and 0.2 for sparse crops are often used 

(Monteith, 1973; Campbell, 1977; Allen et al., 1989; Mölder 

and Lindroth, 2001).

ψM and ψH, the Monin-Obukhov stability functions for 
momentum and latent heat exchange, can be estimated as a 

function of one of two variables, the Richardson number or the 

Monin-Obukhov length (see Supplementary Data S2.3, equa-

tions S35 and S36). This requires detailed meteorological meas-

urements at several heights. Hence, it is often not feasible to 

estimate ψM or ψH in agricultural applications. Omitting ψM 

and ψH from equation 34 gives unrealistic results at low wind 

speeds (at u = 0, raH would become +∞, and so would (T0 – Ta) 

(see equation 34 below; also Jackson et al., 1988). This can be 

overcome by using rae instead of raH. rae is the effective aero-

dynamic resistance. This semi-empirical equation includes the 

influence of buoyancy on aerodynamic resistance (Thom and 
Oliver, 1977):

 

rae =

−
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Fig. 5. Influence on the mean and 95% confidence interval of (Tl – Ta) of weather conditions air temperature (Ta), incoming shortwave 
radiation (Kin), wind speed (u), and vapour pressure deficit (δe) for a low, medium, and high level of gs (left column) and of gs (middle 
column) and λE (right column) for a low, medium, and high level of Ta, Kin, u and δe. See section 3.3.5 for a model description. Standard 
meteorological conditions were Ta = 25 °C, Kin = 700 W m–2, zu = 3 m, u = 2 m s–1, and δe = 1590 Pa (Hr = 50%). Standard crop 
properties were α = 0.20, hc = 1m, LAI = 2 m2 m–2, ε = 0.98, z0 = 0.13 hc, and d = 0.64 hc.
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3.3.4 Surface temperature versus aerodynamic 
temperature
As mentioned, T0 is not equal to Ts at canopy level. T0 is not a 

directly measurable variable but is defined by equation 14 and 
represents the temperature of the apparent source/sink of sens-

ible heat flux (Blonquist et al., 2009). From independent meas-

urements of H and of Ts, it is known that Ts is usually 2–3 °C 

higher than T0 for uniform canopy covers and up to 10 or 15 °C 

higher for incomplete canopy covers (Chavez et al., 2010), due 

to the influence of the high Tsoil on Ts.

T0 is not always equal to Tc either. First, (Tc – T0) tends to be 

larger in stable than in unstable conditions (see Supplementary 

Data S2.3 for a discussion on atmospheric stability) (Choudhury 

et al., 1986; Colaizzi et al., 2004). Second, Tc is influenced 
by the viewing angle ϕ. The place of the virtual ‘big leaf’ 

of T0 does not coincide with the canopy viewed when tak-

ing (near-)nadir Tc measurements. Because all canopy layers 

in which transpiration occurs contribute to T0, the virtual big 

leaf is located somewhere in the middle of the actual canopy 

(Blonquist et al., 2009). If Tc is measured from a (near-)nadir 

position, it is the temperature of the outer canopy layer, which 

tends to be larger than T0 because of the direct sunlight received 

(Chehbouni et al., 2001; Jones et al., 2003; Colaizzi et al., 2004; 

Matsushima, 2005). At larger ϕ, the measured Tc incorporates 

the temperature of deeper canopy layers and is closer to T0. In 

theory, an optimum ϕ, usually between 50 and 70 ° from nadir, 

exists at which Ts coincides with T0 (Huband and Monteith, 

1986; Matsushima and Kondo, 1997). Unfortunately, defining 
the optimum ϕ is difficult, for it is influenced by canopy struc-

ture, sensor characteristics, and measurement conditions (Hall 

et al., 1992; Matsushima, 2005).

Several other approaches have therefore been developed 

for acquiring correct T0 estimates. A first approach consists 
in replacing z0H in equation 34 with z0H,r, the so-called radio-

metric roughness length, usually expressed as a function of 

z0M, similar to equation 35 (Colaizzi et al., 2004; Mahrt and  

Vickers, 2004):

 ln(z0M z0H,r
–1) = k Br

–1 (37)

in which Br is the sublayer-Stanton number, modified to radio-

metric roughness length. The determination of Br and z0H,r has 

been the subject of intense research, which showed that Br is a 

complex function of weather conditions, vegetation characteris-

tics, and viewing angle (Blyth and Dolman, 1995; Matsushima 

and Kondo, 1997; Kustas et al., 2007). The application of z0H,r 

proved particularly difficult for partial canopies and has been 
largely abandoned (Kustas et al., 2007) in favour of approaches 

in which T0 is estimated as a function of Ts and weather and can-

opy variables (e.g. Su et al., 2001; Mahrt and Vickers, 2004; 

Chavez et al., 2010).

One such approach, introduced by Chehbouni et al. (1997), 

uses an adjustment parameter βaero:

 
β aero =

−

−
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T T
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Matsushima (2005) proposed the adjustment parameter αaero, 

defined as αaero =

−

−

( )

( )

T T

T T

s

s

0

2

; this is essentially the same approach. 

These adjustment parameters were estimated from independent 

measurements of Ts and H and were found to be closely related 

to LAI and hardly influenced by the viewing angle (Chehbouni 
et al., 1997; Matsushima, 2005). This approach is more reliable 

and robust than the z0H,r approach but has its limitations when 

|Ts – T0| is very large, due to more extreme weather conditions 

or vegetation characteristics (Kustas et al., 2007; Kustas and 

Anderson, 2009).

Finally, two-source models estimate the aerodynamic temper-

ature of the soil and the canopy compartment separately (Kustas 

and Anderson, 2009). They will be discussed in section 4.6.

3.3.5 Modelling the influence of weather conditions 
and vegetation characteristics on (Tc– Ta)
Model description Tc will be simulated in order to illustrate 

the effect of ecosystem/canopy properties and weather conditions.  

The model is based on equation 19 and assumes that raH = raV, 

S = 0, Gi = 0 (simulation of Tc, not Ts), and Tc = T0. gc was 

calculated with equation 33, raH with equation 36, and Lin 

with equation 6, with εeff = 0.7. A value of 0.98 was used for 

emissivity. For all vegetations, it was assumed that d = 0.64 hc 

and z0M = 0.13 hc (Stanhill, 1969). λE (Fig. 5f) was calculated 

from the estimated Tc and from equation 10. Like for the (Tl – Ta)  

measurements, the 95% confidence intervals have a width of 
0.206 °C and are indicated.

Results
The simulations show that the influence of weather conditions 
on (Tc – Ta) (Fig. 5) is similar to the influence on (Tl – Ta) (Fig. 3). 

(Tc – Ta) decreases non-linearly with increasing Ta and u and lin-

early with increasing δe; this decrease is largest when stomata 

are wide open in the case of Ta and δe, but opposite in the case 

of increasing u; (Tc – Ta) increases linearly with increasing Kin, 

with the largest increase observed in drought-stressed vegeta-

tions. (Tc – Ta) also decreases non-linearly with increasing gs; 

all weather conditions have an impact on the relation between 

gs and (Tc – Ta) (Fig. 5, middle column). (Tc – Ta) decreases lin-

early with increasing λE. The validity of this linear relationship 

has been confirmed in several studies (Vidal and Perrier, 1989; 
Loheide and Gorelick, 2005; Jones and Vaughan, 2010) and 

forms the basis of several thermal remote sensing applications 

(e.g. water deficit index, WDI, section 4.3.5). Ta and δe hardly 

influence this linear relation, whereas Kin influences the inter-
cept and u the slope and intercept (Fig. 5, right column).

(Tc – Ta) decreases with increasing canopy height, leaf area 

index, and albedo, but the relations are very different (Fig. 6, 
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left column). Canopy height has a particularly large influence 
on (Tc – Ta), with (Tc – Ta) becoming very high in drought-

stressed very low vegetations. However, in taller vegetations, 

differences in gs are much more difficult to detect with (Tc – Ta)  

(Fig. 6a). The influence of LAI on (Tc – Ta) is largest for fully 

transpiring vegetations; the crop albedo has little effect on the 

potential to detect differences in (Tc – Ta) between vegetations 

of different gs. The three vegetation characteristics also influ-

ence the relation between gs and (Tc – Ta), although the impact 

of albedo is limited. Differences in LAI do not influence the 

relation between λE and (Tc – Ta); differences in albedo influ-

ence the intercept of this relation, whereas differences in 

hc have a severe impact on both slope and intercept (Fig. 6, 

right column).

3.3.6 Thermal remote sensing in croplands 
versus orchards
The large difference in vegetation characteristics between 

croplands and orchards has a large influence on the 

Fig. 6. Influence on the mean and 95% confidence interval of (Tl – Ta) of vegetation characteristics canopy height (hc), leaf area index 
(LAI), and albedo for a low, medium, and high level of gs (left column), and the influence on (Tl – Ta) of gs (middle column), and λE (right 
column) for a low, medium, and high level of hc, LAI, and albedo. See section 3.3.5 for a model description. See Fig. 5 for standard 
meteorological conditions and crop properties.
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applicability of thermal remote sensing. In croplands, during 

most of the growing season, the vegetation is homogeneous 

and the canopy very dense, ideal characteristics for thermal 

remote sensing. The characteristics of orchards, on the other 

hand, are more challenging for thermal remote sensing: the 

structure is heterogeneous, often with tall vegetation (trees) 

planted in rows with zones of bare soil or very low vegetation 

in between.

This heterogeneous canopy structure in orchards makes it diffi-

cult to estimate Gi, which is a function of the net radiation of the 

soil compartment (Rn,soil) (Norman et al., 1995), in its turn a com-

plex function of solar zenith angle and vegetation structure (e.g. 

Gijzen and Goudriaan, 1989; Kustas and Norman, 1999a).

The uneven leaf distribution makes up scaling from gs to gc more 

difficult (equation 33 is no longer valid).
In this heterogeneous canopy structure, d and z0M can often not 

be expressed as a simple function of hc (section 3.3.3).

Furthermore, it is challenging to acquire reliable thermal 

measurements in orchards:

Due to the sparse canopy, Ts obtained from (near-)nadir viewing 

is much higher than Tc and T0, because of the large influence of 
the higher Tsoil (section 3.3.4). Hence, sensors must be installed 

at appropriate viewing angles.

Tall trees can make thermal measurements with IRTs particularly 

challenging, because of the large noise when open sky is within 

in the sensor field of view. Thus, handheld measurements must 
be performed with great care; fixed IRT measurements are pref-
erably installed on high poles.

Moreover, the tree canopy usually has a vertical rather than a 

horizontal structure. As a consequence, there is a very large 

difference in Tcbetween the shaded and the sunlit sides, making 

it much more difficult to obtain a reliable Tc estimate.

Finally, due to the larger hc (taller canopies), z0H, d, and z0M 

are relatively high. As a consequence, differences in gc (and 

λE) are less reflected in Tc than for lower cropland canopies 

(Fig. 5a). This, in combination with the higher variability in Tc, 

makes drought stress detection in orchard trees more difficult 
than for croplands.

It is therefore not surprising that ground-based thermal 

remote sensing methods were predominantly developed for 

application in homogeneous cropland. However, in recent years, 

the number of ground-based thermal remote sensing studies in 

orchards has increased significantly and includes applications 
in grapevine, olive, peach, apple, nectarine, citrus, almond, and 

pistachio tree orchards. There are two reasons for this increased 

interest. First, the application of thermal cameras allows more 

precise assessment of Tc and the removal of noise from the soil 

and background. Second, two-source models (section 4.6) were 

developed specifically for sparse canopies such as orchards. 
However, this does not mean that the classic one-source meth-

ods are of no use for orchards: in fact, most of these methods 

have recently been successfully applied in orchard vegetations 

as well, although the applications in cropland-like vegetations 

still outnumber those in orchards.

4 Application of ground-based thermal 

remote sensing in agriculture

In this section, an overview is given of the most important 

applications of ground-based thermal remote sensing in agricul-

ture, with a focus on applications related to the assessment of 

plant-water status, drought stress, or irrigation scheduling.

4.1 Direct use of brightness or surface temperature

4.1.1 Brightness and surface temperature
As discussed in section 3, under the assumption that Tc = T0, Tc 

is linearly related with λE and can be used as a proxy measure of 

λE or gc. Canopy temperature has therefore been widely used in 

plant breeding studies of (winter) wheat (e.g. Araus et al., 2003; 

Nautiyal et al., 2008; Reynolds et al., 2009; Gutierrez et al., 

2010) and other dense crops (Sanchez et al., 2001; Hamidou 

et al., 2007; Khan et al., 2007). In most of these studies, Tbr 

rather than Ts or Tc is used as the indicator. In general, var-

ieties with a lower brightness temperature are preferred, as it 

is assumed that these are more successful in avoiding drought 

stress (Araus et al., 2003).

Similarly, Tc, Tl, or Tbr have been used as a drought stress 

index for the evaluation of different irrigation treatments of one 

(e.g. Singandhupe et al., 2003; Pettigrew, 2004; Yuan et al., 

2004; Qiu et al., 2008) or several (e.g. Rashid et al., 1999; 

Siddique et al., 2000; Ko and Piccinni, 2009) crop varieties and 

for monitoring the effect of heat stress (Ayeneh et al., 2002; 

Sadras and Soar, 2009) and CO2 increases (Yoshimoto et al., 

2005) on plant health.

Because of the large influence of meteorological conditions on 
Ts (Figs. 4 and 6), repeated measurements will give very differ-

ent Ts, unless meteorological conditions are extremely constant 

and vegetation structure does not change.

4.1.2 Temperature variability
At very low gs (i.e. in stressed conditions), the total range in 

Tl between leaves of different inclinations is larger than in 

unstressed conditions (Fig. 3.f). Several authors proposed can-

opy temperature variability as an index of drought stress (Aston 

and Vanbavel, 1972; Clawson and Blad, 1982; Fuchs, 1990), 

by either looking at the difference between the minimal and 

maximal Tc (Critical Temperature Variability, CTV (Clawson 

and Blad, 1982) or at the standard deviation of Tc (σTc) within 

the canopy. Gonzalez-Dugo et al. found that σTc first increased 
with mild stress and then decreased again under more severely 

stressed vegetation, in airborne images of cotton (Gonzalez-Dugo 

et al., 2006) and of almond trees (Gonzalez-Dugo et al., 2012). 

However, in studies at plant and leaf scale, σTc was not corre-

lated with gs or drought stress level (Grant et al., 2007; Maes 

et al., 2011).

Infrared thermography can also be used for disease detection. 

Because local infections within a leaf show up as either warm 

or cold spots, CTV and (to a lesser extent) σTl within the leaf 

are useful in disease detection (e.g. Vanderstraeten et al., 1995; 

Chaerle et al., 1999; Lindenthal et al., 2005; Oerke et al., 2006, 

2011; Stoll and Jones, 2007).
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4.1.3 Stress time (ST)
The stress time (ST) concept is the only concept that does not 

depart from the relation between gs and λE and Tc. Instead, it is 

based on the relation between plant temperature and metabolic 

activity (Upchurch and Mahan, 1988) and is inspired by the 

positive correlation between plant performance and the period in 

which plant temperatures remain within a narrow optimal crop 

temperature window (Burke et al., 1988). Irrigation is started as 

soon as Tc exceeds a certain crop-specific threshold for a certain 
length of time.

The simplicity of the algorithm makes it very well suited for 

automated irrigation (O’Shaughnessy and Evett, 2010) of crops 
as cotton (Wanjura et al., 1990, 1992, 2002, 2006; Wanjura and 

Upchurch, 2000), corn (Evett et al., 2000), groundnut (Mahan 

et al., 2005), and soybean (Peters and Evett, 2007, 2008). ST 

can also be used to detect and to respond to spatial patterns of 

drought stress when measured with a large number of IRT sen-

sors mounted on a centre pivot (Peters and Evett, 2007, 2008). 

Furthermore, ST outperformed the more commonly applied crop 

water stress index (CWSI, section 4.3) in estimating drought 

stress and yield (Wanjura et al., 2006; Bajwa and Vories, 2007). 

However, ST has only been successfully applied in the semi-arid 

climates of Texas and, recently, Australia (Conaty, 2010). Other 
limitations are the requirement of continuous measurements, the 

crop specificity of the temperature thresholds and the sensitivity 
to Tsoil measurements (see equation 9), limiting the application to 

full cover conditions only. ST is also known as the Temperature–

Time Threshold (TTT) method (Wanjura et al., 1995) or the 

BIOTIC protocol (biologically identified optimal temperature 
interactive console) (Mahan et al., 2005; Wanjura et al., 2006).

4.2 Difference between canopy and air or reference 
crop temperature

(Tc – Ta), sometimes referred to as canopy temperature depres-

sion (CTD), is the most straightforward normalization of Tc and 

is used widely as an indicator of plant health, heat stress tolerance 

or drought stress in crops (e.g. Ehrler, 1973; Sadler et al., 2000; 

2002; Patel et al., 2001; Baker et al., 2007), often for studying 

crops experiencing different irrigation regimes (e.g. Olufayo 
et al., 1996; Singandhupe et al., 2003; Pettigrew, 2004; Qiu 

et al., 2008; Garcia-Tejero et al., 2011). (Tc – Ta) has also been 

used intensively for wheat cultivar selection (Amani et al., 1996; 

Olufayo et al., 1996; Rashid et al., 1999; Balota et al., 2007, 

2008; Kumari et al., 2007). (Tc – Ta) is widely applied for woody 

crops as apple (Andrews et al., 1992), olive (Sepulcre-Canto 

et al., 2006), cherry (Stoimenov et al., 2007), grapevine (Serrano 

et al., 2010), peach (Massai et al., 2000; Wang and Gartung, 

2010), and citrus (Garcia-Tejero et al., 2011; Zarco-Tejada et al., 

2012), often showing to be closely related with irrigation treat-

ment, leaf water potential, or gs.

Irrigation scheduling based on (Tc – Ta) has mostly occurred in 

the form of the stress degree day (SDD; °C or K) method, origi-

nally proposed by Idso et al. (1977) and Jackson et al. (1977):

 

SDD T Tc a i

i

n

= −

=
∑( )

1

 (40)

with Tc and Ta measured 1–1.5 hours after solar noon at day 

i during a n-day period. Irrigation is started as soon as SDD 

exceeds 0. Although also applied successfully for other crops 

(Walker and Hatfield, 1979; Idso et al., 1980), SDD worked 

particularly well for wheat. SDD was the first attempt to sched-

ule irrigation based on Tc and was the most widely used ther-

mal index until CWSIe (section 4.3.3) was developed (Gardner 

et al., 1992a). Nowadays, SDD is still occasionally used as 

a drought stress index or estimator of yield and water use 

(Olufayo et al., 1996; Collino et al., 2000; Patel et al., 2001; 

Onyibe et al., 2003; Ajayi and Olufayo, 2004; Zhang et al., 

2005; Chakravarti et al., 2010).

In general, because of the large influence of weather condi-
tions on (Tc – Ta) (Fig. 5), (Tc – Ta) and SDD can only be used 

in (semi-)arid climates where weather conditions vary little 

between consecutive days (Keener and Kircher, 1983; Al-Faraj 

et al., 2001; Moran, 2004). Some authors suggested replacing 

Ta with Tc of an unstressed crop (Tpot) and to use (Tc – Tpot) 

as an estimator of drought stress (Fuchs and Tanner, 1966; 

Clawson and Blad, 1982; Berliner et al., 1984; Sepulcre-Canto 

et al., 2006). Similarly, Gardner et al. (1981a,b) proposed the 

temperature stress day (TSD), a variant of SDD in which Tpot 

replaces Ta. Both indices have been hardly applied because  

(Tc – Tpot) also depends on weather conditions and because 

unstressed reference crops are often not available (Moran, 

2004). In addition, TSD was less related with sorghum evap-

otranspiration and crop yield than SDD and CWSI (Olufayo 
et al., 1996; Ajayi and Olufayo, 2004).

4.3 Crop water stress index

4.3.1 Background and theory
The crop water stress index (CWSI) is a drought stress index that 

uses the Ts of a potential and dry crop. The potential crop is iden-

tical to the actual crop but is transpiring at maximal rate (λEpot) 

with an associated canopy resistance rc,pot and temperature Tpot. 

The dry crop, with associated λEdry, rc,dry, and Tdry, is a crop with 

identical properties as the actual crop that is not transpiring at all. 

CWSI is calculated as (see Supplementary Data S3):
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where △Tpot, △Tdry, and △Ta are defined as (Tpot – Ta),  

(Tdry – Ta), and (Tc – Ta), respectively. The introduction of  

CWSI by Jackson et al. (1981) and Idso et al. (1981a) was an 

important breakthrough in ground-based thermal remote sens-

ing. Its innovative aspect was the normalization by Ta and, more 

importantly, by △Tpot and △Tdry, underpinned by a solid theoret-

ical base. This approach of using an upper and lower boundary 

△T or Ts, was later used in the large majority of ground-based 

and airborne and satellite thermal remote sensing methods.

Different approaches to calculate CWSI were developed: the 

analytical (CWSIa), empirical (CWSIe), direct approach (CWSId), 
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and the WDI will be discussed in the following sections. As they 

are all based on equation 41, it is important to know the under-

lying assumptions of this equation:

It is a one-source model.

 raH = raV = raM, with raM the roughness lengths for momentum 

exchange. This corresponds with assuming that the Reynolds 

analogy holds (see Supplementary Data S2.3 for a discussion).

 raH,dry = raH,pot = raH.

 Differences in Rn between Tdry, Tpot, and Tc, caused by the  

differences in outgoing longwave radiation (equation 12) can be 

ignored.

S = 0.

 Gi = 0. Jackson et al. (1988) proposed to replace Rn with 0.9 Rn 

(i.e. assuming Γi = 0.1; section 3.3.1) to compensate for this in 

the analytical approach.

 Ts = Tc. In partially vegetated fields, this assumption is problem-

atic (Moran et al., 1994) and the use of the water deficit index 
(WDI; section 4.3.5) is recommended.

 T0 = Tc (Boulet et al., 2007, see section 3.3.4 for a discussion). In 

fact, most studies assume that Tbr = Tc.

4.3.2 Analytical approach (CWSIa)
In the analytical approach, Tc measurements are combined 

with meteorological data to compute CWSI. Originally, 
Jackson et al. (1981) proposed to calculate CWSIa from

CWSI

r r
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. This requires an estimate of raH, rc,pot, 

and rc/raH, estimated as (see Supplementary Data S3, equation S40):
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where s is calculated from the average of the air and surface 

temperature. Hence, △T is used to calculate rc/raH. Although 

this method is still occasionally applied (e.g. da Silva and Rao, 

2005; Berni et al., 2009a), most studies using CWSIa calculate 

△Tpot and △Tdry directly (e.g. Feldhake et al., 1997; Yuan et al., 

2004; Gonzalez-Dugo et al., 2006; Gontia and Tiwari, 2008; Ben 

Gal et al., 2009; Alchanatis et al., 2010; Li et al., 2010) as (see 

Supplementary Data S3, equations S41 and S43):
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Both methods are essentially the same and require, apart 

from standard meteorological data (Ta, δe, Rn), estimates of u, 

z0M, d, hc and possibly z0H to estimate raH (equations 34 or 36). 

Furthermore, rc,pot must be estimated (equation 43) from litera-

ture or derived from the observed △Tmin (the minimal observed 

△T) during the growth period, as suggested by Jackson et al. 

(1981) and later elaborated by O’Toole and Real (1986).
CWSIa was developed for and has mostly been applied in 

dense crops, although it was also successfully applied for orchard 

trees as apple (Andrews et al., 1992), olive (Ben Gal et al., 2009; 

Berni et al., 2009a), and peach (Wang and Gartung, 2010).

Still, the large input requirements have hampered a routine use 

of the analytical approach (Gardner et al., 1992a; Payero et al., 

2005). The most important sources of error are incorrect meas-

urements of u, Rn, Ta, and Tc (Jackson et al., 1981). △Tdry (equa-

tion 44) only requires Rn and raH for its estimation and is often 

assumed constant (see further; see also Fig. 5j). The estimation 

of △Tpot bears more uncertainty (equation 43). Alves and Pereira 

(2000) suggested replacing Tpot by the wet bulb temperature, 

which can be measured directly without the requirement of wind 

speed or of crop data. This method is appealing but has the dis-

advantage that it sets rc,pot = 0 (Yuan et al., 2004), making CWSI 

no longer equal to 1−
λ

λ

E

Epot
.

4.3.3 Empirical or baseline approach (CWSIe)
Definition and baseline calculation of empirical approach  
In the empirical or baseline approach, the data input is limited 

to Ta, δe, and Tc. The approach was introduced by Idso et al. 

(1981a) and was inspired by the observation that △T decreases 

linearly with δe (Ehrler, 1973, see also Figs. 3d and 5d). This 

allows expressing △Tpot as:

 △Tpot = apot + bpot δe (45)

Equation 45 is the mathematical expression of the lower or 

non-water stressed baseline (NWSB). The basic assumption of 

the method is that apot and bpot are constant and crop specific, at 
least for a given location and for a certain growth stage.

These parameters can be derived in two ways. In the diurnal 

method, △T of a fully watered crop is collected from different 

measurements during one or several days and plotted against δe. 

As Rn is not constant during the sampling, this usually does not 

yield reliable estimates of apot and bpot. In the seasonal method, 

one △T measurement of a fully watered crop is taken every day 

around solar noon during the entire growing season. Although 

more demanding, this gives more robust estimates (Gardner 

et al., 1992a). In Table S1 of Supplementary Data S4, an over-

view is presented of available non-water-stressed baselines, with 

data of 39 different crops.

△Tdry is usually calculated as the average △T of a fully 

stressed canopy (e.g. Lacape et al., 1998; Alderfasi and Nielsen, 

2001; Emekli et al., 2007; Kar and Kumar, 2010; Li et al., 2010). 

Alternatively, △Tdry can be estimated as (Idso et al., 1981a):

 △Tdry = apot + bpot [e
*(Ta) – e*(Ta + apot)] (46)
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with e*(Ta) and e*(Ta + apot) the saturated vapour pressure at 

temperature Ta and (Ta + apot), respectively.

The concept is illustrated in Fig. 7. CWSIe is calculated as BC/

AC. Note that if δe changes while rc remains constant, the ratio 

of BC/AC, hence CWSIe, will not change. This is illustrated by 

the thin grey line, which represents △T for gs= 50 mmol m–2 s–1.

Application
CWSIe was closely correlated with leaf water potential (e.g. Idso 

et al., 1981bc; Wang et al., 2005; Testi et al., 2008), soil mois-

ture level (Colaizzi et al., 2003a; Chen et al., 2010), and evapo-

transpiration (Nielsen and Anderson, 1989; Yazar et al., 1999; 

Lebourgeois et al., 2010) of a variety of crops. The average 

seasonal CWSIe was closely related with water use efficiency 
(Garrot et al., 1993; Yazar et al., 1999; Wang et al., 2005; da 

Silva et al., 2007; Kirnak and Dogan, 2009) and can be used as 

precise indicators of crop yield (e. g. Garrot et al., 1994; Orta 
et al., 2003; Simsek et al., 2005; Emekli et al., 2007; Erdem 

et al., 2010). Although also developed for dense crops, CWSIe 

has also been applied for orchard trees as pistachio trees, citrus, 

nectarine, and cherry trees (Table 2).

Soon after its introduction, CWSIe became the most com-

monly used thermal drought stress index (Jackson et al., 1988; 

Gardner et al., 1992a), which it has remained ever since. It is one 

of the common irrigation scheduling methods in regions with 

stable sunny summer conditions (Gardner et al., 1992a,b, see 

also Table S1) and proved as reliable in terms of yield and water 

savings as more expensive soil water-based irrigation techniques 

(Stegman, 1986; Steele et al., 1994, 2000; Shae et al., 1999).

The main reasons for its success are the limited data require-

ments and straightforward calculation, which makes CWSIe 

easy to apply for non-scientists. In addition, its introduction 

went hand in hand with a drop in price of portable IRTs, making 

CWSIe relatively cheap to measure.

Disadvantages and limitations of the 
empirical approach
However, CWSIe has its limitations:

   In general, it is less reliable than CWSIa (e.g. Stockle and 

Dugas, 1992; Jalalifarahani et al., 1993; Yuan et al., 2004).

   CWSIe is unreliable when the canopy is not fully closed 

(Moran et al., 1994). This can only be partially overcome by 

adjusting the viewing angle. However, this does not guarantee 

reliable results (Koksal, 2008), in particular when the base-

lines were established for other viewing angles.

   The most important limitation, however, is related to the fact 

that apot and bpot are not entirely crop specific or weather inde-

pendent. Theoretically, they are estimated as (equation 43):
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apot and bpot change with different Ta and particularly u (e.g. 

Jensen et al., 1990; Payero and Irmak, 2006; Testi et al., 2008) 

and Kin (e.g. Gardner et al., 1992b; Olufayo et al., 1996; Al-Faraj 

et al., 2001; Ajayi and Olufayo, 2004). Hence, CWSIe requires 

stable weather conditions (preferably hot and dry, with open 

skies) (Gardner et al., 1992b). Measurements should also be 

taken only around solar noon (Idso et al., 1981a; Jackson et al., 

1981; Testi et al., 2008).

These requirements form an important drawback in humid or 

temperate regions (Payero et al., 2005; Payero and Irmak, 2006), 

where CWSIe is only reliable when the weather is as described 

above (Keener and Kircher, 1983; Anda, 2009; Lebourgeois 

et al., 2010).Therefore, rather than as a stand-alone technique 

for irrigation monitoring, CWSIe is often complemented with 

soil moisture measurements or used to assist decision making for 

irrigation scheduling (e.g. Steele et al., 1997; Yazar et al., 1999; 

Al-Faraj et al., 2001; Chen et al., 2010).

Another major drawback is the fact that apot and bpot are not 

crop specific, but are influenced by crop characteristics as crop 
height and leaf area (Alves and Pereira, 2000; Payero and Irmak, 

2006), so that the NWSB changes within the season and between 

seasons (e.g. Kirkham et al., 1983; Yuan et al., 2004; Simsek 

et al., 2005; Payero and Irmak, 2006; Erdem et al., 2010).

Adaptations and improvements of the 
empirical approach
Two methods were proposed to correct CWSIe for non-constant 

meteorological conditions. In a first method, different classes 

of Rn and/or u are considered and a separate NWSB is built 

for each class (e.g. Jensen et al., 1990; Olufayo et al., 1996). 

In the second method, u, Rn or Ta are included in the regres-

sion model of the NWSB. Although more robust (e.g. Keener 

and Kircher, 1983; Jalalifarahani et al., 1993; Payero and 

Irmak, 2006), these methods require more input data and 

can be interpreted as intermediate between the empirical 

and analytical methods. A common adaptation to correct for 

crop growth is the definition of different NWSBs per growth 

stage, such as the pre-heading and post-heading phase in 

Fig. 7. Illustration of the baseline approach of the crop water 
stress index.
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wheat crops (e.g. Idso, 1982; Howell et al., 1986; Gontia and 

Tiwari, 2008).

4.3.4 Direct approach (CWSId)
In the direct approach, Tpot and/or Tdry are measured directly 

along with Tc. The original method, in which Tpot was measured 

as Tc of a fully transpiring crop, was applied in a limited number 

of studies (e.g. Katerji et al., 1988; Olufayo et al., 1996; Wanjura 

and Upchurch, 2000; Bajwa and Vories, 2007). A more practical 

method uses the temperature of dry or wet artificial reference 
surfaces.

At single plant level, dry reference surfaces, with correspond-

ing temperature (Tdry) are created by covering leaves with a layer 

of petroleum jelly, blocking all transpiration flows. Wet leaves, 
with temperature Twet, are leaves sprayed with a thin layer of 

water on one or both leaf sides. 

CWSId is then calculated as:

 

CWSI
T T

T T
d

wet l

wet dry

=

−

−

 (49)

When thermal cameras are used, the reference leaves can be 

physically embedded in the scene and Tl, Twet, and Tdry are meas-

ured within the same image. As such, no additional meteoro-

logical measurements are required. This makes the method very 

appealing, all the more because it allows for fully automated 

image analysis and CWSId assessment (Wang et al., 2010a). In 

addition, measurement errors of εl or Lin are reduced because 

they will cause similar errors for Twet, Tdry, and Tl. This makes 

CWSId a very appealing method. Its reliability and sensitivity 

for weather conditions and leaf characteristics are modelled in 

the next section.

Obtaining the sensitivity of CWSId at leaf level to 
weather conditions and leaf characteristics
Model description Tl, Tdry, and Twet were calculated with the 

model described in section 3.2 for the same range of weather 

conditions and leaf characteristics as in Figs. 3 and 4.

Tdry is calculated as (equation 19 and assuming rs = ∞):

 

T T
r R

c
dry a

aH n

a p

= +
ρ

 (50)

Twet of leaves sprayed on one side (rV = raV, see equation 24) is:

 

T T
r r R r c

c r r
wet a

aH aV n aH a p

a p aV aH

= +
−

+

γ ρ

ρ γ

δ e

s( )
 (51)

Two sets of confidence bands for CWSId were calculated. For 

the first set, it was assumed that the estimation error from each of 
the three temperature measurements (Tl, Tdry and Twet) is the only 

source of error. The average and standard deviation of CWSId  

(CWSI
d
; σ(CWSId)) were calculated from 5000 random samples 

of Tl, Tdry, and Twet, generated assuming a normal distribution 

with as average the Tl, Tdry, and Twet value from the leaf model 

and 0.18 °C as standard deviation. Confidence bands were calcu-

lated as CWSI
d

 ± 2 σ(CWSId).

In the second set, a small difference in leaf characteristics or 

weather conditions between the measured and reference leaves 

was additionally taken into account. Because, in practice, dry 

and reference leaves are normally selected right next to each 

other and of two very similar leaves, it was assumed that the 

two reference leaves experienced identical weather conditions 

and leaf characteristics. Tdry and Twet were estimated when (for 

instance) u is 10% higher (Tdry,high and Twet,high) or 10% lower 

(Tdry,low and Twet,low) than the wind speed experienced by the 

measured leaves. CWSId was calculated for 5000 randomly  

generated values of Tl, Tdry,high, and Twet,high (CWSId,high) or 

Tl, Tdry,low, and Twet,low (CWSId,low) and the average and stand-

ard deviation of CWSId,high and CWSId,low calculated; the 

confidence bands were calculated as [minimum(CWSId low,  –  

2 σ(CWSId;low), CWSId high,  – 2 σ(CWSId,high)); maximum 

(CWSId low,  + 2 σ(CWSId,low), CWSId high,  + 2 σ(CWSId,high))].

The relation between each variable and CWSId is calculated 

for three levels of gs (20, 200, and 600 mmol m–2 s–1) (Figs. 8 

and 9, left column); additionally, the relation between gs and 

CWSId is given for three levels of each variable (Figs. 8 and 9, 

right column). To further investigate the discriminative power, 

the CWSId values of the confidence bands were reconverted 
to gs values using a splining algorithm. For each of the three 

gs levels, this gives the lower and higher level of gs that can 

be statistically distinguished from this level; the narrower the 

bands, the higher the discriminative power (Figs. 8 and 9, mid-

dle column).

Modelling results
Leaves with lower gs have higher CWSId; however, CWSId is not 

linearly related with gs (Fig. 8). The expected value of CWSId is 

not influenced by Kin, δe, θ, or α. Higher Ta and Al and lower u 

lead to lower CWSId values.

If only measurement errors are considered, the discriminative 

power (dark confidence band width of graphs in middle column 
of Fig. 8) increases with increasing Ta, Kin, and δe and decreas-

ing u (except for high gs at very low u, Fig. 8d). The discrim-

inative power is very low when δe is low. Differing conditions 

between the reference and measured leaves (a 10% difference 

was assumed, except for Ta, where the difference was fixed at 
0.2 °C) further decrease the discriminative power; the discrim-

inative power is even rather constant over Kin. The lower dis-

criminative power at gs = 600 mmol m–2 s–1 is caused by the 

non-linear relationship between gs and Tl; at higher gs, a further 

increment in gs has a lower impact on Tl (or △Tl/△gs decreases 

with increasing gs, Figs. 3 and 4).

As long as the reference and the measured leaves have iden-

tical leaf characteristics, the discriminative power of CWSId is 

relatively independent of the leaf characteristics (Fig. 9, mid-

dle column). For measured leaves with high θ and (to a much 

lesser extent) α, deviations in α and θ between the measured and 

reference leaves reduce the discriminative power significantly 
(Fig. 9b, 9k).
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Fig. 8. Influence of weather conditions on CWSId at leaf level. In the left column, the influence of the weather conditions air temperature 
(Ta), incoming shortwave radiation (Kin,), wind speed (u), and vapour pressure deficit (δe) on the mean and 95% confidence intervals 
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Application and evaluation of CWSId
Overall, the simulations showed that CWSId can be estimated 

with relatively low error, even in non-ideal measurement con-

ditions. This has been confirmed experimentally: CWSId was 

measured in several studies and showed good correlations with 

gs (Jones, 1999b; Leinonen and Jones, 2004; Grant et al., 2006, 

2012; Maes et al., 2011), leaf (Grant et al., 2007) and stem water 

potential (Wang et al., 2010a).

Unfortunately, the method has a number of drawbacks as well. 

First of all, CWSId is analogous to but not the same as CWSIe or 

CWSIa. Even at very high gs, CWSId does not tend to zero (Figs. 

8 and 9), because Twet, used to calculate CWSId, is much lower 

than Tpot. Furthermore, the lower boundary level of CWSId (e.g. 

at gs = 1000 mmol m–2 s–1) depends on Ta, u, Al, and leaf shape 

(Figs. 8 and 9), which complicates the interpretation of CWSId. 

This is not the case when the same data are used to calculate Ig, 

as will be discussed in section 4.4.

Another clear disadvantage of the method is related to the scale 

level, as working with single leaves is not feasible at field scale. 
To apply CWSId to the field, the wet reference leaves are replaced 
by wet artificial reference surfaces or WARS (Meron et al., 2003). 

This WARS consists of a plastic tray, filled with water and cov-

ered by a polystyrene foam, covered by a water-absorbent cloth 

(Möller et al., 2007). With the application of WARS, CWSId was 

highly correlated with the leaf water potential of cotton and soy-

bean (e.g. Cohen et al., 2005; Meron et al., 2010; O’Shaughnessy 
et al., 2011), even higher than CWSIa (Alchanatis et al., 2010). 

CWSId performs equally well for orchard trees as olive (Ben 

Gal et al., 2009) and grapevine (Möller et al., 2007). Given the 

ease of measurement, this currently seems the most promising 

CWSI technique for field application and is particularly suited 
for assessing the spatial variability of the crop water status.

However, some issues must be solved before the method 

can shift from purely scientific studies to application for irri-
gation steering. It is not clear how the WARS relates to Tpot or 

Twet, how its temperature is influenced by weather conditions, 
or whether it should be placed at a particular height above the 

ground. Moreover, the fact that the WARS needs to be visible 

in every analysed image limits the frequency at which data 

can be assessed and requires high spatial resolution (Ben Gal 

et al., 2009).

In addition, there is still no artificial reference surface to meas-

ure Tdry for canopy scale measurements. Although actually a 

function of Rn and raH (equation 44), △Tdry is usually set arbitrar-

ily at 5 °C (Ben Gal et al., 2009). Given the sensitivity of CWSId 

to Tdry, this issue should be solved, particularly for application 

in temperate or humid regions. Tdry should preferentially be 

obtained through dry artificial reference surfaces, as this reduces 
the requirement of meteorological measurements. Finally, 

obtaining a thermal image that covers a sufficiently large area (if 
possible, the entire field) at sufficient resolution remains challen-

ging. This issue is not specific for CWSId and will be discussed 

in section 5.1.

4.3.5 The water deficit index
As discussed, the calculation of CWSI assumes that Ts = Tc, 

which requires a fully closed canopy (equation 9). Else, Ts is 

higher than Tc and CWSI is overestimated. This problem is over-

come with the water deficit index (WDI), through relating △T 

with fractional cover [fc(ϕ)] or with a vegetation index (Moran 

et al., 1994).

If △T is plotted against fc(ϕ), all points fall within a trapezoid-

shaped region. The vertices of this trapezoid correspond with 

well-watered, full cover vegetation, drought-stressed full cover 

vegetation, saturated bare soil, and dry bare soil, as schematized 

in Fig. 10. Moran et al. (1994) showed that these vertices could 

be calculated with meteorological and crop data.

Under the assumption that △Ts is a linear function of fc(ϕ) 

[△Ts = fc(ϕ) △Ts + (1 – fc(ϕ)) △Tsoil], the line between △TWC 

and △TWS represents the minimum possible temperature as a 

function of fc(ϕ) (△Tpot[fc(ϕ)]) and the line between △TDC and 

△TDS the maximum possible temperature as a function of fc(ϕ) 

(△Tdry(fc(ϕ))). If it is further assumed that △Tc and △Tsoil are lin-

early related with transpiration and soil evaporation, respectively, 

for a given Rn, δe, and raH (Fig. 5f), the WDI can be defined, by 
analogy with CWSI, as:
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 (52)

In Fig. 10, WDI of a crop with fc(ϕ) and △T of point B is  

calculated as WDI
AB

AC
= .

In practice, a vegetation index, calculated from the near infra-

red and red wavelengths of a pixel, is used instead of fc (ϕ). 

Moran et al. (1994) originally proposed to use the soil-adjusted 

vegetation index (SAVI), but as the normalized difference vege-

tation index (NDVI) gives more reliable results (Koksal, 2008), 

it is more commonly used. However, the underlying assumption 

that fc(ϕ) is linearly related with NDVI or SAVI is not correct 

(Jones and Vaughan, 2010).

of CWSId is given for three levels of gs; in the middle column, the discriminative power is given, expressed as the lower and higher 
boundary (i.e., the confidence interval) of gs that is statistically different from the mean level of gs; in the right column, the influence of gs 
on the mean and 95% confidence intervals of CWSId is given for three levels of Ta, Kin, u, and δe. Two sets of confidence intervals are 
given: one set in which the only estimation error was generated from the uncertainty on the temperature measurements (darker colours, 
full lines) and one set in which small differences in weather conditions between the reference and the measured leaves were additionally 
simulated (brighter colours, dashed lines). Based on the Tl model of section 3.2.2. See captions of Fig. 3 for standard weather 
conditions and standard leaf characteristics. The second set of confidence intervals was calculated assuming differences of ± 0.2 °C for 
Ta and of ± 10% of the measured leaf’s Kin, u, and δe between measured and reference leaves.
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Fig. 9. Influence of leaf characteristics on CWSId at leaf level. In the left column, the influence of the leaf angle, size, shape, and albedo 
on the mean and 95% confidence intervals of CWSId is given for three levels of gs; in the middle column, the discriminative power is 
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Originally, an ‘analytical’ version of WDI was proposed 
by Moran et al. (1994) and WDI was a ground-based method. 

However, a huge amount of data was required to estimate WDI 

analytically: apart from the visual, near infrared, and thermal 

infrared measurements, the method also required weather data 

(Rn, δe, u, and Ta) and crop characteristics (LAI, hc, raH), add-

itional parameters such as the maximum possible LAI and gs, raH 

of the soil, and the SAVI values corresponding with full cover 

and completely bare soil. Hence, this analytical version of WDI 

was applied in a very limited number of studies, although these 

reported high correlations with irrigation level, 1−












λ

λ
E

Epot
,  

 

gs, or leaf water potential in cotton (Colaizzi et al., 2003b; 

Luquet et al., 2004), broccoli (El-Shikha et al., 2007), and 

dwarf bean (Koksal, 2008).

An empirical version of WDI was developed (Clarke,  

1997) in which the boundaries of the trapezoid are 

derived from the Ts – VI scatterplot, without requiring any 

ground-based weather measurement. This empirical version 

is widely applied, but is largely limited to airborne thermal 

remote sensing; this review will therefore not go deeper into 

this version. For ground-based measurements, a simplifica-

tion of WDI was proposed with a method combining Ts and  

VI data with an empirical baseline approach as in CWSIe 

(Barnes et al., 2000), but this approach was not picked up by 

other researchers (but see Tilling et al., 2007) and will not be 

further discussed.

4.4 Stomatal conductance index

4.4.1 Calculation and modelling
The stomatal conductance index (Ig) uses the same input data 

as CWSId at leaf scale, but has the advantage over CWSId 

that it is linearly related with gs (except for anisolateral leaves 

(amphistomatous leaves with rs,l ≠ rs,u) (Guilioni et al., 2008)).

For its derivation, Jones (1999a,b) made use of the isothermal 

net radiation Rni, instead of Rn. Rni is defined as the net radiation 
of a leaf that would be received by an identical leaf if it were 

at air temperature (Jones, 1992). Rn can be substituted with Rni 

in equations 19, 50, and 51 if raH is replaced by a new resist-

ance term rHR. This is the parallel sum of raH and rR (rHR = (raH 

rR)/(raH + rR)), with rR the virtual leaf resistance to radiative 

transfer:

 

r
c

T
R

a p=












ρ

ε σ4 2
3

 (53)

The derivation of Rni, rR, and rHR is given in Supplementary 

Data S5. Equations 19, 50, and 51 then become:

 

T T
r r R r c

c r r
a

HR V ni HR a p

a p V HR
1 = +

−

+

γ ρ

ρ γ

δ e

s( )
 (54)

 

T T
r R

c
dry a

HR ni

a p

= +
ρ

 (55)

 

T T
r r R r c

c r r
wet a

HR aV ni HR a p

a p aV HR

= +
−

+

γ ρ

ρ γ

δ e

s( )
 (56)

Note that Twet in equation 56 is the Tl of a reference leaf wet-

ted on one side; Twet of leaves wetted on both sides is obtained by 

replacing raV with 0.5 raV.

Rni has the advantage that is independent of Tl; hence, in 

contrast with Rn in equations 19, 50, and 51, Rni has the same 

value in equations 54–56, which allows calculating the stomatal 

conductance index Ig as 
( )

( )

T T

T T

dry

wet

−

−

1

1

. For hypostomatous leaves, 

combining equations 24 and 54–56 gives:

 

I
s

g =
−

−
=

+( )

( )

T T

T T

r r

r

dry

wet

aV HR

s

1

1

γ

γ
 (57)

Fig. 10. Illustration of the water deficit index.

given, expressed as the lower and higher boundary of gs that is statistically different from the mean level of gs; in the right column, the 
influence on the mean and 95% confidence intervals of CWSId of gs is given for three levels of leaf angle, size, shape, and albedo. Two 
sets of confidence intervals are given: one set in which the only estimation error was generated from the uncertainty on the temperature 
measurements (darker colours, full lines) and one set in which small differences in weather conditions between the reference and 
the measured leaves were additionally simulated (brighter colours, dashed lines). Based on Tl model of section 3.2.2. See captions 
of Fig. 3 for standard weather conditions and standard leaf characteristics. The second set of confidence intervals was calculated 
assuming differences of ± 10% of the measured leaf’s leaf angle, shape, size, and albedo between measured and reference leaves. Leaf 
shape = 100 leaf width/leaf length.
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or

 

g I
s

Is g g=
+

=
γ

γ r r
G

aV HR

 (58)

with G
r r
aV HR

=
+

γ

γ s
. For isolateral leaves and when a wet 

reference leaf wetted on both sides is used, the relation is similar, 

with G
r r
aV HR

=
+

γ

γ 2s
. In other cases, the relation between Ig 

and gs becomes more complex (see Guilioni et al. (2008) for an 

overview). In the case of anisolateral leaves, Ig is a linear func-

tion of rV (equation 22), not of gs.

For hypostomatous and isolateral leaves, Ig is linearly related 

with gs as long as G remains constant (equation 58). The influ-

ence of gs and meteorological conditions on G is given in Fig. 11. 

G hardly changes with gs, Kin, or δe, but is very much influenced 
by u and Ta.

Although gs can be calculated from Ig, Ig is most often used 

as a stress indicator itself, because of the linear relation with gs 

and the fact that no additional microclimatic measurements are 

needed. The reliability and sensitivity for weather conditions and 

leaf characteristics was modelled, using the same leaf model and 

techniques as for CWSId (hence, hypostomatous leaves with wet 

reference leaves wetted on one side, section 4.3.4).

4.4.2 Application of Ig and its sensitivity to weather 
conditions and deviations in leaf characteristics
Ig is indeed linearly related with gs (Figs. 12 and 13, but see 

also Fig. 12i). This agrees with observations in grapevine (Jones 

et al., 2002; Leinonen and Jones, 2004; Fuentes et al., 2005; 

Grant et al., 2006, 2007; Leinonen et al., 2006; Loveys et al., 

2008), in several varieties of bean (Jones, 1999a,b; Leinonen 

and Jones, 2004; Grant et al., 2006), in cucumber (Kaukoranta 

et al., 2005), and in the biodiesel plant Jatropha curcas L. (Maes 

et al., 2011).

A thermal and visual image of this last study is given in 

Fig. 14. The seedling on the left (drought plant) was not irrigated 

for about 2 months; the seedling on the right (control plant) was 

fully irrigated. Tdry was 27.3 for both plants and Twet 19.4 and 

18.4 for the drought and control plant, respectively. Average Tl 

of the control plant was 24.8 °C, resulting in Ig = 0.39 and CWSId 

of 0.72; and average Tl of the drought plant was 26.7, resulting in 

Ig= 0.09 and CWSId = 0.92.

Similar to CWSId, the expected value of Ig is not influenced 
by Kin, δe, θ, or α (Fig. 12), but increases with increasing Ta and 

Al, and with decreasing u. Optimal conditions for application of 
Ig (i.e. higher difference between the lines in left column; lower 

confidence bandwidths in middle column of Fig. 12) include 
high Ta, Kin, and δe and relatively low u (Fig. 12), which are 

also the conditions in which most studies were performed; how-

ever, Ig has also been successfully applied at low or highly vari-

able incoming radiation (Maes et al., 2011; Grant et al., 2012). 

Fig. 11. Influence of weather conditions: (a) air temperature (Ta), (b) incoming shortwave radiation (Kin), (c) wind speed (u), and  
(d) vapour pressure deficit (δe) on G (G = Ig gs

–1), calculated for hypostomatous leaves, and for three levels of gs; 20 (green), 200 (blue), 
and 600 (red) mmol m–2 s–1. Based on equation 58 and derived from the leaf model described in section 3.2.2. See Fig. 3 for standard 
weather conditions and leaf characteristics.
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Fig. 12. Influence of weather conditions air temperature (Ta), incoming shortwave radiation (Kin,), wind speed (u), and vapour pressure 
deficit (δe) on Ig. See Fig. 8 for a detailed description.
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Fig. 13. Influence of leaf characteristics (leaf angle, size, shape, and albedo) on Ig. See Fig. 9 for a detailed description.
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Indeed, if differences between measured and reference leaves are 

taken into account, the discriminative power roughly does not 

change with Kin (Fig. 12e).

As for CWSId, leaf characteristics have relatively little influ-

ence on the discriminative power, with the exception of θ at more 

vertical leaf angles. Note that θ, defined as the angle between the 
leaves and the plane perpendicular to the incoming sunlight, is 

also influenced by the position of the sun; hence, measurements 
in early morning and later afternoon or in early spring or late 

autumn, are prone to significantly larger error.
In field conditions, the large variation in Tl within the canopy, 

mainly as a consequence of leaf orientation and shading, compli-

cates the use of Ig. Grant et al. (2006, 2012) suggested placing 

leaves in a horizontal grid, but it is not certain that this will not 

disturb leaf functioning – furthermore, this is often unfeasible. 

More robust Ig estimates can be obtained by taking the average 

temperature of several leaves as input for Tl in equation 57 (Maes 

et al., 2011). In addition, separating canopy from background 

pixels, based on visual or near-infrared images (e.g. Leinonen 

and Jones, 2004; Möller et al., 2007; Wang et al., 2010a; see sec-

tion 5.3.1), makes the estimates more robust.

The large variability of leaf canopy temperature also compli-

cates the assessment of a reliable reference leaf temperature esti-

mate. If different dry reference leaves are spread over the canopy, 

their Tdry can differ with several degrees, due to the impact of θ 

and Kin on Tdry (Figs. 3c, d and 4a, b). Grant et al. (2006) sug-

gested taking the maximum observed Tdry rather than average 

Tdry; Maes et al. (2011) pinpointed the need to measure and use a 

separate Tdry per plant, if possible.

Twet is slightly less influenced by Kin or θ (Figs. 3d and 4b), 

but there are practical limitations to its use (Jones et al., 2009). 

Moreover, different times between wetting and image capture 

can cause inconsistent Twet estimates and wetting the reference 

leaves can influence Tl of other leaves, both directly (dripping 

of the water on other leaves) and indirectly (through changes in 

microclimate) (Jones et al., 2002; Grant et al., 2007).

This calls for alternatives for the single reference leaves for 

application of Ig at canopy or field scale. The wet reference leaves 
could be replaced by the WARS, used in CWSId (section 4.3.4); 

as mentioned, no larger-scale alternative exists at the moment for 

the dry reference surfaces; as for CWSId, Tdry might be taken as a 

constant level or can be estimated from equation 44 or 55.

4.4.3 CWSId or Ig?
As discussed, the same data are used for the calculation of 

CWSId or Ig; in fact, CWSId = (1 + Ig)
–1 (equations 51 and 57). 

So, which indicator is to be preferred? Interestingly, the mod-

elling shows that the discriminative power of both methods is 

very similar (compare middle columns of Figs. 8 and 12 and of 

Figs. 9 and 13). So far, most scientists have preferred CWSId 

because the CWSI concept is well known. However, CWSId is 

not linearly related with gs and, due to the use of Twet instead of 

Tpot, there is no firm theoretical relation between CWSId and 

1−












λ

λ
E

Epot
. The use of Ig can therefore be recommended, at 

least at leaf level.

Fig. 14. Visible (left) and thermal infrared (right) view from above of seedlings of Jatropha curcas L. Wet reference leaves were created 
by spraying the leaves about 1 minute before image capture and are indicated with the white ellipses; dry reference leaves of both plants 
were created by covering the leaves with petroleum jelly and are indicated with red ellipses. Image taken in a greenhouse in Heverlee, 
Belgium on 18 October 2007 with a ThermaCAM SC3000 PAL (FLIR Systems) and a Panasonic Lumix DMC-TZ3. See Maes et al. 
(2011) for more details.
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4.4.4 Alternative indices
(Tdry – Tl) (Tdry – Tl) is a simplified index that avoids the 
measurement problems related to the wet reference leaf. (Tdry – 

Tl) was closely related with gs in grapevine and Jatropha (Grant 

et al., 2006; Maes et al., 2011) Model simulations (Supplementary 

Figs. S1 and S2 in Supplementary Data S6) show that (Tdry – 

Tl) is almost linearly related with gs and that the influence of 
weather conditions and leaf characteristics is similar to that of 

Ig, although the discriminative power is lower, particularly when 

there is a difference in θ between measured and dry reference 

leaves at large θ.

Estimating gs without reference leaves or with only dry 
reference leaves
As discussed, one of the great advantages of Ig (and CWSId) 

is the fact that it can be assessed without requiring additional 

microclimatic measurements. However, if the aim is to estimate 

gs or rs, precise microclimatic measurements (particularly of Ta 

and u) are required to estimate rHR and raV (equations 20, 21, 25, 

26, and 53) and to calculate G.

In that case, it would be more practical if the wet and/or dry 

reference leaves are not needed. For hypostomatous leaves, rs 

can be estimated directly as (equation 54):

 

r
r c T T

c T T r R
rs

HR a p a

a p a HR ni

aV=
− −( ) + 

−( ) −





−
ρ

γ ρ

s e1

1

δ
 (59)

However, due to its sensitivity to measurement errors (Leinonen 

et al., 2006), rs calculated with equation 59 correlated rather 

poorly with the measured rs (Leinonen et al., 2006; Grant et al., 

2012). A similar approach was used by Blonquist et al. (2009) 

to estimate gc at canopy scale. A sensitivity analysis showed that 

errors in gc were particularly large in cloudy conditions, and that 

very precise measurements of Tc and Ta are required.

If Tdry is additionally measured, rs can be estimated as (again 

for hypostomatous leaves, and combining equations 54 and 

55) (Leinonen et al., 2006):

 

r
r T T

T T
rs

HR a

dry

aV=
−( ) + 

−( )
−

s e1

1

δ

γ
 (60)

Note that no radiation data are required, but that δe, rHR, and 

raV have to be determined precisely. Results show that estima-

tions of gs are comparable or even better than those obtained with 

Ig (Leinonen et al., 2006; Grant et al., 2011).

4.5 The three-temperature model (3T model)

The three-temperature model (3T model) was developed and 

tested by Qiu et al. (2000, 2002, 2003, 2009). It makes use of a dry 

reference leaf, with assumed λE = S = Gi = 0. From equations 10 

and 14, it follows that R H c
T T

r
n dry dry a p

dry a

aH
,

( )
= =

−
ρ . For normal 

leaves, this sensible heat is given by H c
T T

r
R Ea p

a

aH
n=

−
= −ρ λ

( )1 .  

Assuming an identical raH for normal and dry reference leaves 

gives:

 

λE R R
T T

T T
n n dry

a

dry a

= −
−

−
,

( )

( )

1  (61)

Equation 61 is the basic formula used in the three-temperature 

model, which owes its name to the three temperatures (Tl, Ta, 

Tdry) needed for its calculation. In addition, Rn and Rn,dry must be 

known; Rn is either measured or can be derived from measure-

ments of Kin and Tl, if estimates of α, τ, and ε are available for 

both leaf sides (equation 13); Rn,dry can be calculated from Rn 

replacing Tl with Tdry and assuming that α and ε of the reference 

leaf are the same as those of the actual leaves.

The ratio of the right-hand side of equation 61, called hat, was 

proposed as an indicator of drought stress and stomatal conduct-

ance (Qiu et al., 2003, 2009):

 

hat =

−

−

( )

( )

T T

T T

a

dry a

1  (62)

The authors claimed that hat ≤ 1, with lower values indicating 

higher λE.

The method has been mainly tested for sorghum, but also for 

melon (Qiu et al., 2000, 2003), tomato (Qiu et al., 2003), and let-

tuce (Qiu et al., 2009). High correlations were observed between 

λE obtained from equation 61 and measured λE (Qiu et al., 2000, 

2002). In addition, hat was highly correlated (R2 = 0.97) with 

CWSIe of sorghum (but with Tdry obtained from the dry reference 

leaf) and was capable of distinguishing between different drought 

and temperature treatments of melon and tomato (Qiu et al., 2009).

The method seems very appealing: hat can easily be meas-

ured, is linearly related with λE, and can be used to calculate 

λE without requiring estimates of raH or raV (hence, of δe or u). 

Still, the method has not been picked up by other researchers, so 

there is still very little experience with this method. We there-

fore modelled the sensitivity of hat to weather conditions and leaf 

characteristics, using the same approach as explained in section 

4.3.4 for CWSId. For the Ta measurements, a standard deviation 

of 0.1 °C was assumed. The results are given in Figs. 15 and 16.

hat decreases non-linearly with increasing gs. Unlike Ig and 

CWSId, the expected hat value is influenced by all weather vari-
ables and leaf characteristics. The influence of most variables on 
the discriminative power of hat is comparable with that of CWSId 

and Ig; differences in δe between the reference and the measured 

leaves furthermore do not influence hat. However, hat responds 

strangely to decreasing Kin and increasing θ. At low irradiance, 

due to either low Kin or high θ, (Tl – Ta) becomes negative, result-

ing in negative hat values. When the irradiance decreases further, 

(Tdry – Ta) first tends to 0, resulting in very negative hat values; 

with an even further drop in irradiance, (Tdry – Ta) can become 

negative (e.g. Figs. 3d and 4b), in which case hat actually attains 

very high positive values (e.g. Fig. 15f).
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Fig. 15. Influence of weather conditions air temperature (Ta), incoming shortwave radiation (Kin,), wind speed (u), and vapour pressure 
deficit (δe) on hat. See Fig. 8 for a detailed description.
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Fig. 16. Influence of leaf characteristics (leaf angle, size, shape, and albedo) on hat. See Fig. 9 for a detailed description.
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The unsuitability of hat at low radiation levels was confirmed 
in a re-analysis of data from Maes et al. (2011) on Jatropha. 

Measurements were performed in relatively low-light condi-

tions (max. 130 W m–2) in six measurement runs. In all meas-

urements runs, significant differences between the drought 
treatments could be distinguished using CWSId, Ig or (Tdry 

– Tl). However, when hat was used, significant differences 
between the treatments were not found for any measurement 

run; in addition, in only two of the six measurement runs, hat 

was significantly correlated with gs.

All in all, the use of the 3T model or hat can be appealing for 

its simplicity and its limited data and labour requirements, but is 

highly restricted due to its sensitivity to low-irradiation conditions.

4.6 Direct estimation of canopy evapotranspiration: 
one- and two-source models

The methods discussed so far calculated indices from Ts, Tc, or Tl 

to express drought stress or as an indirect indicator of gs, gc, or 

λE. Although these methods are at least theoretically related with 

λE, gs, or gc, the estimation of λE is normally not the aim. Several 

thermal remote sensing methods have been developed with 

the specific aim to estimate λE. As discussed previously, they 

can be divided into one-source models (OSM) and two-source 
models (TSM).

In one-source models, the entire ecosystem is represented as 

one single layer or big leaf. Usually, λE is estimated as the rest 

fraction of Rn, Gi, and H (equation 10). The methods mainly dif-

fer in the way raH and Gi, and particularly T0, are calculated. The 

different approaches were discussed in section 3.3 and will not 

be repeated here.

In TSMs, the vegetation is divided into a canopy and a soil 

layer. A TSM was proposed by Norman et al. (1995) and was 

later refined in several follow-up papers (Kustas and Norman, 
1999a, b, 2000). The energy balances of the soil and the canopy 

layer are calculated separately based on one Ts measurement, 

several vegetation characteristics and weather data. The relation 

between Ts, Tc, and Tsoil is given by an adjustment of equation 9, 

in which it is assumed that ε = εsoil = εc:

 
T T f Ts c soil
4 4 41= + −fc c( ) ( ) ( ))ϕ ϕ  (63)

where fc(ϕ) is calculated as a function of the view zenith 

angle, LAI, and a clumping factor (see equation 6 of Kustas and 

Norman, 2000).

The heat fluxes of the soil and vegetation compartments are 
considered parallel processes. Hc is estimated as (equation 14) 

H c
T T

r
c a p

c a

aH

=
−

ρ
( )

, with raH from equation 34. The total resist-

ance to sensible heat flux from the soil compartment is the serial 
sum of raH and an additional resistance, rsoil, that expresses the 

resistance to heat flow between the soil layer and the canopy 
layer. Hsoil, the sensible heat of the soil compartment is:

 

H c
T T

r r
soil a p

soil a

aH soil

=
−

+
ρ

( )
 (64)

rsoil is calculated from the empirical function:

 

r
soil

=

+

1

0 004 0 012. . u
soil

 (65)

with usoil the wind speed just above the soil surface, estimated as:

 

u u a
h

soil c
c

= − −

























exp

.
1
0 05

 (66)

with uc the wind speed at the top of the canopy (derived from 

the logarithmic wind speed profile) and a the extinction coef-

ficient, which is a function of LAI, hc, vegetation width, and a 

clumping factor that takes vegetation density into account (see 

equation 8 of Kustas and Norman, 2000).

The total sensible heat flux H is:

 

H H H c
T T

r

T T

r r
c soil a p

c a

aH

soil a

aH soil

= + =
−

+
−

+













ρ
( ) ( )

 (67)

The Priestley-Taylor equation is used to calculate λEc [see 

Supplementary Data S1.3, equation S18; setting Gi = 0 (canopy 

layer)]:

 

λ α
γ

Ec PT=
+

f
s

s
Rg n,c  (68)

with αPT the Priestley-Taylor coefficient and fg the propor-

tion of leaf area that is green. Rn,c, the net radiation of the can-

opy layer, is the sum of shortwave and longwave radiation, 

calculated as a function of Kin, α, LAI, and the clumping fac-

tor, corrected for solar angle. Rn,soil is calculated with a similar  

procedure, and Gi is calculated from Rn,soil using equation 31 

with Γi = 0.3.

The iterative procedure to calculate λEc and λEsoil goes as 

follows:

(a)  A first estimate of λEc is obtained with equation 68 and 

assuming αPT = 1.3

(b)  From equation 10 (ignoring S), Rn,c – λEc = Hc = 
T T

r

c c

aH

−( )

(c)  Tsoil is estimated from Tc and equation 63.

(d) Hsoil is estimated from Tsoil and equation 64.

(e) λEsoil is calculated from λEsoil = Rn,soil – Gi – Hsoil

(f)  If λEsoil ≥ 0, a solution for soil and canopy energy fluxes is 
reached. Else, λEsoil is set to 0 allowing calculating a new 

estimate Hsoil = Rn,soil – Gi. Going through steps d-a back-

wards gives estimates of Tsoil, Tc, Hc, and αPT. Steps a–e are 

repeated until a solution is found for λEsoil ≥ 0.

Note that with this approach, Tc and Tsoil are derived from  

Hc and Hsoil; hence, they can be considered the aerodynamic  

temperature of the canopy and the soil layers.
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This TSM generally outperformed OSMs for extreme con-

ditions and in sparse vegetations or orchard-like ecosystems 

(Kustas et al., 2007; Kustas and Anderson, 2009); moreover, it 

offers the advantage over OSMs that separate energy balances 
are developed for the soil and canopy compartment. However, 

it is clear that this TSM relies on a highly detailed knowledge 

of the vegetation structure; this is also the case for the more 

advanced OSMs. As such, in contrast with airborne and satel-
lite thermal remote sensing, the direct estimation of λE through 

ground-based thermal remote sensing is in general restricted to 

scientific studies.

5 The future and challenges of ground-

based thermal remote sensing

5.1 From scientific methods to agricultural practice

Most methods discussed in section 4 are still only used for scien-

tific purposes. The few methods that are applied in agricultural 
practice (e.g. stress time, CWSIe) for drought stress detection and 

irrigation steering use IRT sensors rather than cameras. These 

methods have clear limitations. Most importantly, they can only 

be applied in regions with very constant (semi-)arid weather con-

ditions during the growth season and are largely limited to low, 

homogeneous crops.

Still, there is a strong interest for new drought stress detection 

or irrigation steering methods. With the increasing pressure on 

blue water resources, there is a growing demand for efficient irri-
gation methods that maximize water productivity and minimize 

costs and wastes. This calls for new precision irrigation tech-

niques (Fereres and Evans, 2006; Steppe et al., 2008; Fernández 

and Cuevas, 2010), preferably based on plant-water rather than 

soil-water status measurements (Jones, 2004; Naor, 2008; Steppe 

et al., 2008; Fernández and Cuevas, 2010). With the currently 

available methods to measure plant-water status (e.g. sap flow 
and/or diameter measurements), it is impossible to assess the spa-

tial variability. If plant-to-plant variability in plant-water status 

is high, this variability must be assessed for precision irrigation 

(Naor and Cohen, 2003; Arno et al., 2009). This is particularly 

the case for horticultural (i.e. ‘orchard-like’) cash crops such as 

grapevine (Acevedo Opazo et al., 2008).

Infrared thermography is particularly suited for these applica-

tions, because it allows the spatially explicit assessment of the 

water use in plants. However, several basic problems need to be 

overcome before thermal cameras can be used for commercial 

application in agriculture at this moment: (i) images of suffi-

ciently high pixel resolution must be generated of the entire field; 
(ii) the acquired images must be processed automatically; and 

(iii) an adequate method must be developed to estimate drought 

stress or irrigation need at this scale.

5.2 Covering the entire field

Several methods have so far been used to increase the field area 
viewed by the camera.Thermal cameras are often positioned on 

fixed poles (e.g. Cohen et al., 2005; Alchanatis et al., 2010) or 

cranes (e.g. Möller et al., 2007; Ben Gal et al., 2009), but this 

does normally not allow viewing the entire field.

In fields equipped with a pivot irrigation system, IRT sensors 
(Sadler et al., 2002; Peters and Evett, 2007, 2008) or thermal 

cameras (Colaizzi et al., 2003b; El-Shikha et al., 2007) can be 

fixed on the pivot to assess the spatial variability. Else, the entire 
field can be viewed with thermal cameras installed on robotic 
cars (Luquet et al., 2003), which can be particularly suited in 

orchards. These truly ground-based methods allow viewing at 

off-nadir viewing angles but have the disadvantage that it takes 

considerable amount of time to cover the entire field, so that tem-

perature correction of the images is needed sensors (Peters and 

Evett, 2007, 2008).

An alternative is to apply low-altitude airborne thermography. 

Although this is not strictly ground-based, the same methods 

are applied as for ground-based measurements. Application of 

manned flights will in most cases not be economic for agricul-
tural practice, but in recent years, miniature unmanned aerial 

vehicles (UAVs), small helicopters or airplanes that are able 

to fly autonomously, have been developed. With relatively low 
capital and very low operational costs, these UAVs have the 

potential to become an affordable measurement tool. Moreover, 

they can be applied at virtually any desired moment and loca-

tion, while covering areas of several hectares and providing 

very high resolution maps (5–25 cm, depending on flight alti-
tude and sensor type). Their potential for assessing drought 

stress or estimating λE of agricultural fields has already been 
shown in a number of studies (e.g. Sullivan et al., 2007; Berni 

et al., 2009a,b; Gonzalez-Dugo et al., 2012; Zarco-Tejada et al., 

2012). As such, miniature UAVs currently seem to be the most 

promising method for the acquisition of high-resolution drought 

stress maps.

5.3 Automated image processing

Image processing is still a very time-consuming step that 

requires expert knowledge in both software and thermography. 

This must be largely automated before infrared thermography 

can be applied as a common tool in agricultural practice. The 

processing is different for ground-based or low-altitude airborne 

measurements.

5.3.1 Ground-based measurements
Although Tl or Tc can be derived directly from the thermal 

images, using temperature thresholds based on Tdry and Twet (e.g. 

Jones et al., 2002), the acquisition of precise estimates of Tl or Tc 

requires the use of visual images (e.g. Leinonen and Jones, 2004; 

Möller et al., 2007; Wang et al., 2010a).

   First, the visual and thermal images have to be overlaid. As the 

images are not taken from the exact same position and as they 

have a different resolution, this is often a time-consuming step 

that involves warping and resampling of the visual images, 

based on ground control points that are recognizable on visual 

and thermal images (Leinonen and Jones, 2004). Wang et al. 

(2010b) recently proposed an advanced method in which the 

image registration is performed automatically based on auto-

matic cross-correlation algorithm of edge images generated 

from the visual and thermal images.
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   Next, pixels must be classified as canopy/leaf (preferentially 
separating shaded and sunlit leaves) in order to extract Tc or Ts. 

This is mostly done using the visual image only, through super-

vised classification (Leinonen and Jones, 2004; Jiménez-Bello 
et al., 2011) or, fully automatic, through colour identification 
(Wang et al., 2010a). As small errors in image overlap can 

generate significant errors in the average Tbr estimate, it is 

preferable to filter out very hot or very cold pixels, as pro-

posed by Wang et al. (2010a). Finally, Tbr must be converted 

into Ts or Tc, through the procedure explained in section 2.2. 

Note that this is not strictly required if reference temperatures 

of leaves/surfaces with very similar emissivity are used.

   If CWSId or Ig are to be calculated, the temperatures of the 

reference leaves must additionally be extracted. Wang et al. 

(2010a) proposed an automatic procedure to do so. Finally, 

CWSId, Ig or another index can be calculated.

5.3.2 Low-altitude airborne measurements
In low-flight airborne remote sensing, a large number of images, 
taken within a short time span, must be mosaicked. Software is 

available that creates a mosaicked and geo-referenced image rela-

tively automatically, often using the GPS location of the UAV or 

airplane (e.g. Berni et al., 2009b). If a large amount of images is 

taken with great overlap, digital terrain models can be calculated, 

visualizing the canopy structure. More precise georeferencing 

can be done using ground control points. Techniques to separ-

ate soil and canopy layers are similar to those for ground-based 

measurements, possibly extended with information of the digital 

terrain model.

5.4 Adaptation of methods to field scale

It is clear that the current ground-based methods need to be 

adapted before they can be applied in an automated procedure at 

field scale. As discussed, the most promising and straightforward 
ground-based thermal methods for estimating drought stress are 

those that use Tdry and Twet to correct Tc (e.g. CWSId, Ig). Twet 

can be derived directly from the WARS, although the issues for-

mulated in section 4.3.4 deserve further attention. Moreover, the 

required amount of reference surfaces is not clear. In theory, a 

reference surface should be present within each image, but this 

seems not feasible and even not necessary in the case of imaging 

with UAV systems, as all images are taken at virtually the same 

moment. Tdry can be calculated from weather data (equation 50), 

although it seems preferable to derive Tdry directly from a refer-

ence surface, which still has to be developed. Another option is 

to estimate Tdry and Tpot from the α–Tc or the vegetation index–Tc 

space, as is commonly performed for high-altitude remote sens-

ing in, for example, the S-SEBI algorithm (Roerink et al., 2000) 

or the empirical version of WDI (Clarke, 1997). However, this 

does require the presence of a sufficient amount of extreme pix-

els (i.e. dry and wet pixels) in the image.

A possible future alternative would be to estimate λE with 

OSMs or (particularly for orchards) TSMs. They could be auto-

mated provided that the information of the visual image and, if 

possible, the detailed digital terrain model, is used to automati-

cally extract all required information of canopy structure.
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