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ABSTRACT

In machine learning, a question of great interest is understanding what examples are
challenging for a model to classify. Identifying atypical examples helps inform safe
deployment of models, isolates examples that require further human inspection, and
provides interpretability into model behavior. In this work, we propose Variance
of Gradients (VoG) as a valuable and efficient proxy metric for detecting outliers
in the data distribution. We provide quantitative and qualitative support that VoG
is a meaningful way to rank data by difficulty and to surface a tractable subset of
the most challenging examples for human-in-the-loop auditing. Data points with
high VoG scores are far more difficult for the model to learn and over-index on
corrupted or memorized examples.

1 INTRODUCTION

Reasoning about model behavior is often easier when presented with a subset of data points that are
relatively more difficult for a trained model to learn. This not only aids interpretability through case
based reasoning (Kim et al., 2016; Caruana, 2000; Hooker et al., 2019), but can also be used as a
mechanism to surface a tractable subset of atypical examples for further human auditing (Leibig et al.,
2017; Zhang, 1992; Hooker et al., 2019), for active learning to inform model improvements, or to
choose not to classify certain examples when the model is uncertain (Bartlett & Wegkamp, 2008;
Cortes et al., 2016).

One of the biggest bottlenecks for human auditing is the large scale size of modern datasets and
the cost of annotating each feature (Veale & Binns, 2017). Methods which automatically surface a
subset of relatively more challenging examples for human inspection help prioritize limited human
annotation and auditing time. Despite the urgency of this use-case, ranking examples by difficulty has
had limited treatment in the context of deep neural networks due to the computational cost of ranking
a high dimensional feature space. Recent work in this direction has either been limited to small scale
datasets or features a computational cost which is infeasible for most practitioners (Hooker et al.,
2019; Carlini et al., 2019; Koh & Liang, 2017).

In this work, we start with a simple hypothesis – examples that a model has difficulty learning
will exhibit higher variance in gradient updates over the course of training. On the other hand, we
expect the backpropagated gradients of the samples that are relatively easier to learn will have lower
variance because performance on that example does not consistently dominate the loss over the
course of training. The gradient updates for the relatively easier examples are expected to stabilize
early in training and converge to a narrow range of values. We term this class normalized ranking
mechanism Variance of Gradients VoG, and demonstrate across a variety of large scale datasets that it
efficiently ranks the difficulty of both training and test examples. VoG can be computed using either
the predicted or true label, making it a valuable unsupervised auditing tool at test time when the true
label is unknown.

Validating the behavior of VoG on artificial data. To begin, we illustrate the principle and
effectiveness of VoG in a contrived toy example setting. The data was generated using two separate
isotropic Gaussian clusters with a total of 500 data points. In such a simple low dimensional problem,
the most challenging examples for the model to classify are closer to the decision boundary. In
Fig. 1a we visualize the trained decision boundary of a multiple layer perceptron (MLP) with a single
hidden layer trained for 15 epochs. VoG is computed at relative intervals for each training data point.
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In Fig. 1b, we plot the final VoG score (Sec. 2) against the distance to the trained boundary. As
expected, VoG allocates the highest scores to the most challenging examples that are closest to the
decision boundary which exhibit the greatest variance in gradient updates over the course of the
training process.
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Figure 1: We compute the variance of gradients (VoG) for each training data point in this two
dimensional toy problem. On the right, we show that VoG accords higher scores to the most
challenging examples closest to the decision boundary (as measured by the perpendicular distance).

Contributions We scale this toy experiment and demonstrate consistent results across two differ-
ent architectures and three datasets – Cifar-10, Cifar-100 Krizhevsky et al. (2009) and ImageNet
(Russakovsky et al., 2015). Our contributions can be enumerated as follows:

1. We propose Variance of Gradienst (VoG) – a class-normalized variance gradient score
for determining the relative ease of learning data samples within a given class (Sec. 2).

2. We show that VoG is an effective auditing tool for ranking high dimensional datasets by
difficulty. VoG assigns higher scores to test-set examples that are more challenging for the
model to classify. Restricting evaluation to the test-set examples with the lowest VoG greatly
improves generalization performance. (Sec. 3).

3. VoG identifies clusters of images with clearly distinct semantic properties. As seen in
Fig. 4), Low scores feature images with far less cluttered backgrounds and more prototypical
vantage points of the object. In contrast, images with high scores over-index on images with
cluttered backgrounds and atypical vantage points of the object of interest (zoomed in on
part of the object, side profile of the object, shot from above).

4. VoG effectively surfaces OOD and memorized examples We empirically show that VoG
allocates higher scores to examples that require memorization (Sec. 5) and out-of-distribution
examples from curated benchmarks like ImageNet-O (Hendrycks et al., 2019). We use VoG
to explore how learning differs at different stages of training and show that VoG rankings
are sensitive to the stage of training and provide insight into the learning process in deep
neural networks.

Implications of this work It is becoming increasingly important for deep neural networks (DNNs)
to make decisions that are interpretable to both researchers and end-users. In sensitive domains
such as health care diagnostics (Xie et al., 2019; Gruetzemacher et al., 2018; Badgeley et al., 2019;
Oakden-Rayner et al., 2019), self-driving cars (NHTSA, 2017) and hiring (Dastin, 2018; Harwell,
2019) providing tools for domain experts to audit models is of upmost importance. Our work offers
an efficient method to rank the global difficulty of examples and automatically surface a possible
subset to aid human interpretability. VoG can be computed using checkpoints stored over the course
of training and is model agnostic. Critically, VoG can be computed using the predicted label, which
makes it an unsupervised auditing tool at test time.

2 METHODOLOGY

We consider a supervised classification problem where a DNN is trained to approximate the function
F that maps an input variable X to an output variable Y , formally F : X 7→ Y . y ∈ Y is a discrete
label vector associated with each input x. Each label y corresponds to one of C categories or classes.
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Figure 2: The 5×5 grid shows the top-25 Cifar-10 and Cifar-100 training-set images with the lowest
and highest VoG scores in the Early (a) and Late (b) training stage respectively of two randomly
chosen classes. Lower VoG images evidence uncluttered backgrounds (for both apple and plane) in
the Late training stage. VoG also appears to capture a color bias present during the Early training
stage for both apple (red). The VoG images in Late training stage present unusual vantage points,
with images where the frame is zoomed in on the object of interest.

A given input image X can be decomposed into a set of pixels xi, where i = {1, . . . , N} and N is
the total number of pixels in the image. For a given image, we compute the gradient of the activation
Al

p with respect to each pixel xi. Here, l designates the pre-softmax layer of the network and p is the
index of either the true or predicted class probability. We consider S as a matrix that represents the
gradient of Al

p with respect to individual pixels xi, i.e., for an image of (say) 3 × 32 × 32 size, S
will be a 3× 32× 32 gradient matrix.

S =
∂Al

p

∂xi

(1)

This formulation may feel familiar as it is often computed based upon the weights of a trained model
and visualized as a image heatmap for interpretability purposes (Baehrens et al., 2010; Simonyan
et al., 2013). Here, we instead intend to compute the average variance of the input gradients for the
same image across training to arrive at a scalar score that is a proxy measure of how challenging
the example is to learn. Without loss of generality, we take the sum across the color channels to
arrive at a gradient matrix S where S ∈ R

32×32. For a given set of K checkpoints, we generate
the above gradient matrix S for all individual checkpoints, i.e., {S1, . . . ,SK}. We then calculate
the mean gradient µ by taking the average of the K gradient matrices. Note, µ is the mean across
different checkpoints and is of the same size as the gradient matrix S. We then calculate the variance
of gradients across each pixel using the equations:

µ =
1

K

K
∑

t=1

St (2)

V oGpixel =

√

1

K

K
∑

t=1

(St − µ)2 (3)

Here, V oGpixel is a matrix representing the variance of gradients of each pixel in the image. We
average the pixel-wise variance of gradients to compute a scalar VoG score for the given input image:

V oG =
1

N
sum(V oGpixel) (4)

where, N is the total number of pixels in a given image. Hence, for every data sample X we compute
a scalar value indicating the variance of gradients score. To calculate the class-normalized VoG

3



Under review as a conference paper at ICLR 2021

score, we calculate the mean and deviation of all the VoG scores belonging to each class c, where
c ∈ {1, . . . C}, from the dataset. In order to account for inherent differences in variance between
classes, we normalize the absolute ranking of the VoG score by class-level mean and standard
deviation. This amounts to asking: What is the variance of gradients for this image relative to all
other exemplars for this class category?

2.1 EXPERIMENTAL SETUP

Datasets: We evaluate our methodology on Cifar-10 and Cifar-100 Krizhevsky et al. (2009) and
ImageNet (Russakovsky et al., 2015).

Cifar Training: We use a ResNet-18 network (He et al., 2016) for both Cifar-10 and Cifar-100.
For each dataset, we train for 350 epochs using stochastic gradient descent (SGD) and compute the
input gradients for each sample every 10 epochs. We implemented standard data augmentation by
applying cropping and horizontal flips of input images. We use a base learning rate schedule of
0.1 and adaptively change to 0.01 at 150th and 0.001 at 250th training epochs. The top-1 test-set
accuracy for Cifar-10 and Cifar-100 were 89.57% and 66.86% respectively.

ImageNet Training: We use a ResNet-50 (He et al., 2015) trained on ImageNet. The network was
trained with batch normalization (Ioffe & Szegedy, 2015), weight decay, decreasing learning rate
schedules, and augmented training data. We train for 32, 000 steps (approximately 90 epochs) on
ImageNet with a batch size of 1024 images. We store 32 checkpoints over the course of training,
but in practice observe that VoG ranking is very stable computed with as few as 3 checkpoints. Our
model achieves a top-1 accuracy of 76.68% and top-5 accuracy of 93.29%.

Lowest VoG Highest VoG Lowest VoG Highest VoG

magpie pop bottle

Figure 3: Each 5×5 grid shows the top-25 ImageNet training-set images with the lowest and highest
VoG scores for the class magpie and pop bottle with their predicted labels below the image.
Training set images with higher VoG scores (b) tend to feature zoomed-in images with atypical color
schemes and vantage points.

3 EVALUATING VOG

For all datasets considered, we compute VoG for both training and eval sets. In this section, we
evaluate the utility of VoG as an auditing tool. We evaluate the stability of the VoG ranking, measure
how discriminative it is at separating easy examples from difficult, and comment on the qualitative
properties of images at either end of the VoG spectrum.

Qualitative inspection of ranking A qualitative inspection of examples with high and low VoG
scores shows that there are distinct properties to the images at either end of the ranking. We visualize
25 images ranked lowest and highest according to VoG for both the entire dataset (visualized for
ImageNet in Fig. 5) and for specific classes (visualized for ImageNet in Fig. 3 and for Cifar-10 and
Cifar-100 in Fig. 2). We observe that ranking by VoG produces clusters with clearly distinguished
semantic features. Images with low VoG score tend to have uncluttered and often white backgrounds
with the object of interest centered clearly in the frame. Images with the highest VoG scores have
cluttered backgrounds and the object of interest is not easily distinguishable from the background.
We also note that images with high VoG score tend to feature atypical vantage points of the objects
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such as highly zoomed frames, side profiles of the object or shots taken from above. Other, the object
of interest is partially occluded or there are image corruptions present such as heavy blur.

Test-set error and VoG A valuable property of an auditing tool is to be able to effectively discriminate
between easy and challenging examples. Here, we measure whether VoG is able to do so. In Fig. 4,
we plot the test-set error of examples bucketed by VoG decile. For this and the remainder of the
experiments, we compute VoG using checkpoints stored from the first and last 3 epochs. Thus, at
each point of the x-axis, we are computing the test-set error on the 10% of data whose VoG score
falls between each decile. Note that we plot error, so lower is better. We show that examples at the
lowest percentiles of VoG have far lower error rates. Mis-classification increases with an increase in
VoG scores. Our results are consistent across all datasets, yet more pronounced for the more complex
datasets Cifar-100 and ImageNet. We ascribe this to differences in underlying model complexity. In
Fig. 11 we observe that test-set accuracy on the lowest VoG scored images improves beyond baseline
test-set performance. Our models show improved generalization when restricted to low VoG images.
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(b) Cifar-100
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(c) ImageNet

Figure 4: The mean top-1 test set error (y-axis) for the exemplars thresholded by VoG score percentile
(x-axis). Across Cifar-10, Cifar-100 and ImageNet, we observe that misclassification increases with
an increase in VoG scores. Across all datasets we observe that the group of samples in the top-10
percentile VoG scores have the highest error rate, i.e., contains most number of misclassified samples.
For all datasets, model generalization improves on the bottom 10th percentile relative to the entire
dataset.

VoG as an unsupervised auditing tool Many auditing tools to evaluate and understand possible
model bias require the presence of labels for protected attributes and underlying variables. However,
this is highly infeasible in real-world settings (Veale & Binns, 2017). For image and language datasets,
the high dimensionality of the problem makes it hard to identify a priori what are underlying variables
to be aware of. Even acquiring the labels for a limited number of attributes protected by law (gender,
race) is expensive and/or may be perceived as intrusive leading to noisy or incomplete labels. One key
advantage of VoG is that we show it continues to produce a useful ranking even when the gradients
are computed with respect to the predicted label. In Fig. 5, we include the top and bottom 25 VoG
ImageNet test images using predictions. We also computed the mean test-error for the predicted VoG
distribution, and find that it also effectively discriminates between top-10 and bottom-10 examples
with 73.6% and 77.5% accuracy respectively (Fig. 12).

Stability of VoG ranking To build trust with the end-user, a key desirable property of any auditing
tool is consistency in performance. We would expect a consistent method to produce a ranking
with a closely bounded distribution of scores across independently trained runs of the same model
architecture and dataset. To measure the consistency of the VoG ranking, we train 5 Cifar-10 networks
from random initialization using the training methodology explained in Sec. 2.1. Empirically, Fig. 6a
shows that VoG rankings evidence a consistent distribution of test-error at each percentile given the
same model and dataset.

4 LEVERAGING VOG TO UNDERSTAND EARLY AND LATE TRAINING

DYNAMICS

Recent work has shown that there are distinct stages to training in deep neural networks (Achille
et al., 2017; Jiang et al., 2020; Mangalam & Prabhu, 2019; Faghri et al., 2020). In our second set
of experiments, we explore whether rankings according to VoG are sensitive to the stage of the
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(a) Lowest VoG (b) Highest VoG

Figure 5: Each 5×5 grid shows the top-25 ImageNet test-set images with the lowest and highest VoG
scores for the top-1 predicted class. Test set images with higher VoG scores tend to feature zoomed-in
images and are misclassified more as compared to the lower VoG images which tend to feature more
prototypical vantage points of objects.
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Figure 6: Left: Consistency in ranking is an important attribute of any auditing tool. Here, we plot
the VoG top-1 test set error for 5 ResNet-18 networks independently trained on Cifar-10 from random
initialization. The plots show that VoG produces a stable ranking with a similar distribution of error in
each percentile across all images. Right: We measure the distribution of ImageNet-O images across
percentiles. We find that higher percentiles of VoG over-index on these out of distribution images.

training process. Hence, we compute VoG separately for two different stages of the training process,
which we term (1) the Early stage (first three epochs), and (2) the Late stage (last three epochs).
Test-set accuracy at the Early stage is 44.65%, 14.16% and 51.87% for Cifar-10, Cifar-100 and
ImageNet respectively. In the Late stage it is 89.57%, 66.86% and 76.69% for Cifar-10, Cifar-100
and ImageNet respectively.

We find that there is a noticeable visual difference between the image ranking computed for Early
and Late stages of training. As seen in Fig. 2, for some classes such as apple it appears that VoG
scores also capture network color bias present during the Early training stages. For these classes, the
lowest VoG scores over-index on red colored apples.
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For ImageNet, we compute the distribution of error in early and late stage and find a remarkable
flipping point (Fig. 7). During the early training stage, samples having higher VoG score tend to have
a lower error rate as the gradient updates center on easy examples. This phenomenon is reversed
during the late stage of the training where most easy example have been learnt, and updates to the
harder examples dominate the the computation of variance. Hence, samples having high VoG results
in higher error rate.
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Figure 7: The mean top-1 test set error (y-axis) for the exemplars thresholded by VoG score percentile
(x-axis) in ImageNet validation set. The Early (a) and Late (b) stage VoG analysis shows inverse
behavior where the role of VoG flips as the training progresses.
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Figure 8: Box-plot of subset the VoG distribution of all examples with correct labels against the 20%
of the dataset with shuffled labels. It is visible that the distribution of VoG scores, both the mean
(red line in the plot) and spread, for shuffled data is higher than that of the correct samples for both
Cifar-10 (right plot) and Cifar-100 (left plot).

5 RELATIONSHIP BETWEEN VOG SCORES AND MEMORIZED/OOD

EXAMPLES

Recent work has highlighted that deep neural networks produce output probabilities that are uncali-
brated (Guo et al., 2017; Kendall & Gal, 2017; Lakshminarayanan et al., 2017; Hendrycks & Gimpel,
2016) and thus cannot be interpreted as a measure of certainty. If VoG is a useful auditing tool, we
expect it to capture model uncertainty even when this is not reflected in the end probabilities.

To this end, we consider VoG rankings on two tasks where the network produces highly certain
predictions for incorrect or out-of-distribution inputs.

Surfacing examples that require memorization Overparameterized networks have been shown to
achieve zero training error by memorizing examples (Zhang et al., 2016; Feldman, 2020). We explore
whether VoG is able to identify examples that require memorization and the rest of the dataset. To do
this, we replicate the general experiment setup of Zhang et al. (2016) and replace 20% of all labels in
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the training set with random shuffled labels. We re-train the model from random initialization and
compute VoG scores at relative intervals across training for all examples in the training set. Our
network achieves 0% training error which would only be possible given successful memorization
of the noisy examples with shuffled labels. Is VoG able to discriminate between these memorized
examples and the rest of the dataset? In Fig. 8, we plot the box plot distribution of VoG scores for the
subset of the data with shuffled labels that required memorization beside correct labels. We find that
the mean and spread of the examples with the shuffled labels are higher when compared to the rest of
the dataset and that this difference is statistically significant. We perform a two-sample t-test with
unequal variances. At a p-value of 0.01, we reject the null hypothesis that the mean of both samples
are the same and conclude that the difference in VoG means is statistically significant. Shuffled labels
have a different VoG distribution than the non-shuffled dataset. We include more details about the
statistical testing in the appendix.

Figure 9: We consider using VoG as a ranking mechanism to accelerate training. VoGo upweights
examples using the VoG score during training. Models trained using VoGo (green) converges faster
and to a lower training loss as compared to SGD (blue). The VoG scores were calculated using K = 3
number of checkpoints and we observe a sharp drop in the training once we start scaling the gradient
updates of the batches with their respect VoG scores after the third epoch.

ImageNet-O experiments We consider ImageNet-O (Hendrycks et al., 2019), an open source curated
out-of-distribution (OOD) dataset designed to fool classifiers. ImageNet-O consists of images that
are not included in the original 1000 ImageNet classes. These images were selected with the goal
of producing high confidence incorrect ImageNet-1K predictions of labels from within the training
distribution. We are interesting in understanding if VoG can correctly rank ImageNet-O examples as
being atypical or out of distribution. We would expect to observe that ImageNet-O examples would
be over-represented in top percentiles of VoG scores vs the lowest scores. In Fig. 6b, we see that
this is indeed the case. We plot the count of ImageNet-O image in each percentile as a fraction of
the total count of ImageNet-O images (2000 images in total). ImageNet-O images are relatively
over-represented at high levels of VoG, with 30% of all images in the top-25th percentile vs 24% in
the bottom 25th percentile.

6 CAN WE USE VOG TO ACCELERATE AND IMPROVE TRAINING

PERFORMANCE?

In this section, we consider whether the VoG score can be using to improve the optimization process
by re-weighting examples considered to be atypical examples on the fly during the training process.
As a toy experiment, we trained a single layer (32 neurons) feed-forward network on the handwritten
MNIST digit classification task. As a preliminary exploration of VoG, we weigh each mini-batch
gradient update with their respective VoG scores. We compare this VoGo variant with standard
mini-batch Stochastic Gradient Descent (SGD) and Variance Of Gradients Optimizer (VoGo) for
10 epochs using a batch size of 256 (algorithm details of VoGo in the appendix Algorithm 1). As a
preliminary implementation of VoGo, we weigh each mini-batch gradient update with their respective
VoG scores.
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The initial weights of the architectures were set to the same seed for both SGD and VoG optimizers.
In Fig. 9, we observe that VoG achieves a lower training loss as compared to SGD. The training
difference between the optimizers is reflected in the model’s testing performance. Across the 5
different runs, models trained using VoGo achieve a testing accuracy of 91.77± 0.10% as compared
to SGD which achieves almost ≈ 20% lower performance at 68.50±3.09%. Notably, the performance
deviation across different runs is also smaller for VoGo as compared to its counterpart. Training
with VoGo accelerates training, achieves higher test-set accuracy and reduces the stochasticity of the
training process.

7 RELATED WORK

Our work proposes a method to rank training and test examples by estimated difficulty. Given the
size of modern day datasets (Hooker, 2020), this can be a powerful interpretability tool to isolate
a tractable subset of examples for human-in-the-loop auditing and also aid in curriculum learning
(Bengio et al., 2009). Prior work has proposed different notions of what subset merits surfacing. Early
work by (Zhang, 1992; Bien & Tibshirani, 2012; Kim et al., 2015; Kim et al., 2016) that introduced
the notion of prototypes, quintessential examples in the dataset, but did not focus on deep neural
networks. Kim et al. (2016) also requires assumptions about the statistics of the input distribution.
Gal & Ghahramani (2016) showed how we can use dropouts as a Bayesian approximation method
for representing model uncertainty in deep learning. Work by Li et al. (2017) requires modifying
the architecture to prefix an autoencoder in order to surface a set of prototypes. Koh & Liang (2017)
proposes influence functions to identify training points most influential on a given prediction.

Unlike previous works, we propose a measure that can be extended to rank the entire dataset by
estimated difficulty (rather than surfacing a prototypical subset). Additionally, ranking individual
samples using methods like Koh & Liang (2017) would be extremely computationally extensive.
Our method does not require modifying the architecture or making any any assumptions about the
statistics of the input distribution. In that sense, our work is complementary to recent work by Jiang
et al. (2020) which proposes a c-score to rank each example by alignment with the training instances,
Hooker et al. (2019) which classify examples as outliers according to sensitivity to varying model
capacity and Carlini et al. (2019) which consider several different measures to isolate prototypes that
could conceivably be extended to rank the entire dataset. We note that the c-score method proposed
by Jiang et al. (2020) is considerably computationally intensive to compute than VoG as it requires
training up to 20, 000 network replications per data set. Several of the propotype methods considered
by Carlini et al. (2019) require training ensembles of models, as does the compression sensitivity
measure proposed by Hooker et al. (2019). Our method is both different in formulation and can be
leveraged using a small number of existing checkpoints saved over the course of training.

8 CONCLUSION AND FUTURE WORK

Our methodology offers one way for humans to better understand the relative difficulty of different
examples. One of our key findings is that VoG is far more challenging to classify for the algorithm
and surfaces clusters of images with distinct visual properties. VoG is straight-forward to compute
and can take advantage of current best practices of storing multiple checkpoints over the course of
training. In practice, a domain expert may choose to compute VoG for a class of particular interest
which would further reduce the computational cost.
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A APPENDIX

Toy Experiment We generate the clusters for classification using scikit-learn library. We used a
90-10% split for dividing the dataset into the training and testing category. A linear Multiple Layer
Perceptron (MLP) network with a single hidden layer of 10 neurons was trained using Stochastic
Gradient Descent (SGD) optimizer for 15 epochs. We divided the training process into three stages:
(1) Early [0, 5) epochs, (2) Middle [5, 10), and (3) Late stage [10, 15). Our trained model achieves
a 0% testing error using a linear boundary (Fig. 1a).

Class Level Error Metrics and VoG Here, we explore whether VoG is able to capture class level
differences in difficulty. We compute VoG scores for each image in the test-set of Cifar-10 and
Cifar-100 (both test-sets have 10, 000 images). In Fig. 10, we plot the average absolute VoG score for
each class against the false negative rate for each class. We find that there is a positive, albeit weak,
correlation between the two, classes with higher VoG scores have higher mis-classification error rate.
The correlation between these metrics is 0.65 and 0.59 for Cifar-10 and Cifar-100 respectively. Given
that VoG is computed a per-example level, we find it interesting that the aggregate average of VoG is
able to capture class level differences in difficulty.
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Figure 10: Plot of class false negative rate (y-axis) against average class VoG score for all classes
(x-axis). Left: Cifar-10 Right: Cifar-100. There is a statistically significant positive correlation
between class level error metrics and average VoG score (alpha set at 0.05).
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Figure 11: Bar plots showing the mean top-1 error rate (in %) for three group of samples from (1) the
subset of the test-set with the bottom 10th percentile of VoG scores, (2) the complete testing dataset,
and (3) the subset of the test-set with the top 10th percentile of VoG scores.

Statistical Significance of Memorization Experiments Is VoG able to discriminate between these
memorized examples and the rest of the dataset? In Fig. 8, we plot the box plot distribution of
VoG scores for the subset of the data with shuffled labels that required memorization beside correct
labels. We find that the mean and spread of the examples with the shuffled labels are higher when
compared to the rest of the dataset and that this difference is statistically significant. The two groups
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Figure 12: The mean top-1 test set error (y-axis) for the exemplars thresholded by VoG score
percentile (x-axis) calculated using the predicted labels. We observe that misclassification increases
with an increase in VoG scores. Across ImageNet we observe that VoG calculated for the predicted
labels follows the general trend as in Fig. 5 where the top-10 percentile VoG scores have the highest
error rate.

of population in the test consists of the VoG scores for the unaltered training set and the subset of
the training set with shuffled labels. We conduct this t-test for both Cifar-10 and Cifar-100 datasets.
The two-sample t-test produces a p-value that can be used to decide whether there is evidence of
a significant difference between the two distributions of VoG scores. The p-value represents the
probability that the difference between the sample means is large, i.e., the smaller the p-value, the
stronger is the evidence that the two populations have different means.

Null Hypothesis: µ1 = µ2

Alternative Hypothesis: µ1 6= µ2

If the p-value is less than your significance level (α = 0.05 in this experiment), you can reject the
null hypothesis, i.e., the difference between the two means is statistically significant. The details for
the individual t-tests for Cifar-10 and Cifar-100 are given below:

Cifar-10: The statistics for the samples in the correct and shuffled labels are:
Corrected labels: µ1 = 0.62; σ1 = 0.54; N1 = 40000
Shuffled labels: µ2 = 0.85; σ2 = 0.75; N2 = 10000
p-value is < 0.001
Result: Reject Null Hypothesis (the two populations have different VoG means)

Cifar-100: The statistics for the samples in the correct and shuffled labels are:
Corrected labels: µ1 = 0.54; σ1 = 0.46; N1 = 40000
Shuffled labels: µ2 = 0.82; σ2 = 0.71; N2 = 10000
p-value is < 0.001
Result: Reject Null Hypothesis (the two populations have different VoG means)

B VARIANCE OF GRADIENTS OPTIMIZER (VOGO)

Let us consider a deep neural network F that is to be trained on a supervised classification problem.
The function F maps an input variable X to an output variable Y , formally F : X 7→ Y . Each y ∈ Y
corresponds to one of C categories or classes. We compute the gradient S of the activation Al

p with
respect to each input in the training set. As before, l can represent the pre- or post-softmax layer of
the network and p is the index of either the true or the predicted class probability.

S =
∂Al

p

∂X

In Algorithm 1, we provide a brief overview of the Variance Of Gradients Optimizer (VoGo). For
simplicity, we have not mentioned the update steps for the bias parameters. As an initial test, we
weight each mini-batch gradient update with their respective VoG scores. Batches having a higher
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VoG score are relatively harder for the model to run and hence we up weight their updates in the
direction of the gradient descent.

Algorithm 1 Variance of Gradient optimizer

1: Initialization: Choose an initial value of w; step size γ for storing the number of snapshots (set
to 3 for the MNIST experiment); learning rate η; VoG regularization coefficient µ.

2: for t < total epochs do
3: St = dict()
4: for i, (x, y) in enumerate(X, Y) do
5: vogi = 1
6: ypred = F (x)
7: L = Loss(ypred, y)

8: Stemp =
∂Al

p

∂x
9: if len(St) < γ then

10: St[i].append(Stemp)
11: else
12: St[i] = St[i][1 :] + [Stemp]
13: end if
14: if t ≥ γ − 1 then
15: vogi = VOG(St[i])
16: end if
17: wt+1 = wt − µ× vogi × η∇L(wt)
18: end for
19: end for

15


	Introduction
	Methodology
	Experimental Setup

	Evaluating VOG
	Leveraging VoG to understand early and late training dynamics
	Relationship between VoG Scores and Memorized/OOD Examples
	Can we use VoG to accelerate and improve training performance?
	Related Work
	Conclusion and Future Work
	Appendix
	Variance of Gradients optimizer (VoGo)

