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Abstract
Evapotranspiration (ET) estimation is important in precision agriculture water management, such as evaluating soil moisture,
drought monitoring, and assessing crop water stress. As a traditional method, evapotranspiration estimation using crop
coefficient (Kc) has been commonly used. Since there are strong similarities between the Kc curve and the vegetation index
curve, the crop coefficient Kc is usually estimated as a function of the vegetation index. Researchers have developed linear
regression models for the Kc and the normalized difference vegetation index (NDVI), usually derived from satellite imagery.
However, the spatial resolution of the satellite image is often insufficient for crops with clumped canopy structures, such
as vines and trees. Therefore, in this article, the authors used Unmanned Aerial Vehicles (UAVs) to collect high-resolution
multispectral imagery in a pomegranate orchard located at the USDA-ARS, San Joaquin Valley Agricultural Sciences Center,
Parlier, CA. The Kc values were measured from a weighing lysimeter and the NDVI values were derived from UAV imagery.
Then, the authors established a relationship between the NDVI and Kc by using a linear regression model and a stochastic
configuration networks (SCN) model, respectively. Based on the research results, the linear regression model has an R2

of 0.975 and RMSE of 0.05. The SCN regression model has an R2 and RMSE value of 0.995 and 0.046, respectively.
Compared with the linear regression model, the SCN model improved performance in predicting Kc from NDVI. Then,
actual evapotranspiration was estimated and compared with lysimeter data in an experimental pomegranate orchard. The
UAV imagery provided a spatial and tree-by-tree view of ET distribution.
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1 Introduction

Evapotranspiration (ET) estimation is important in precision
agriculture water management [1, 2]. ET is known as
the main outgoing water flux from the surface on the
earth [3]. ET is a combination of two separate processes,
evaporation and transpiration. Evaporation is the process
whereby liquid water is converted to water vapor [4].
Then, the water vapor removes from the evaporating
surface. Transpiration is the process of the vaporization
of liquid water contained in plant tissues and the vapor
removal to the atmosphere [4]. The following three steps
constitute the current theory for transpiration. First, the
conversion of liquid-phase water to vapor water causes
canopy cooling from latent heat exchange. Thus, canopy
temperature can be used as an indicator of ET. Second,
diffusion of water vapor from inside plant stomata on the
leaves to the surrounding atmosphere. Third, atmospheric
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air mixing by convection or diffusion transports vapor
near the plant surfaces to the upper atmosphere or off-
site away from the plant canopy. Usually, evaporation and
transpiration occur simultaneously. There are direct and
indirect methods for ET estimation. For direct methods,
there are lysimeters [5] and water balance methods [6].
For indirect methods, there are energy balance methods
[3], Pan evaporation methods [6, 7], and remote sensing
methods [8]. For energy balance methods, Bowen ratio [9,
10] and eddy covariance [11] have been widely used for ET
estimation.

Using crop coefficient (Kc) for ET estimation is a
commonly used method for water irrigation management.
The crop evapotranspiration (ETc) is calculated by the
Kc approach whereby the effect of the various weather
conditions are incorporated into reference ET (ETo) and
the crop characteristics into the Kc [4]:

ETc = Kc × ETo. (1)

The curve of Kc is the crop coefficient distribution during
a whole growing season. At the beginning of the growing
season, Kc starts increasing from a small value. When the
canopy cover is full, the Kc reaches a maximum around the
mid-season. Then, the Kc starts decreasing before the end
of the growing season.

The normalized difference vegetation index (NDVI) has
been widely used for vegetation monitoring, such as water
stress detection [12, 13], crop yield assessment [14], and
ET estimation [15, 16]. The NDVI is calculated by

NDV I = ρNIR − ρR

ρNIR + ρR

, (2)

where ρNIR is the reflectance of the near-infrared band. The
parameter ρR is the reflectance for the red waveband. NDVI
is a standardized method to measure healthy vegetation.
When the NDVI has a higher value, it means the vegetation
has a high level of photosynthesis.

Estimating crop coefficient values using satellite-derived
NDVI has been commonly used in many studies. [17–
19]. For instance, Trout et al. [20] and Zhang et al. [21]
used NDVI to estimate canopy ground cover for generating
Kc. Kamble et al. [17] established a relationship between
NDVI and Kc by linear regression model. Although satellite
images can provide spatially distributed measurements, they
cannot acquire useful spatio-temporal resolution imagery
for precision agriculture applications [22]. The satellite
overpass time is not always consistent with research
requirements. For example, the Landsat 8 visible and near-
infrared image resolution is at the 30-meter level, with a

16-day revisit time. The thermal band resolution for the
Landsat is at a 100-meter level. Some other satellites, such
as GOES and MODIS, also have thermal sensors. The
thermal imagery provided by MODIS is 500 m per pixel.
The GOES has a thermal resolution of 5 km per pixel.
For many agricultural applications, the revisit time and
resolution are unacceptable when considering the weather
conditions, such as cloud cover. The spatial resolution may
also not be available for detecting the field variability [23]
and is only useful for large scale studies. Although there are
new satellite platforms, such as Sentinel-2, which provide
a significant improvement in revisit time and multispectral
capability, the timing of satellite overpass is not always
synchronous with research requirements [24].

As a new remote sensing platform, researchers are more
and more interested in the potential of small UAVs in
precision agriculture [25–28], especially on heterogeneous
crops, such as vineyard and orchards [29, 30]. Compared
with the satellite, UAVs can be operated at any time if the
weather is within operating limitations. The satellite has
a fixed flight path, UAVs are more mobile and adaptive
for site selection. Mounted on the UAVs, lightweight
sensors, such as RGB cameras, multispectral cameras,
and thermal infrared cameras, can be used to collect
high-resolution images. The higher temporal and spatial
resolution images, relatively low operational costs, and
nearly real-time image acquisition make the UAVs ideal for
mapping and monitoring ET.

The contribution of this research was to investigate the
methods for estimating Kc and ET using UAV-based NDVI
for an experimental pomegranate orchard. The novelty is
that a regression model was established between the NDVI
and Kc by using the SCN algorithm, which was first
proposed by the authors. The pomegranate has been widely
planted in the world. The pomegranate also has drought
resistance and high economic value. There is approximately
11,000 ha of pomegranate in the semi-arid and arid areas
of California [21]. The spatial and temporal variability of
Kc and NDVI were analyzed by using the SCN model,
which made tree-by-tree ET estimation becomes possible.
The performance of the proposed regression model was
evaluated by the data collected by the UAVs.

The rest of the paper is organized as follows. Section 2
introduces MATERIAL AND METHODS for ET estima-
tion, such as the pomegranate study site, the UAV platform
and sensors being used, UAV image processing technol-
ogy, and the SCNs. Results and discussions are presented in
Section 3. A simple regression model and SCN model are
used to demonstrate the ET estimation method. In Section 4,
concluding remarks are presented.
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Fig. 1 Pomegranate test site.
This research was conducted in
an experimental pomegranate
orchard at the USDA-ARS, San
Joaquin Valley Agricultural
Sciences Center (36.594 ◦N,
119.512 ◦W), Parlier, California,
93648, USA. There were two
weighing lysimeters [21], which
are 2 m × 4 m by 3 m deep

2Material andMethods

2.1 Pomegranate Study Site

This research was conducted in an experimental
pomegranate orchard at the USDA-ARS, San Joaquin Val-
ley Agricultural Sciences Center (36.594 ◦N, 119.512 ◦W),
Parlier, California, 93648, USA (Fig. 1). There are two
weighing lysimeters [21], which are 2 m × 4 m by 3 m
deep. The lysimeters have a resolution of 0.1 mm of water
loss, which is located in the center of the field, marked in
red boxes in Fig. 1. The pomegranate was planted in 2010

with a 5 m spacing between rows and 2.75 m within-row
tree spacing in a 1.3 ha field.

2.2 The UAV Platform andMultispectral Camera

In this research, the authors used a UAV platform, called
“Hover” (Fig. 2). The “Hover” was equipped with a
Pixhawk flight controller, GPS, telemetry antennas. It can
fly over the field by waypoints mode (designed by using
Mission Planner software). The lithium polymer battery has
a capacity of 9500 mAh, which can support a 30-minute
flight mission with cameras mounted on it. The “Hover”

Fig. 2 The “Hover”. The
“Hover” was equipped with a
Pixhawk flight controller, GPS,
telemetry antennas. It can fly
over the field by waypoints
mode (designed by using
Mission Planner software). The
lithium polymer battery has a
capacity of 9500 mAh, which
can support a 30-minute flight
mission with cameras mounted
on it
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Table 1 The UAV flight schedule

Dates Flight time Flight height

May 8th, 2019 12 - 1 pm 60 m,

Jun 5th, 2019 12 - 1 pm 60 m,

Jul 25th, 2019 12 - 1 pm 60 m,

Aug 7th, 2019 12 - 1 pm 60 m,

Aug 29th, 2019 12 - 1 pm 60 m,

Sep 19th, 2019 12 - 1 pm 60 m,

Oct 3rd , 2019 12 - 1 pm 60 m,

Oct 29th, 2019 12 - 1 pm 60 m.

The flight height was set up as 60 m. The overlapping of UAV imagery
was set up as 80%, so that the UAV imagery of the pomegranate can
be stitched together during image processing. A bi-weekly UAV flight
schedule is suggested to collect sufficient data

is equipped with high efficient power system, including T-
Motor MN3508 KV380 motor, 1552 folding propeller and
Foxtech Multi-Pal 40A OPTP ESC, to ensure long flight
time.

The Rededge M camera (MicaSense, Seattle, WA, USA)
was being used for collecting the multispectral imagery,
which had five different bands. The five bands are Blue,
Green, Red, Near-infrared, and Red edge. The Rededge M
also has a spectral resolution of 1280 × 960 pixel, with a
46◦ field of view. With a Downwelling Light Sensor (DLS),
which is a 5-band light sensor that connects to the camera,
the Rededge M can measure the ambient light during a flight
mission for the five bands. Then, the DLS can record the
light information in the metadata of the images captured
by the camera. After the image calibration, the information

detected by the DLS can be used for correcting lighting
changes during a flight, such as changes in cloud cover
during a UAV flight.

2.3 UAV Image Collection and Processing

The authors used the Mission Planner to program all flight
missions. The flight height was set up as 60 m. The
overlapping of UAV imagery was set up as 80%, so that the
UAV imagery of the pomegranate could be stitched together
during image processing. A bi-weekly UAV flight schedule
was suggested to collect sufficient data. If there is a UAV
crash, unexpected weather conditions, hardware issues, or
unknown reasons, data may not be collected successfully. If
data is missed, people may have to wait for another year.
Therefore, the authors flew the UAV bi-weekly over the
pomegranate field at noon during the growing season in
2019 (Table 1).

To minimize the shading effect on the images, the
UAVs are usually flying at noon with clear sky conditions.
Because each pixel in a UAV image is a percentage of
the reflected light, pixel values need to be calibrated by
using a known reflectance value. Therefore, the image of
a calibration board needs to be taken before and after
the flight missions, servicing as the reflectance reference
(Fig. 3). It is important to take pictures of the reference panel
immediately before and after the flight missions because the
solar angle and light intensity can change [12], which causes
inaccurate experiment results. UAV images usually have
higher radiometric homogeneity than aircraft or satellite
images because of the lower flight altitude [31]. However,
there are also special UAVs image quality problems. For

Fig. 3 The image of a
calibration board needs to be
taken before and after the flight
missions, servicing as the
reflectance reference. It is
important to take pictures of the
reference panel immediately
before and after the flight
missions because the solar angle
and light intensity can change
[12], which causes inaccurate
experiment results. UAV images
usually have higher radiometric
homogeneity than aircraft or
satellite images because of the
lower flight altitude [31]
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Table 2 Orthomosaic images generation workflow in Agisoft Metashape

Step 1 : Align Photos Step 2 : Build Mesh Step 3 : Build Orthomosaick

Accuracy: Medium Surface type: Height field (2.5D) Type: Planar

Generic preselection: Yes Source data: Sparse cloud Projection plane: TOP XY

Key point limit: 40,000 Face count: Medium (30,000) Rotation angle: 0

Tie point limit: 4,000 Interpolation: Enabled (default) Surface: Mesh

Adaptive camera model fitting: No Point classes: All Blending mode: Mosaic (default)

Caculate vertex colors: Yes Enable hole filling: Yes

Enable back-face culling: No

example, the camera position on the UAVs might be
different for each flight mission, which can cause different
spatial resolution or different viewing angles [31]. The low
flight height of UAVs can also result in geometric distortion
[31, 32]. Besides, lower flight height results in greater
numbers of UAV images to keep effective overlapping,
which makes image processing more time-consuming.

After the flight missions, all of the aerial images were
stitched together to generate the orthomosaick images
(Table 2, and Fig. 4) in Metashape (Agisoft LLC, Russian).
Preselection is recommended because it can speed up the
processing of large datasets. Building the dense cloud
can reconstruct a more accurate surface, which can improve
the quality of the final orthomosaic. Higher quality usually
can result in a more accurate surface, which means a
greater number of points. However, higher quality is not
recommended because of longer data processing time.
Medium quality is sufficient for UAVs image proce-
ssing, especially for low variations field. Building Digital
Elevation Model (DEM) allows generating an accurate
surface, which can be used as a source for the orthomosaic
generation. This will shorten the data processing time
compared with Build Mesh operation because Build Mesh

is usually used for a more complex surface. he source data
for building DEM is the dense cloud. For the interpolation
method, Extrapolated option is selected because it can
generate a surface without gaps being extrapolated to the
bound box sides. The default option for Interpolation is
Enabled, which is not recommended because it will leave
the valid elevation values only for fields that are seen from
at least one aligned camera.

2.4 Stochastic Configuration Networks (SCNs)

The stochastic configuration networks (SCNs) was pro-
posed by Wang et al. in 2017 [33]. The SCNs has a powerful
capability for regression and classification analysis. Tradi-
tionally, it is quite challenging to correctly determine an
appropriate architecture for a neural network so that the
trained model can achieve excellent performance for both
learning and generalization. Compared with the known ran-
domized learning algorithms for neural networks, the SCNs
randomly assign the input weights and biases of the hidden
nodes in the light of a supervisory mechanism. Randomness
plays a significant role in both exploration and exploita-
tion. A good neural networks architecture with randomly

Fig. 4 Agisoft Metashape image
processing workflow (a) Align
Photos. b Build Mesh.
c Generate orthomosaick
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Table 3 The SCNs model with parameter

Properties Values

Name: ‘Stochastic Configuration Networks’

version: ‘1.0 beta’

L: 4

W: [0.4924 -0.4987 -4.3543 9.2007]

b: [-0.4650 -0.4197 -4.7048 -9.2846]

Beta: [4 x 1 double]

r: [0.9000 0.9900 0.9990 0.9999 1.0000 1.0000]

tol: 1.0000e-03

Lambdas: [0.5000 1 5 10 30 50 100 150 200 250]

Lmax : 250

Tmax : 100

nB: 1

verbose: 50

COST: 5.5250e-13

For example, the maximum times of random configuration Tmax

was set as 100. The scale factor Lambdas in the activation function,
which directly determined the range for the random parameters, was
examined by performing different settings (0.5 - 200). The tolerance
was set as 0.001. For the other parameters in the SCNs model, please
refer to [33]

assigned weights can easily outperform a poorer architec-
ture with finely tuned weights [34, 35]. The output weights
are analytically evaluated in a constructive or selective
method. In contrast with the known randomized learning
algorithms, such as the Randomized Radial Basis Function

(RBF) Networks [36] and the Random Vector Functional-
link (RVFL) [37], SCNs can provide good generalization
performance at a faster speed. Concretely, there are three
types of SCNs algorithms, which are SC-I, SC-II, and SC-
III. SC-I algorithm uses a constructive scheme to evaluate
the output weights only for the newly added hidden node
[38]. All of the previously obtained output weights are
kept the same. The SC-II algorithm recalculates part of the
current output weights by analyzing a local least squares
problem with user-defined shifting window size. The SC-III
algorithm finds all the output weights together by solving
a global least-squares problem. SCNs algorithms have been
widely used in many areas such as image data analytics
[16, 39], prediction of component concentrations in sodium
aluminate liquor [40], and etc. [41, 42].

The linear regression can only plot the best fit line, but
the data may have a non-linear pattern. Therefore, in this
research, the SCNs is applied to derive better regression
model than the linear regression model.

3 Results and Discussion

3.1 Seasonal Kc and NDVI

The values of Kc and NDVI were shown in Fig. 5.
The values of Kc were derived using (1). The ETc

was recorded by the weighing lysimeter in the center
of the pomegranate field. The ETo was calculated by
the California Irrigation Management Information System

Fig. 5 Seasonal Kc and NDVI
at the pomegranate field in 2019.
The values of Kc were derived
using equation (1). The ETc was
recorded by the weighing
lysimeter in the center of the
pomegranate field. The ETo was
calculated by the California
Irrigation Management
Information System (CIMIS)
near the pomegranate field. The
NDVI was derived by image
processing tools in MATLAB
2020b
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Fig. 6 Linear regression model
for Kc and NDVI. There was a
strong correlation between the
Kc and NDVI. A simple linear
regression model was built using
the NDVI values derived from
the UAV imagery and the Kc

from field measurement

(CIMIS) near the pomegranate field. The NDVI was derived
by image processing tools in MATLAB 2020b.

A strong correlation was shown between the Kc and
NDVI during the growing season in 2019. The maximum

values of Kc and NDVI were 1.0069 and 0.8429 on July
25th (DOY 206), respectively. The high values of Kc and
NDVI showed that the trees in the lysimeter were in a well-
irrigated condition. The Kc increased fast at the beginning

Fig. 7 The SCNs training model
performance. Since the dataset
of Kc and NDVI was not large,
in this study, SCNs model was
used for building the regression
model between Kc and NDVI.
Four out of seven days of data
were used for training the SCNs
regression model. All the data
points were fitted very well in
the trained model
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Fig. 8 The SCNs model
evaluation performance. Three
days of data were used to
evaluate the trained model. The
value of R2 was 0.995. The
value of RSME was 0.046. Both
of them showed good
performance for estimating Kc

by using NDVI. The variations
of Kc were well explained by
using the NDVI from UAV
images

of the growing season. After the peak of the mid-season,
Kc started decreasing. Both Kc and NDVI had very low
values on October 29th (DOY 302). The reason was that

most leaves fell off the pomegranate trees after the harvest.
Therefore, the data of DOY 302 was not used for the data
analysis.

Fig. 9 NDVI (top) and Kc

(bottom) maps of the
pomegranate using UAVs. (Sept.
19th, 2019)
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Fig. 10 ET mapping of the
pomegranate. (Sept. 19th, 2019)

3.2 RegressionModels for Kc and NDVI

As shown in Fig. 6, there was a strong correlation between
the Kc and NDVI. A simple linear regression model was
built using the NDVI values derived from the UAV imagery
and the Kc from field measurement,

Kc(NDV I) = 4.6666NDV I − 2.9277, (3)

where 4.6666 and -2.9277 were the slope and intercept
coefficients, respectively. The correlation coefficient (R2)
was 0.975. The root mean square error (RSME) was 0.05.

With the development of machine learning technology,
many neural networks have been applied for agricultural
applications [30, 43]. Since the dataset of Kc and NDVI
was not large, in this study, SCNs was used for building the
regression model between Kc and NDVI. Four out of seven
days of data were used for training the SCNs regression
model. All the data points were fitted very well in the trained
model, as shown in Fig. 7. The weights and bias were shown
in Table 3. The parameter L meant that there were four
hidden nodes of the trained SCNs model. For the other
parameters in the SCNs model, please refer to [33].

Three days of data were used to evaluate the trained
model, as shown in Fig. 8. The value of R2 was 0.995.
The value of RSME was 0.046. Both of them showed
good performance for estimating Kc by using NDVI. The
variations of Kc were well explained by using the NDVI
from UAV images. The trained model was used to generate
the Kc. For example, the spatial mapping of NDVI and
Kc on September 19th were shown in Fig. 9. The spatial
mapping of ET on September 19th was shown in Fig. 10.

4 Conclusions

In this article, UAV flight missions were conducted
to collect remote sensing multispectral images in a
pomegranate orchard at USDA. Using the NDVI derived
from the multispectral imagery, the authors could apply
a SCNs for a regression model between NDVI and Kc.
The parameters of the SCNs model was shown in Table 3.
The Kc represented the actual growth conditions in the
field. Therefore, Kc could be used for estimating the ET

temporally and spatially in the pomegranate field.
The simple linear regression model was Kc(NDV I) =

4.6666NDV I − 2.9277. Compared with the simple linear
regression model, the SCNs model could better fit the data
points in the training dataset. The simple linear regression
model had R2 and RMSE of 0.975 and 0.05, respectively.
The SCNs regression model had R2 and RMSE of 0.995
and 0.046. The SCNs showed a better performance than the
linear regression model.

Although only the data of 2019 was used for analysis, the
study had provided evidence that variations of NDVI from
UAV imagery could be used to explain the variations of Kc.
In the future, the data of 2017 and 2018 will be added to
train a more robust SCNs model.
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