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Abstract 
 

 

 

 This paper provides an empirical implementation of a reduced form credit risk model that 

incorporates both liquidity risk and correlated defaults.  Liquidity risk is modeled as a 

convenience yield and default correlation is modeled via an intensity process that depends on 

market factors. Various different liquidity risk and intensity process models are investigated. 

Firstly, the evidence supports a non-zero liquidity premium that is firm specific, reflecting 

idiosyncratic and not systematic risk.  Secondly, the credit risk model with correlated defaults fits 

the data quite well with an average R2 of .87 and a pricing error of only 1.1 percent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 ii



 

Estimating Expected Losses and Liquidity Discounts Implicit in Debt Prices 

 

 

1. Introduction 

Given the recent exponential growth in the credit derivatives market [see Risk (2000)] and 

the regulatory induced need to account for credit risk in the determination of equity capital [see 

Jarrow and Turnbull (2000b)], credit risk modeling has become a topic of current and paramount 

interest.  Although credit risk pricing theory has exploded [see Jarrow (1998) for a review], the 

empirical estimation of these models has lagged behind [see Duffie and Singleton (1997), Madan 

and Unal (1998), Duffee (1999) and Duffie, Pedersen, Singleton (2000)].  To help rectify this 

imbalance, this paper provides a comprehensive empirical implementation of a reduced-form 

credit risk model that includes both liquidity risk and correlated defaults.  The reduced-form 

credit risk model implemented is that contained in Jarrow (2001) where a liquidity discount is 

modeled as a convenience yield and correlated defaults arise due to the fact that a firm’s default 

intensities depend on common macro-factors. 

The data used for this investigation is the University of Houston’s Fixed Income 

Database consisting of monthly bid prices taken from Lehman Brothers over May 1991 – March 

1997.  Twenty different firms’ debt issues are investigated where the firms are chosen to stratify 

various industry groupings. 

Five different liquidity premium models were investigated differing in their dependence 

on various market-wide variables including the spot interest rate, the return on an equity market 

index, and the equity market index’s volatility. These variables were chosen to capture systematic 

market risks related to interest rates, equities, and the market’s volatility.  Similarly, the intensity 

process was allowed to be dependent on the spot rate of interest and the cumulative return on an 

equity market index. 

Overall, the evidence supports the model quite well.  First, the best performing liquidity 

premium model appears to be firm specific and not dependent on market-wide variables. This 

result is consistent with liquidity risk reflecting only firm specific/ idiosyncratic and not 

systematic risk.  Second, the best fitting reduced form credit risk model fits the data quite well 

with stationary estimated parameters, an average R2 of .87, and an average percentage pricing 

error of only .011. 

The previous literature estimating reduced form credit risk models include Duffie and 

Singleton (1997), Madan and Unal (1998), Duffee (1999), and Duffie, Pedersen, Singleton 

(2000). Duffie and Singleton (1997) estimate swap spreads, Madan and Unal (1998) estimate 

yields on thrift institution certificates of deposit, and Duffie, Pedersen, Singleton (2000) estimate 



credit and liquidity spreads for Russian debt.  Duffee’s (1999) paper is closest to our approach.  

Using the same bond data, he estimates a reduced form credit risk model where both the default 

intensity and the default free term structure follow a square root process.  The default intensity 

also depends on the spot rate of interest, so his model captures correlated defaults.  Our paper 

differs from Duffee (1999) in three ways: (i) we use Guassian processes for the default intensity 

and the default free term structure, (ii) our default intensity has an additional factor – it also 

depends on the cumulative excess return per unit of risk on an equity market index, and (iii) we 

explicitly model liquidity risk. Our observation period and firm sample also significantly differ 

from that in Duffee (1999). 

An outline of this paper is as follows.  Section 2 introduces both the notation and the 

reduced form credit risk model.  Section 3 provides a description of the data.  The parameter 

estimation is performed in section 4.  Section 5 tests the time series stationarity of the parameter 

estimates, section 6 provides an analysis of the expected loss parameters, while section 7 studies 

the relative performance of the five different liquidity discount models.  Section 8 discusses the 

absolute performance of the credit risk model studied, while section 9 concludes the paper. 

2. The Model Structure 

This section introduces the notation and briefly summarizes the reduced form credit risk 

model contained in Jarrow (2001).  Trading can take place anytime during the interval ]T,0[ .  

Let ]}T,0[t:F(),P,F,{( tT
∈Ω  be a filtered probability space satisfying the usual conditions.1 

This filtered probability space represents the underlying randomness and information generated in 

the economy.  Traded are default-free zero-coupon bonds and risky (defaultable) zero-coupon 

bonds of all maturities.  Markets are assumed to be frictionless with no arbitrage opportunities, 

but they can be incomplete with illiquidities present. 

Let p(t,T) represent the time t price of a default-free dollar paid at time T where TTt ≤≤≤

T/)T, ∂

0 . 

The instantaneous forward rate at time t for date T is defined by  f(t,T) = t(plog∂− . The 

spot rate of interest is given by r(t) = f(t,t).  

Consider a firm issuing risky debt.  Let  v(t,T)  represent the time t price of a promised dollar 

to be paid by this firm at time T where TTt0 ≤≤≤ .  The debt is risky because if the firm 

defaults prior to time T, then the promised dollar may not be paid.  Let the random variable τ  

represent the first time that this firm defaults (τ > T  is possible if the firm does not default). 

Then,  

{ }


 ≤

== ≤
otherwise0

tif1
1)t(N t

τ
τ     (1) 

                                                           
1 See Protter (1990, page 3) for a discussion of the usual conditions. 
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denotes the point process indicating whether or not default has occurred prior to time t. We 

assume that this point process has an intensity )t(λ  with respect to the given filtration.2  The 

time t intensity process, ∆λ )t( , gives the approximate probability of default for this firm over the 

time interval ]t,t[ ∆+ .3 

If default occurs, we let the zero-coupon bond receive a fractional recovery of 

)T,(v)( −ττδ dollars where 0 )(τδ≤  and −τ  represents an instant before default. 

Under the assumption of no arbitrage, standard arbitrage pricing theory implies that there 

exists a probability Q equivalent to P such that 4 

)(
du)u(r

t

T

teE)T,t(p
∫−

=      (2) 

and 

)( )T(

du)u(r

)Tt(

du)u(r

t)t( 1e11e)T,(v)(E1)T,t(v

T

tt

τττ

τ

ττδ <

−

≤<

−

<

∫
+

∫
−=    (3) 

where  Et(.)  is conditional expectation with respect to Q at time t. 

The risky debt value is composed of two parts.  The first part is the present value of the 

promised payment in default.  The second part is the present value of the promised payment if 

default does not occur.  Duffie and Singleton (1999) show that expression (3) can be alternatively 

written as (3a): 

  v .     (3a) )(
du)]u())u(1()u(r[

t)t(
teE1)T,t(

λδ

τ

τ

−+−

<

∫
=

This expression shows that the risky zero-coupon’s value can alternatively be computed by taking 

the discounted expectation of the promised dollar, discounting at a rate augmented by the 

expected loss ( )u())u(1 λδ− per unit time.  As pointed out by Duffie and Singleton (1999), it is 

important to emphasize that expression (3a) enables only the estimation of the expected loss and 

not its separate components.   

 In this empirical investigation, almost all of the U.S. government debt and all the 

corporate debt studied are coupon bearing.  Consequently, we need to price coupon-bearing 

bonds.  First, for the U.S. government debt, a coupon bond is defined to pay coupons of C  j

                                                           
2  See Jeanblanc and Rutkowski (2000) for conditions under which such an intensity process exists. 
3 The intensity process is defined under the risk neutral probability.  This statement will become clear 

below. 
4 See Jarrow and Turnbull (1995).  No arbitrage guarantees the existence, but not the uniqueness of the 

probability Q.  Without any additional hypotheses on the economy, the uniqueness of Q is equivalent to 

markets being complete, see Battig and Jarrow (1999).  In incomplete markets, equilibrium (additional 

hypotheses) guarantees the uniqueness of Q.  The uniqueness of Q is essential for estimation. 
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dollars at times t  for j = 1, ...,n  where tj Tn =  is the maturity date.  The last coupon at the 

maturity date is assumed to include the principal repayment.  Let the time t price of this default 

free coupon bond be denoted by B(t,T).  Standard no arbitrage arguments give the price of the 

default free coupon bond as a portfolio of default free zero-coupon bonds, i.e. 

)T,t =

)

)T,

T,t

)
n

1j
∑=
=

e)T −=

)t,t(pC(B j

n

1j
t j

∑
=

 .           (4) 

Next, consider a risky coupon-bearing bond.  Using similar notation, except for the 

bond’s price which will be denoted by a script “B”, the risky coupon bond is defined to pay 

coupons of C  dollars at times t  for j = 1, ...,n  where j j Ttn =  is the maturity date. The coupon 

bond is risky because if the firm defaults prior to the maturity date, the remaining coupons (and 

principal) may not be paid in full.  In default, we assume that the coupon bond is worth the 

fractional recovery amount of T,()( −ττδ B .  Other recovery rate assumptions are possible [see 

Jarrow and Turnbull (2000a)].  

Under this recovery rate structure, the value of a risky coupon-bearing bond at time t, 

denoted by B , is equivalent to the cost of the following portfolio of risky zero-coupon 

bonds: 

t(

)t,t(vCT,t( jt j
B .     (5) 

The coupon bond prices in both expressions (4) and (5) are for bonds trading in perfectly liquid 

markets.  Although this is a reasonable approximation for U.S. government debt, it is not so for 

U.S. corporate debt.  Thus, we need to introduce an adjustment for liquidity risk in the pricing of 

corporate debt.   

Let  denote the price of an otherwise identical risky coupon bond trading in an 

illiquid market.  The subscript “l” indicates the bond’s price in an illiquid market.  In an illiquid 

and incomplete market, Jarrow (2001) shows that there exists a stochastic process 

)(lB

5 )T,t(γ  such 

that 

)T,t(,t( )T,t(
l BB

γ .    (6) 

 

The argument is that when there are shortages, the risky bond cannot be shorted,6 and hence 

)T,t()T,t( BBl >  is possible.  The reverse case occurs when there is an oversupply. The process 

                                                           
5 The process )T,t,(ωγ for Ωω ∈ is adapted to the filtration ( . )Ft
6 The bond cannot be shorted because to short, one has to first borrow the bond.  The bond shortage makes 

this precondition impossible to satisfy.  Repurchase agreements are often used to short both government 

and corporate debt. 
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)T,t(γ  has the interpretation of being a convenience yield for holding the risky debt.  When 

there is a shortage and one cannot readily buy the risky bond, then 0)T,t( ≥− γ . When there is a 

glut and one cannot readily sell the risky bond, then 0)T,t( ≤− γ .  In this context, liquidity risk is 

analogous to a convenience yield from holding an illiquid bond in one’s portfolio.  The 

convenience yield is sometimes positive or negative, depending upon market conditions. 

] t(dWdt rσ+

))(tdZmσ+

 To obtain an empirical formulation of the above model, more structure needs to be 

imposed on the stochastic nature of the economy. Following Jarrow (2001) we consider an 

economy that is Markov in two state variables: the spot rate of interest and the cumulative excess 

return per unit of risk on an equity market index.  We next introduce the stochastic evolution of 

these two state variables. 

For the spot rate of interest, we use a single factor model with deterministic volatilities, 

sometimes called the extended Vasicek model, i.e. 

(Spot Rate Evolution) 

[ ))t(r)t(ra)t(dr r −=     (7) 

where  ar 0≠ , σr > 0 are constants, )(tr  is a deterministic function of t chosen to match the initial 

zero-coupon bond price curve,7 and W(t) is a standard Brownian motion under Q initialized at 

W(0) = 0.  The evolution of the spot rate is given under the risk neutral probability Q. 

The second state variable is related to an equity market index, denoted by M(t). The 

evolution for the equity market index is assumed to satisfy a geometric Brownian motion with 

drift r(t) and volatility σm.  The correlation coefficient between the return on the market index and 

changes in the spot rate is denoted by ϕ . 

(Market Index Evolution) 

( )()()( dttrtMtdM =     (8) 

where σm is constant, and Z(t) is a standard Brownian motion under Q initialized at Z(0) = 0 

correlated with W(t) as dZ(t)dW(t) = dtϕ  with ϕ a constant. 

Our second state variable is Z(t).  We see here that Z(t) is a measure of the cumulative 

excess return per unit of risk (above the spot rate of interest) on the equity market index. 

 Given the evolutions of the state variables, we next need to specify their relationship to 

the bankruptcy parameters, the recovery rate and the liquidity discount.  This is the task to which 

we now turn.  First, for the default parameters, we assume that: 

(Expected Loss: A Function of the Spot Rate and the Market Index) 

                                                           

7 In particular, 
r

a
r

a2/)e1(
2
r

t)t,0(f)t,0(f)t(r
ta2

r 





 −

−+∂∂+= σ   for  .   0a
r
≠
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constants. area,aand0a

where}0),t(Za)t(raamax{)t())t(1(

210

210

≥
++≡− λδ

   (9) 

In this formulation, the expected loss per unit time (i.e., the (pseudo) probability of 

default per unit of time multiplied by one minus the recovery rate) is assumed to be a linear 

function of the state variables r(t) and Z(t) as long as this linear combination is non-negative, zero 

otherwise. Note that in this formulation of the expected loss process, the recovery rate is allowed 

to be a stochastic. 

For analytic tractability in the empirical implementation, we drop the maximum operator 

in expression (9). In this case, as the recovery rate is non-negative, this implies that negative 

default rates (λ(t) < 0) are possible.  If the likelihood of (λ(t) < 0) is small, this simplification 

should provide a reasonable approximation to expression (9).  Unfortunately, when the intensity 

process is negative, the default distribution is no longer a proper probability distribution [see 

Bremaud (1981)].  Nonetheless, given the tractability of the subsequent expressions, and the 

difficulty of the numerical inversion without a closed form solution, we empirically investigate 

the validity of this linear approximation. 

 Given these expressions, it is shown Jarrow (2001) that the default free zero-coupon bond 

and the risky zero-coupon bond’s price can be rewritten as: 

2/)T,t()T,t( 2
11e)T,t(p

σµ +−=     (10) 

and 

( )

( ) [ ] 6/atT)T,t(aa1)tT)(t(Za

2)T,t(aa2)T,t(a)tT(a
)t(

2
2

3
212

2
1

2
11110

e

e)T,t(p1)T,t(v

−+++−−

•++−−−
<=

ηϕ

σµ
τ

    (11) 

where  

( ) and,ae1)t,u(b

,du)T,u(b)T,t(,2du)T,u(bdu)u,t(f)T,t(

r
)ut(a

r

2
T

t

2
1

2
T

t

T

t
1

r −−−=

∫=∫+∫=

σ

σµ
  (12) 

2
rr

)tT(a2
rr

)tT(a3
rr ]tT)[a2/()tT(e)a/(]e1)[a/()T,t( rr −+−+−−= −−−− σσση . 

 A direct substitution of these zero-coupon bond price formulae into the coupon bond 

price expressions (4) and (5) gives the analytical expressions used in this empirical investigation, 

with one exception.  To complete the empirical specification of the risky debt model, we need to 

specify an explicit functional form for the liquidity premium.  

To empirically separate the estimates of the liquidity premium )T,t(γ  from the expected 

loss )t())t(1( λδ− , the time to maturity behavior of the liquidity premium and the expected loss 

needs to be utilized.  First note that if the firm is not in default at time t, then as T , all the 

default related terms in the exponent of the risky zero-coupon bond’s price in expression (11) 

t→

 6



approach zero. This follows because the probability of default by the risky firm goes to zero as 

, so that .  Hence, the expected loss component in the risky-zero coupon bond’s 

price is proportional to time to maturity. 

tT → 1)T,t(v →

=)T,t 0γ

32 ,, γγ

                            

)T,t( γγ ≡

)t
n

=

In contrast, the liquidity premium’s time to maturity behavior is, in general, not 

proportional to time to maturity.  Indeed, liquidity risk is usually thought of as being determined 

by factors that are independent of the maturity of the bond, including the size of the bond issue, 

market sentiment concerning its re-trade value, and the size of institutional holdings. If these 

beliefs are valid, then the liquidity premium contains a fixed component that is not proportional to 

time to maturity.  To the extent that the liquidity premium contains only this fixed component, the 

subsequent methodology enables us to empirically separate the liquidity premium from the 

expected loss.  To the extent that this is not true, any time to maturity component of the liquidity 

premium will be confounded into our estimate of the expected loss.   

Based on this discussion, as a joint hypothesis to the empirical methodology, we assume 

that the liquidity premium is independent of the debt’s time to maturity: 

(Liquidity Discount) 

(γ + 1γ ∑
−=

t

4tj

5/)j(r + 2γ )t(
2

mσ + 3γ 5/
)1j(M

)1j(M)j(Mt

4tj

∑
−=









−

−−
 (13) 

where 10 ,γγ   are constants. 8  

 First, the right side of expression (13) is independent of the time to maturity (T-t).  

Secondly, the liquidity discount is assumed to be an affine function of three market-wide 

variables: the 5-day average spot rate, the volatility of an equity market index, and the 5-day 

average return on the equity market index.   These variables were chosen to capture systematic 

market risks related to interest rates, equities, and the market’s volatility.  Although other firm 

specific variables correlated with debt market liquidity could have been included like the bid/ask 

spread, volume traded, or volume outstanding, unfortunately, none of this information was 

available in our bond database. Given this omission, however, the reader should be aware that the 

liquidity premium estimates obtained might incorporate residual model error.  This limited 

formulation, however, does enable us to investigate whether liquidity risk is either firm 

specific/idiosyncratic or systematic by testing whether ( 0321 === γγγ ). 

 Substitution of expression (13) into the risky coupon-bond price formula (6) completes 

the empirical specification of the reduced form credit risk model.  As seen, analytic formulas are 

                               
8 This implies that )t(  so that 

 where . )T,t(B C
jt

1j
∑
=

e)T,t(l
(

B
γ−= )t,t(ve j

)t(−γ
)t,t(vC jl

n

1j
jt∑=

=
)T,t(ve)T,t(v

)t(
l

γ−≡
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available for both the default free and risky debt issues.  These analytic formulae are the basis for 

the empirical estimation procedure described in the next sections. 

3. Description of the Data  

The data used for this investigation is the University of Houston’s Fixed Income 

Database.  This data consists of monthly bid prices for various fixed income securities, including 

U.S. Treasuries and U.S. corporate debt.  The bid prices are taken from Lehman Brothers trading 

sheets on the last calendar day in each month.  For each security included, various identifying 

information is also provided including embedded options, seniority status, and whether the bid 

price is transaction based or matrix priced, see Warga (1999) for additional details. 

The time period covered in this study is May 1991 – March 1997.  The University of 

Houston Fixed Income Data terminates after March 1997 and no further updates are available.  

For the U.S. Treasury securities, all outstanding bills, notes and bonds are included in this data 

and, therefore, included in this study. Being such a large database (containing over 2 million 

entries), the potential for data errors is quite large. Indeed, a careful examination of the data 

confirmed this suspicion.  Hence, we filtered the data to remove obvious data errors. We excluded 

Treasury bonds with matrix prices and inconsistent or suspicious issue/dated/maturity dates and 

coupons.  Lastly, using a median yield filter of 2.5%, we also removed U.S. Treasury debt listings 

whose yields exceeded the median yield by this percent.  After filtering, there are approximately 

29,100 U.S. Treasury prices left in the sample set. 

For the corporate bond price data, we first excluded all debt issues that contained 

embedded options (call provisions, extendible bonds, convertible bonds, etc.) and that were 

matrix priced. Matrix prices are linear interpolations of bid prices for other traded issues.  These 

prices are not good approximations to traded prices and therefore omitted from the analysis. 

These two filters left only bid prices on straight coupon bearing bonds.   

From these debt issues, we selected twenty different firms chosen to stratify various 

industry groupings: financial, food and beverages, petroleum, airlines, utilities, department stores, 

and technology.  Within each industry, the firms were chosen to ensure that at least three debt 

issues were available sometime during the sample period.  Only debt classified as senior, senior 

debentures, and senior notes are included in the subsequent investigation.   

The twenty firms included in this study are provided in Table 1.  Their industry 

association, and the starting and ending date for each of the bond price observations are noted. 

For each firm, on any particular day in the observation period, a bid price may be missing from 

the data.  For this reason, different firms can have different starting dates and different numbers 

of bond issues at specific dates in the observation period. The number of distinct bonds available 

on the first date in the estimation period is also provided.  For example, AMR Corporation has 

 8



only two senior debt issues outstanding on this date, while Merrill Lynch & Co. has fourteen.  

The Moodies and S&P’s ratings for each company’s debt issues at the start of our sample period 

(May 24, 1991) are also included.  These ratings did not change over our sample period. As seen, 

our sample consists of only investment grade debt.  Using S&P’s ratings, the debt ranges from 

AAA for Shell Oil Company’s to BBB for Union Oil of California.  

For the equity market index, we used the S&P 500 index with daily observations obtained 

from CRSP.  For parameter estimation of the state variable processes a daily spot rate is needed.  

Since the fixed income data provides only monthly observations, we use daily observations of the 

3 month T-bill yield available from CRSP as well. 

4. Estimation of the State Variable Process Parameters 

To implement the estimation of the default and liquidity discount parameters, we first 

need to estimate the parameters for the state variable processes (r(t),Z(t)).  

a. Spot Rate Process Parameter Estimation 

The inputs to the spot rate process evolution are the forward rate curves over an extended 

observation period (f(t,T) for all months t ∈ January 1975 – March 1997) and the spot rate 

parameters ( rr ,a σ ).  We discuss the estimation of these inputs in this section. 

For the estimation of the forward rate curves, a two-step procedure is utilized.  First, for a 

given time t, the discount bond prices (p(t,T) for various T) are estimated by solving the following 

minimization problem: 

choose    (p(t,T) for all relevant T }Ii:Tmax{ ti ∈≤ )  

to minimize [ ] 2

Ii

bid
iiii

t

)T,t(B)T,t(B∑ −
∈

     (14) 

where   is an index set containing the various U.S. Treasury bonds, notes and bills available at 

time t,  is the model price (expression (4)) for the i  bond with maturity T  as a 

function of (p(t,T)), and  is the market bid price for the i  bond with maturity .   

tI

Bi )T,t( i
th

i

iTbid
ii )T,t(B th

The discount bond prices’ maturity dates T  coincide with the maturities of the Treasury 

bills, and the coupon payment and principal repayment dates for the Treasury notes and bonds. 

 Step 2 is to fit a continuous forward rate curve to the estimated zero-coupon bond prices 

(p(t,T) for all T ).  We use the maximum smoothness forward rate curve as 

developed by Adams and van Deventer (1994) and refined by Janosi and Jarrow (2002).  Briefly, 

we choose the unique piecewise, 4

}Ii:Tmax{ i ∈≤

th degree polynomial with the left and right end points left 

“dangling” that minimizes ∫
∈i:Tmax{

t

i

∂∂
}I

22
t

dss/)s,t(f .   
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For the spot rate parameters ( rr ,a σ ) estimation, the procedure follows that used in 

Janosi, Jarrow, Zullo (1999).  However, the procedure is extended to include rolling estimation of 

the parameters using only information available at the time of the estimation.  This rolling 

procedure makes the parameter estimates ( rtrt ,a σ ) dependent on time t as well. 

 The procedure is based on an explicit formula for the variance of the default-free zero-

coupon bond prices derived using expression (7).  For ∆ = 1/12  (a month), the expression is: 

( ) ∆σ∆∆ 





 −=−+ −− 2

rt

2)tT(a2
rtt a/1e])t(r))T,t(P/)T,t(P[log(var rt .  (15) 

First we fix a time to maturity  T− t ∈ {3 months, 6 months, 1 year, 5 years, 10 years, the 

longest time to maturity of an outstanding Treasury bond closest to 30 years}.  Then, we fix a 

current date t ∈ {May 1991 – March 1997}.  Going backwards in time 60 months (5 years), we 

compute the sample variance, denoted , using the smoothed forward rate curves previously 

generated.  Note that the sample variance depends on both the date of estimation and the bond’s 

maturity. 

tTs

    Then, for each date t ∈ {May 1991 – March 1997}, to estimate the parameters ( rtrt a,σ ) 

we run a nonlinear regression 

( ) tT
2

rt

2)tT(a2
rttT ea/1es rt +






 −= −− ∆σ      (16) 

across the bond time to maturities  T− t ∈ { ¼, 1/2, 1, 5, 10, longest time to maturity closest to 30}   

where  is the error term.   tTe

The parameter estimates are: 

 Min Mean Max StdDev 

rta  0.0109 0.0282 0.0428 0.0101 

rtσ  0.0100 0.0109 0.0117 0.0004 

 

The R2 for each of these monthly non-linear regressions (not reported) exceeded .99 in all cases. 

The spot rate volatility ( rtσ ) is nearly constant over this period. In contrast, the mean reverting 

parameter ( ) appears to be more volatile. rta
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To test for the time series stability of these parameter estimates, a unit root test was 

performed.9 For the volatility rtσ , the test rejects a unit root, implying the time series is 

stationary.  In contrast, one cannot reject a unit root for the mean reverting parameter . rta

 b.     Market Index Parameter Estimation 

Using the daily S&P 500 index price data and the 3-month T-bill spot rate data, we need 

to estimate the parameters of the market index process ( ),m ϕσ as given in expression (8) and the 

cumulative excess return on the market index as given by Z(t) in expression (8).  This section 

discusses this estimation.   

This estimation of the parameters ( ),m ϕσ is based on daily data (∆ = 1/365).  As before, 

the procedure involves a rolling estimation using only information available at the time of the 

estimation. This procedure implies that the parameter estimates depend on time t as well, denoted 

by ( ), tmt ϕσ .   

For a given date t ∈ {May 24,1990 – March 31,1997}, we go back in time 365 business 

days and estimate the time dependent sample variance and correlation coefficients ( ), tmt ϕσ  

using the sample moments, i.e.  

∆∆
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






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)t(M)t(M
corrtt ∆

∆
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The parameter estimates are: 

 Min Mean Max StdDev 

mtσ  0.0982 0.1261 0.1897 0.0270 

tϕ  -0.2706 -0.0990 0.1262 0.1142 

  

                                                           
9 A unit root test is performed to check for the stationarity of the time-series parameter estimates.  

Stationarity means that the time series fluctuates around a fixed mean. Hence, this is basically a random 

walk test.  We run the following augmented Dickey-Fuller test with a time trend, 

tjt

1p

1j

j1tt ε∆ycβtρyµ∆y ++++= −

−

=
− ∑  

 

Since there was no time trend and no augmented terms, we reduced the equation to the Dickey-Fuller test 

with no trend and augmented terms: 

.ερyµ∆y t1tt ++= −  

Therefore, we only report the DF test statistics for the stationarity of the parameters.  The test statistic for 

the DF test is given as the t-statistic of the  coefficient in the regression: ρ
.ερyµ∆y t1tt ++= −  

The null hypothesis is . If we accept the null hypothesis, we have unit root. Otherwise, we accept 

the stationarity of the parameters [see Greene (1993) for more discussion]. The unit root test statistics are: 

(– 2.6348)  and  ar  ( – 1.1632). 

0:ρH 0 =

rσ
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The market volatility is relatively constant between .1 and .2 over this observation period.  

The correlation coefficient appears to be more variable.  As before, to test for the stability of the 

parameters a unit root test was performed.  The results show that a unit root can be rejected at the 

90 percent confidence level for the market volatility but not for the correlation coefficient.10 

 Given the parameter estimates for the market volatility ( )mtσ  and the daily 3-month 

Treasury bill yields, the Z(t) process is computed using a discretized approximation to expression 

(8), starting the series on May 24, 1991. 

( )
.0)0(Zandtfor

])t(r)t(M)t(Mlog[)t(Z)t(Z )t(m

2

)t(m2
1

=≥

+−−−+−= −−

∆

∆σ∆σ∆∆∆∆ ∆∆  

 Finally, we computed the market-wide risk variables for the liquidity discount process 

(expression (13)).  These include the 5-business day average spot rate, the 5-business day average 

return on the S&P 500 index, and for consistency, a 5-business day rolling estimate of the 

volatility for the S&P 500 index.  The 5-day rolling estimate of the volatility for the S&P 500 

index differs from the market volatility ( )mtσ  estimate generated previously only in the number 

of the past observations used.  The previous estimate used 365 past observations, while the 

current estimate only uses 5. 

c.   Default and Liquidity Discount Parameter Estimation 

Given the state variables (r(t),Z(t)) parameters as estimated in the previous sections, this 

section presents the default and liquidity discount parameter estimation.  The default parameters 

are the expected losses per unit time from the intensity process (expression (10)): ; and 

the liquidity discount parameters from expression (13): 

210 a,a,a

3,2,1,0 γγγγ .  These parameters are 

constants.  However, since we utilize a rolling estimation procedure at each date t (the details of 

which are discussed below), the parameter estimates will depend on t as well, denoted by 

( ,t2t1t0 a,a,a t3t2t1t0 ,,, γγγγ ). 

For the estimation of the default and liquidity discount parameters, a non-linear 

regression procedure is implemented using both cross-sectional and past time series observations 

of bond prices. Table 1 contains the number of bonds available on the first date in the estimation 

period.  At each time t, only a few bonds of any single firm with a particular seniority status trade 

(and have bid prices).  For example, Fleet Financial Group only has three outstanding senior 

bonds with no embedded options on the first date in the observation period.  This is the cross-

sectional price data at time t. These are too few observations to estimate the seven different 

default and liquidity parameters.  In order to augment these observations we use the past seven 

                                                           
10 The unit root test statistics are:  ( – 3.9407) and  (– 1.3479).  See footnote 9 for a more detailed 

explanation of the unit root test. 

mσ φ
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months of bond prices as well. This is the time series data. As before, only information available 

at time t is used in the estimation procedure. Augmenting the data in this way increases the 

sample size significantly, for example for Fleet Financial Group, using the past seven months of 

data increases the sample size from 3 to 16 observations.   

For a particular firm at time t, let  be the index set containing the bid prices of the 

firm’s debt issues over the current month and the past seven months

tI

11.  The twenty company debt 

issues involved in the estimation are given in Table 1. 

The time t default intensity and liquidity discount parameters are estimated by solving the 

following minimization problem12: 

choose  ( ,t2t1t0 a,a,a t3t2t1t0 ,,, γγγγ )    to minimize [ ] 2

Ii

bid
iliili

t

)T,t()T,t(∑ −
∈

BB   (18) 

subject to the constraint that , 0a t0 ≥

 

where  B  is the model price (expression (6)) for the  bond with maturity T  as a 

function of ( ,

)T,t( ili

t0 ,a

thi i

t2t1 a,a t3t2t1t0 ,,, γγγγ ) and B  is the market bid price for the i  

bond with maturity T . 

bid
ili )T,t( th

i

The non-negativity constraint for is included in order to keep the intensity process positive in 

the case when both  are zeros. 

t0a

t2t1 a,a

As noted, our default and liquidity parameter estimation involves a two-step procedure.  

The first step computes the state variable parameter estimates using their sample moments. The 

second step uses these parameter estimates in the non-linear regression (18).  This second step 

introduces additional sampling error into the estimation procedure.  An alternative approach 

would have been to use a standard GMM procedure, estimating all of the parameters (including 

the state variable parameters) in a single step.  We choose not to use the GMM procedure for two 

reasons.  One, GMM is only asymptotically consistent, and in our situation, we do not know its 

small sample properties.  Two, our two-step procedure is also asymptotically consistent (under 

certain error structures for the parameters), but simpler to implement. 

 Five different models for the liquidity discount are estimated.  The models differ with 

respect to the number of independent variables included in the liquidity discount.  Model 1 has all 

the liquidity parameters set equal to zero: 03210 ==== γγγγ .  This is the base case with no 

liquidity discount.  Model 2 is the test for liquidity risk being idiosyncratic or systematic: 

                                                           
11 The first estimation is for December 1991.  The data starts 8 months earlier in May 1991. 
12 Matlab’s non-linear regression procedure is used to do this minimization.  All parameter estimates are 

initialized at zero for the numerical procedure. 
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0321 === γγγ .  Model 3 has 032 == γγ , model 4 has 03 =γ , and model 5 includes all of the 

liquidity discount parameters.  These five models are nested and a relative comparison of model 

performance is subsequently provided.  

t2t1t0 a,a,a t0 ,γ

1t0 a,a

1t0 ,γγ

For example, Xerox’s (symbol xrx) parameters are estimated each month from May 1991 

– March 1997 for a total of 64 regressions, giving 64 time series observations of 

( , t3t2t1 ,, γγγ ). For each month in the observation period, on average, 39 bonds 

were used in the time t non-linear regression.  Graphs of the time series parameters for Xerox are 

contained in Figures 1a and 1b.  Figure 1b contains Xerox’s expected loss per unit time parameter 

estimates ( ).  As depicted, Xerox’s expected loss appears to be declining over the 

observation period for all five liquidity discount models estimated.  As suggested, Xerox’s default 

risk is declining.  In contrast, its credit rating is unchanged (see Table 1). 

t2t a,

Figure 1a contains Xerox’s liquidity discount factor ( exp( ))T,t(γ− ) for the five different 

models using expression (13) and the parameter estimates ( t3t2t ,, γγ ).  For the first half of 

the observation period, for models 2 – 5, Xerox’s debt appears to have traded at a premium 

(greater than one), while over the last half of the observation period it traded at a discount.  A 

premium implies that Xerox’s bonds were in excess supply, while a discount implies that Xerox’s 

bonds were in shortage (relative to a liquid market). 

To summarize the time series estimates across all models and across all times, Table 2 

provides the average values for the point estimates of the liquidity discount and the expected loss 

parameters.  The average number of bonds used in each monthly regression, the average R2, and 

the number of monthly regressions are also included. For each firm, on any particular day in the 

observation period, a bid price may be missing from the data.  For this reason, different firms can 

have different starting dates and different numbers of bond issues at different dates in the 

observation period. Table 1 provides the estimation periods for the different companies’ debt 

issues. 

The values in Table 2 are averages over the number of days in the observation period 

(May 1991 – March 1997) for which the non-linear regression estimates of the parameters are 

computed.13   Table 3 provides the t-scores14 for the averages of the parameter estimates as 

contained in Table 2 as well as the average P-scores for the coefficients (across the number of 

regressions). The P-score is the probability of rejecting the null hypothesis (that the coefficient is 

zero), when it is true. Summary statistics for various F-tests are also provided.  The first F-test has 

                                                           
13 This is not to be confused with the number of observations used in the time t regression for a particular 

firm.  At the time t regression, we use all bond prices for issues of a particular seniority over the past eight 

months. 
14 The t-score is adjusted to reflect the fact that the regressions contain overlapping time intervals.  The 

justification for the t-score adjustment is contained in the appendix. 
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as its null hypothesis ( 0aaa 210 ===

0j =

).  Given are the average P-scores of the F-tests (across 

the number of regressions).  The remaining F-tests have as their null hypothesis the liquidity 

premium models 1 – 5 (i.e., γ  for all j where  j < i  for model i). Model 2 is a test for 

liquidity risk being idiosyncratic versus systematic.  The average P-scores of these F-tests (across 

the regressions) are provided. The next sections discuss these statistics and various tests for the 

relative performance of the various models. 

5. Analysis of the Time Series Properties of the Parameters 

Under the assumed model structure, the default and liquidity premium parameters 

( ,t2t1t0 a,a,a t3t2t1t0 ,,, γγγγ ) should be constant across time.  Given measurement error in the 

input data (bond prices and the state variable parameters) and its effect on the debt parameter 

estimates, we test the hypothesis that the time series variation in these parameters is solely due to 

random (white) noise. Alternatively stated, we test to see if the parameter estimates follow a 

random walk around a given mean.  A unit root test is used in this regard.15
 

Table 4 contains a summary of the unit root test statistics across model types.  For model 

1, no liquidity premium, around 50 percent of the different firm’s default parameters accept the 

null hypothesis of a unit root, rejecting the time series stationarity of the parameters.  Firms with 

at least two thirds of the default parameters accepting a unit root include ten out of eighteen 

companies (financials: spc, bt; food and beverages: cce; airlines: amr; utilities: txu; petroleum: 

mob; department stores: dh; technology: ek, txn, ibm).  Model 1’s estimated parameters appear to 

have a stationarity problem. 

The liquidity premium corrects this non-stationarity. Indeed, inclusion of the liquidity 

premium significantly improves the stationarity of the default parameter estimates. For models 2 

– 5, a majority of the default parameter coefficients reject a unit root.  The more complex the 

model, the more unit root rejections occur.  The best performing model in this regard is model 5.  

For model 5, for almost all companies, the liquidity premium and default parameters reject the 

hypothesis of a unit root. Although the unit root test is a weak test for stationarity, these rejections 

are consistent with the validity of the pricing model and the necessity of including a liquidity 

premium. 

6. Analysis of the Expected Loss 

As previously mentioned, the average expected loss parameters are contained in Table 2 

with t-scores and average values for the P-scores provided in Table 3.  The firms’ estimates are 

presented in industry groupings for easy comparison. 

First to be noticed in Table 2 is that the fit of the non-linear regressions are quite high for 

all firms and all models with an R2 of .72 or higher, with one exception.  The exception is Fleet 
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Financial Group (flt) with an R2 between .41 - .66, depending upon the model selected.  These 

high R2’s are obtained in spite of the fact that the number of bonds used in each regression is 

quite small – between 16 and 132 for all firms. The low R2 for Fleet Financial Group can be 

explained by the fact that it had only an average of 16 bond observations for each regression. 

Second, it is interesting to examine the signs of the coefficients for the expected loss 

parameters.  The signs of  and a  indicate the sensitivity of the firm’s default likelihood to 

changes in the spot rate and the equity market index, respectively.  For example, for Security 

Pacific Corp (spc), for all five models considered, we see that > 0 and < 0.  This implies 

that as spot rates increase, the firm’s default risk increases; and as the equity market index 

increases, the firm’s default risk declines.  These signs are consistent with simple economic 

intuition.   

1a 2

1a 2a

This economic intuition is based on the effect of higher interest rates on the firm’s ability 

to service its short-term floating rate debt.  As spot rates rise, given fixed operating income flows, 

debt servicing costs increase, thereby making it more likely for the firm to default.  This intuition, 

“at first blush”, appears to be inconsistent with the structural approach to risky debt valuation.  

For example, in Merton (1974; p. 457, equ.(26)), we see that as spot rates increase, the credit 

spread declines (implying default risk declines).  The reason for this difference is easily 

explained. In Merton’s structural model, the firm has only the equivalent of long-term debt on its 

balance sheet (a single fixed maturity discount bond). The previous economic intuition is 

formulated for firms with more complex liability structures that contain a significant amount of 

short-term floating rate debt.  Consequently, it is possible for different firms to exhibit different 

interest rate sensitivity to default based on the relative importance of floating rate versus fixed 

rate borrowings in their capital structure. 

The signs of these coefficients appear to be stable across time for any particular 

company’s debt, but they differ across industries and they sometimes differ across companies 

within an industry.  An example of different signs within an industry is for the department stores 

grouping, where Sears Roebuck and Company (s) and Wal-Mart Stores, Inc. (wmt) have 

contrasting signs for both the interest rate and market index variables.  These differences reflect 

different capital structures (e.g. relative dependence on floating rate versus fixed rate debt) and 

different customer pools (customer income correlation with the market index variables). 

Glancing now at Table 3, we discuss the statistical significance of these point estimates.  

First, we investigate the joint significance of all three of the default parameters ( a ).  The 

F-test for model 1 provides the appropriate test.  As seen, for 19 out of 20 companies, the average 

P-score is less than 5 percent, accepting the joint statistical significance of the three parameters 

210 a,a,

                                                                                                                                                                             

 16

15 See footnote 9 for a more detailed explanation of the unit root test. 



( ).  The exception is Fleet Financial Group (flt) with an average P-score of .3362.  Fleet 

Financial Group has the smallest sample size – number of bonds (16 observations).  

210 a,a,a

We next investigate the individual t-scores, given the joint statistical significance of the 

credit risk model.  With respect to the constant in the expected loss function, , its statistical 

significance varies across model types.  For model 1, no liquidity premium, it is significant for 10 

out of the 20 companies.  For model 2 it is significant for 18 out of 20 companies (the exceptions 

are txu and txn).  For models 3 – 5,  is never significant.  The absence of individual 

significance in models 3 – 5 is due to both the increased number of parameters to estimate and the 

increased multi-collinearity of the independent variables.  Although the multi-collinearity 

increases the standard error of the estimates, the estimates remain unbiased.  The average P-

scores across the individual regressions confirm the above conclusions.   

0a

0a

With respect to the spot rate coefficient in the expected loss, , the significance of its t-

scores also varies across model types.  For model 1, no liquidity premium, it is significant in only 

8 out of 20 cases.  For model 2, it is significant in 18 out of 20 cases.  The exceptions are 

Carolina Power and Light (cpl) and Dayton Hudson (dh).  But, in both of these cases, the average 

P-scores are less than 5 percent, indicating significance in this alternative test.  This is strong 

evidence that the expected loss depends on the spot rate of interest.  In contrast, for the more 

complex liquidity discount models 3 – 5, a  is never significant.  Again, this is due to the 

increased number of parameters to estimate and the increased multi-collinearity of the 

independent variables. 

1a

1

 Finally, with respect to the market index coefficient in the expected loss, , only 5 out 

of the 20 firms are significant for model 1, and none are significant for models 2 – 5.   Given the 

other two expected loss coefficients, it appears that the expected loss does not depend on the 

market index.  The only near exception to this statement is for Merrill Lynch (mer) in the case of 

model 3.  Here the t-score is nearly significant (-1.4089) and the average P-score is low (.1719).  

This could be due to chance, but it also is consistent with the conjecture that an industry specific 

index should be included, rather than a market index.  For example, for the petroleum industry 

grouping, oil prices may have been a better index choice; and for the utilities industry, electricity 

prices may have been a better choice.  This is consistent with the weak evidence available from 

Merrill Lynch because the market index is probably highly correlated with an industry index for 

investment banking.  This conjecture, however, awaits subsequent research. 

2a

 The impact of these different parameter estimates on the one-year default probabilities for 

each firm across model types can be gleaned from column 2 in Table 5.  Column 2 in Table 5 

provides the average one-year default probabilities (computed under the risk neutral measure) 
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across the different regressions assuming a constant recovery rate of 0.5.  Except for Fleet 

Financial Group, due to its small sample size, the one-year default probabilities do not appear to 

differ significantly across the liquidity premium models 2 – 4.  For each firm, the biggest 

difference occurs between model 1 and models 2 – 4, i.e. no liquidity discount versus a liquidity 

discount.  As seen, the inclusion of a liquidity discount appears to have a significant impact on 

the estimated probability of default.  The necessity (or lack thereof) of a liquidity discount is 

addressed in the next section. 

7.     Analysis of the Liquidity Discount Model 

This section studies the relative performance of the five liquidity discount models.  First, 

for each firm and for each model type, Table 3 contains the average P-scores for the F-statistic 

testing the joint nullity of the parameters ( 3210 ,,, γγγγ ).  Model 1 tests for the inclusion of a 

liquidity discount. Model 2 tests whether liquidity risk is idiosyncratic or systematic.  Models 3 - 

5 test for the sensitivity of liquidity risk to interest rate, equity market, and equity market 

volatility risk, respectively. 

These F-tests confirm the necessity of including a liquidity discount.  For model 2, the 

average P-score is less than 30 percent for 12 out of 20 cases.  For models 2 – 5 the average P-

score is less than 50 percent for all companies except five (flt, luv, cpl, txu, wmt).  This is strong 

evidence consistent with the importance of including a liquidity discount into the credit risky 

model structure. 

The t-scores and the average P-scores for the liquidity coefficients, across regressions, are 

also contained in Table 3.  This simple t-test checks for the significance of each coefficient, given 

that the other coefficients are included in the regression.  For models 2 – 5, almost all of the 

coefficients are significantly different from zero.  This is true using either the t-score or average 

P-score statistics.  This evidence confirms the F-test analysis previously discussed and the 

importance of including a liquidity discount in the credit risk model. 

 Three additional statistical analyzes were performed to investigate relative model 

performance.  The first was the unit root test for parameter stability discussed in section 5 above.  

As noted there, the liquidity coefficients’ time series properties are inconsistent with a unit root.  

The best performing model on this metric is model 5.  However, this is a weak test. Hence, two 

additional tests were performed.  For each firm and for each model’s regression, both a root mean 

squared error statistic (RMSE) and a generalized cross validation statistic (GCV) are computed.  

The RMSE statistic measures the “average” pricing error between the model and the market bid.  

It is an in-sample goodness of fit measure.  As with all in-sample goodness of fit measures, a 

potential problem with RMSE is that it may provide a biased picture of the quality of model 

performance due to a model over-fitting the noise in the data.   With in-sample estimation, usually 
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the more parameters utilized, the better the fit.  To avoid this problem, we provide an out-of-

sample test.  The second GCV test statistic is an out-of-sample goodness of fit measure that is 

predictive in nature.16  The lower the GCV statistic, the better the out-of-sample model fit. 

 The average RMSE and GCV statistics for each firm and model are contained in Table 5.  

As indicated, the RMSE is lower for models 2 – 5 than for model 1.  This is as expected, 

however, because the RMSE is an in-sample statistic and models 2 – 5 have more parameters.  

More importantly, the out-of-sample GCV statistic is lower for model 2 than it is for model 1. 

This again confirms the importance of including a liquidity discount into the model structure.  

In summary, the best performing model based on either RMSE or the GCV statistic is 

model 2.  This evidence is consistent with liquidity risk being idiosyncratic and not systematic 

risk.  The importance of additional company and industry specific variables is an interesting topic 

for future research. 

 The impact of these different liquidity discount models on the aggregate estimate of the 

liquidity discount for each firm is contained in column 7 of Table 5.  The biggest impact occurs 

between model 1 (no liquidity discount) and models 2 – 5.  Across the different liquidity discount 

models 2 – 5, the differential impact on the estimate of the liquidity discount does not appear to 

be that significant. 

8.  Absolute Performance of the Credit Risk Model 

The above analysis was for the relative performance of models 1 – 5.  The absolute 

performance of the models is much more difficult to ascertain.  Conceptually, this is because the 

default process’ parameters are unobservable. The default parameters are from a distribution 

whose realization is a binary variable – default, no default.  And, for most firms (in fact, for all 

firms in our sample), the default realization has not occurred.  It is possible to compare the 

                                                           
16 To understand this out-of-sample GCV statistic, we first consider the CV method in terms of its 

forecasting ability. Assuming that the random errors have zero mean, the true regression curve g has the 

property that, if an observation Y is taken at a point t, the value g(t) is the best predictor of Y in terms of 

MSE. Thus a good choice of estimator (t)g
)

would be one that gives a small value of ( )2
(t)gY
)−  for a new 
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implied default parameters with historical based default frequencies for “like” firms.  This is, in 

fact, the topic for a companion paper [see Chava and Jarrow (2000)].   

Nonetheless, the absolute performance of the reduced form credit risk model can be 

partially gauged by examining the time series stability of the estimated parameters, the R2 of the 

regression model, and the percentage pricing error (RMSE/average bond price).  The time series 

stability of the estimated parameters was discussed in section 5 above. In summary, that evidence 

supports the necessity of including a liquidity discount into the debt-pricing model.  The R2 

statistic, as mentioned previously, is quite high for all model structures – often greater than .85 

(see Table 5).  This indicates the ability of the model to explain a large percentage of the variation 

in the bond price data.  The average R2 for the “best” performing model 2 is .87. 

The average percentage pricing error across firms and model types is quite low.  As seen 

in Table 5, the average percentage pricing error fluctuates around 1 percent of the bond’s bid 

price, and is often much less.  The overall average percentage pricing error for the “best” 

performing model 2 is 1.1 percent. This is a small pricing error despite the facts that: (i) only a 

small number of bonds were used in the estimation, (ii) the estimates are based on monthly 

observations (not daily or weekly), (iii) a rolling estimation procedure is employed, and (iv) the 

term structure and credit risk models implemented are quite simple. 

9. Conclusion 

This paper provides an empirical investigation of a reduced form credit risk model that 

includes both liquidity risk and correlated defaults.  The estimation is for twenty different firms’ 

debt issues using monthly bond prices over a six-year time period from May 1991 – March 1997.  

Five different liquidity discount models are investigated. 

Based on various statistical measures, both in- and out- of sample, the evidence supports 

the importance of including a liquidity discount into a credit risk model to capture liquidity risk.  

The inclusion of a liquidity discount increases the stability of the estimated parameters, it reduces 

the credit risk model’s average pricing error, and it significantly impacts the one-year default 

probability estimation. 

Three conclusions can be drawn with respect to the specific debt-pricing model 

estimated.  First, the model fits the data quite well.  Second, the expected loss appears to depend 

on the spot rate of interest, but not a market index.  This captures the integration of market and 

credit risk.  Third, liquidity risk appears to be idiosyncratic and not systematic risk. The 

importance of an industry effect in both the default intensity and the liquidity discount is an open 

question. 
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Future research is also needed to compare the implied default probabilities estimated 

using the above model to both: historical default frequencies and default probabilities implicit in 

credit derivative prices. 
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Appendix:  Determination of the t-scores in Table 3. 

 

Let  represent the coefficient from the iix th regression for i = 1, ..., m  where m = the number of 

regressions.   
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Figure 1: Time Series Estimates of Xerox’s Liquidity Discount and Expected Loss 

(per unit time) from December 1991 to March 1997. 
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 Ticker

Symbol

SIC 

Code 

First Date 

used in the 

Estimation 

Last Date 

used in the 

Estimation 

Number 

of 

Bonds 

Moodies S&P 

Financials        

SECURITY PACIFIC CORP spc 6021 12/31/1991 07/31/1994 7 A3 A 

FLEET FINANCIAL GROUP flt 6021 12/31/1991 10/31/1996 3 Baa2 BBB+

BANKERS TRUST NY bt 6022 01/31/1994 04/30/1994 3 A1 AA 

MERRILL LYNCH & CO mer 6211 12/31/1991 03/31/1997 14 A2 A 

Food & Beverages        

PEPSICO INC pep 2086 12/31/1991 03/31/1997 8 A1 A 

COCA - COLA  

ENTERPRISES INC 

cce 2086 12/31/1991 06/30/1994 3 A2 AA- 

Airlines        

AMR CORPORATION amr 4512 02/29/1992 08/31/1994 2 Baa1 BBB+

SOUTHWEST AIRLINES 

CO 

luv 4512 05/31/1992 03/31/1997 3 Baa1 A- 

Utilities        

CAROLINA POWER + 

LIGHT 

cpl 4911 08/31/1992 01/31/1993 3 A2 A 

TEXAS UTILITIES ELE CO txu 4911 04/30/1994 03/31/1997 4 Baa2 BBB 

Petroleum        

MOBIL CORP mob 2911 12/31/1991 02/29/1996 3 Aa2 AA 

UNION OIL OF 

CALIFORNIA 

ucl 2911 12/31/1991 03/31/1997 6 Baa1 BBB 

SHELL OIL CO suo 2911 03/31/1992 02/28/1995 5 Aaa AAA

Department Stores        

SEARS ROEBUCK + CO s 5311 12/31/1991 08/31/1996 7 A2 A 

DAYTON HUDSON CORP dh 5311 04/30/1993 03/31/1997 2 A3 A 

WAL-MART STORES, INC wmt 5331 12/31/1991 03/31/1997 3 Aa3 AA 

Technology        

EASTMAN KODAK 

COMPANY 

ek 3861 01/31/1992 09/30/1994 3 A2 A- 

XEROX CORP xrx 3861 12/31/1991 03/31/1997 4 A2 A 

TEXAS INSTRUMENTS txn 3674 10/31/1992 03/31/1997 3 A3 A 

INTL BUSINESS 

MACHINES 

ibm 3570 01/31/1994 03/31/1997 3 A1 AA- 

 
Table 1: Details of the Firms Included in the Empirical Investigation. 
 
Ticker Symbol is the firm’s ticker symbol. SIC is the Standard Industry Code. Number of Bonds is the 

number of the firm’s different senior debt issues outstanding on the first date used in the estimation.  

Moodies refers to Moodies’ debt rating for the company’s senior debt on the first date used in the 

estimation.  S&P refers to S&P’s debt rating for the company’s debt on the first date used in the estimation.   
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FINANCIALS 

1- SECURITY PACIFIC CORP    

spc γ0 γ1 γ2 γ3 a0 a1 a2 Number  

of Bonds

R2 Number 

of Reg 

Model 1    0.0012 0.1934 -0.0021 47 0.812 32 

Model 2 -0.0065   0.007 0.1196 -0.0008 47 0.8366 32 

Model 3 -0.0084 0.0411  0.0069 0.1197 -0.0003 47 0.8385 32 

Model 4 -0.0078 -0.0046 0.1056 0.0035 0.1985 -0.0029 47 0.8499 32 

Model 5 -0.0034 -0.0992 0.0383 0.3476 0.0033 0.2056 -0.0033 47 0.8557 32 

2- FLEET FINANCIAL GROUP    

flt γ0 γ1 γ2 γ3 a0 a1 a2 Number  

of Bonds

R2 Number 

of Reg 

Model 1    0.0085 0.0054 0.0001 16 0.4143 57 

Model 2 -0.0023   0.0157 -0.1195 -0.0006 16 0.4501 57 

Model 3 -0.0075 0.254  0.0219 -0.2078 -0.0015 16 0.5031 57 

Model 4 -0.0094 0.5403 0.1016 0.0327 -0.46 -0.0043 16 0.5803 57 

Model 5 -0.0074 0.3125 0.2018 -0.3375 0.0336 -0.45 -0.0066 16 0.6582 57 

3- BANKERS TRUST NY     

bt γ0 γ1 γ2 γ3 a0 a1 a2 Number  

of Bonds

R2 Number 

of Reg 

Model 1    0.0014 0.018 0 24 0.9504 4 

Model 2 -0.0031   0.0064 -0.0508 -0.0003 24 0.9576 4 

Model 3 0.0028 -0.1824  0.0056 -0.028 -0.0006 24 0.9583 4 

Model 4 0.0095 -0.3909 0.0141 0.0042 0.0091 -0.0009 24 0.9589 4 

Model 5 0.013 -0.4817 0.01 -0.662 0.0034 -0.0181 0.001 24 0.9613 4 

4-MERRILL LYNCH & CO 

mer γ0 γ1 γ2 γ3 a0 a1 a2 Number  

of Bonds

R2 Number 

of Reg 

Model 1    0.0083 0.0154 -0.0007 132 0.8918 64 

Model 2 -0.0068   0.0156 -0.0639 -0.0017 132 0.9 64 

Model 3 -0.017 0.2331  0.0168 -0.0809 -0.0013 132 0.9024 64 

Model 4 -0.0251 0.4294 0.023 0.0176 -0.0864 -0.0017 132 0.9044 64 

Model 5 -0.0216 0.3445 -0.0383 0.4829 0.0181 -0.0873 -0.0015 132 0.907 64 

       

FOOD & BEVERAGES 

5-PEPSICO INC 

pep γ0 γ1 γ2 γ3 a0 a1 a2 Number  

of Bonds

R2 Number 

of Reg 

Model 1    0.0026 0.0629 0 57 0.8554 64 

Model 2 -0.0061   0.0063 0.0255 -0.0002 57 0.8616 64 

Model 3 0.006 -0.2528  0.0064 0.0331 -0.0004 57 0.8635 64 

Model 4 0.0199 -0.5636 0.0432 0.006 0.0544 -0.0007 57 0.8667 64 

Model 5 0.0032 -0.2422 -0.0049 -0.2383 0.0071 0.026 -0.0005 57 0.8682 64 

6-COCA-COLA ENTERPRISES INC    

cce γ0 γ1 γ2 γ3 a0 a1 a2 Number  

of Bonds

R2 Number 

of Reg 

Model 1    0.003 0.0494 0.0003 24 0.8142 31 

Model 2 -0.0096   0.011 -0.045 0.001 24 0.8783 31 

Model 3 -0.0111 0.0064  0.0118 -0.0593 0.0018 24 0.8812 31 

Model 4 -0.0191 0.2505 0.0472 0.0114 -0.0465 0.001 24 0.8884 31 

Model 5 -0.0107 0.057 -0.1067 0.1239 0.0107 -0.0337 0.0012 24 0.8926 31 

        

AIRLINES 

7-AMR CORPORATION     

Amr γ0 γ1 γ2 γ3 a0 a1 a2 Number  

of Bonds

R2 Number 

of Reg 

Model 1    0.0134 0.064 0.0011 26 0.9216 31 

Model 2 -0.0226   0.0283 -0.0863 0.0001 26 0.9346 31 

Model 3 -0.0151 -0.1824  0.0259 -0.0546 0 26 0.9378 31 

Model 4 -0.0172 -0.1521 -0.2317 0.0246 -0.0394 0.0018 26 0.9484 31 

Model 5 -0.0157 -0.0927 -0.2293 -1.3426 0.0252 -0.0579 0.0026 26 0.9548 31 
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8-SOUTHWEST AIRLINES CO 

luv γ0 γ1 γ2 γ3 a0 a1 a2 Number  

of Bonds

R2 Number 

of Reg 

Model 1    0.0184 -0.0986 -0.0035 27 0.8432 59 

Model 2 0.0071   0.0142 -0.0617 -0.0027 27 0.8513 59 

Model 3 0.0108 -0.0417  0.0146 -0.0617 -0.0027 27 0.8539 59 

Model 4 0.0168 -0.2548 -0.0536 0.0218 -0.13 -0.0044 27 0.8621 59 

Model 5 0.009 -0.2063 -0.1335 -0.3788 0.0238 -0.1489 -0.0043 27 0.8718 59 

       

UTILITIES 

9-CAROLINE POWER + LIGHT    

cpl γ0 γ1 γ2 γ3 a0 a1 a2 Number  

of Bonds

R2 Number 

of Reg 

Model 1    0.0105 -0.0006 -0.018 24 0.8559 6 

Model 2 -0.0042   0.0146 -0.0305 -0.0181 24 0.8598 6 

Model 3 -0.0091 0.1352  0.0165 -0.0688 -0.0178 24 0.8605 6 

Model 4 -0.0118 0.3229 -0.4386 0.0191 -0.0898 -0.0194 24 0.8686 6 

Model 5 -0.022 0.6041 -0.4699 0.1241 0.0214 -0.1067 -0.0219 24 0.8727 6 

10-TEXAS UTILITIES ELE CO    

txu γ0 γ1 γ2 γ3 a0 a1 a2 Number  

of Bonds

R2 Number 

of Reg 

Model 1    0.0108 -0.0215 -0.0022 29 0.8329 36 

Model 2 0.0054   0.0057 0.0264 -0.0015 29 0.837 36 

Model 3 0.0201 -0.2835  0.004 0.0499 -0.0015 29 0.8395 36 

Model 4 0.0349 -0.5343 -0.2725 0.0062 0.0305 -0.0018 29 0.85 36 

Model 5 0.0161 -0.1118 -0.1959 -1.7487 0.0024 0.0611 -0.0008 29 0.8591 36 

      

PETROLEUM 

11-MOBIL CORP     

mob γ0 γ1 γ2 γ3 a0 a1 a2 Number  

of Bonds

R2 Number 

of Reg 

Model 1    0.0038 0.0114 -0.0005 31 0.9787 51 

Model 2 -0.0028   0.0067 -0.0201 -0.0009 31 0.9824 51 

Model 3 0.0003 -0.0958  0.0068 -0.0207 -0.001 31 0.9829 51 

Model 4 0.0036 -0.2213 0.0071 0.0076 -0.0321 -0.0012 31 0.9835 51 

Model 5 0.0005 -0.1364 0.0257 -0.1457 0.0077 -0.0347 -0.001 31 0.984 51 

12-UNION OIL OF CALIFORNIA    

ucl γ0 γ1 γ2 γ3 a0 a1 a2 Number  

of Bonds

R2 Number 

of Reg 

Model 1    0.0109 -0.0153 -0.0013 31 0.9219 64 

Model 2 -0.0024   0.013 -0.0385 -0.0016 31 0.9255 64 

Model 3 -0.0226 0.4015  0.0155 -0.0778 -0.0018 31 0.927 64 

Model 4 -0.0387 0.7875 -0.0232 0.0136 -0.062 -0.0017 31 0.9298 64 

Model 5 -0.0289 0.5747 -0.0698 0.596 0.0139 -0.0597 -0.0016 31 0.9312 64 

13-SHELL OIL CO     

suo γ0 γ1 γ2 γ3 a0 a1 a2 Number  

of Bonds

R2 Number 

of Reg 

Model 1    0.0008 0.0721 0.0003 36 0.8309 36 

Model 2 -0.0097   0.0103 -0.0386 -0.0004 36 0.8556 36 

Model 3 -0.0113 0.0286  0.0108 -0.0437 -0.0005 36 0.8575 36 

Model 4 -0.0046 -0.1822 -0.1238 0.013 -0.0703 -0.0005 36 0.8618 36 

Model 5 -0.0084 -0.0672 -0.0622 0.1001 0.0144 -0.0808 -0.0014 36 0.8638 36 

     

DEPARTMENT STORES 

14-SEARS ROEBUCK + CO     

s γ0 γ1 γ2 γ3 a0 a1 a2 Number  

of Bonds

R2 Number 

of Reg 

Model 1    0.0069 0.0833 0.0009 42 0.7245 57 

Model 2 -0.0063   0.0108 0.0455 0.0007 42 0.7338 57 

Model 3 0.0029 -0.2729  0.0095 0.0654 0.0006 42 0.7379 57 

Model 4 0.0119 -0.5485 -0.2141 0.0122 0.0243 0.0012 42 0.7474 57 

Model 5 0.0307 -0.927 -0.1149 0.7994 0.0122 0.0799 -0.0005 42 0.7641 57 
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15-DAYTON HUDSON CORP    

γ0 γ1 γ  2 γ  3 a0 a  1 a  Number  

of Bonds

R  2 Number 

of Reg 

Model 1   0.0024 0.0889 0.001 20 0.8859 48 

Model 2 -0.051   0.0138 0.0043 0.0005 20 0.9219 48 

-0.0372 -0.3116  0.0129 0.0174 0.0006 20 0.9229 48 

Model 4 -1.7798 -0.0709 0.0118 0.0393 0.0004 20 0.927 48 

Model 5 -0.0136 -0.9273 -0.1076 0.0123 0.0161 0.0011 20 0.9322 48 

16-WAL-MART STORES, INC   

wmt γ0 γ  1 γ  2 γ  3 a0 1 a  2 Number  

of Bonds

R2 Number 

of Reg 

Model 1    0.0098

dh 2

 

Model 3 

0.0237 

-1.8731

 

a  

-0.0639 -0.0016 58 0.9415 64 

Model 2 0.0042   0.0063 -0.0282 -0.0012 58 0.943 64 

Model 3 0.0079 -0.1257  0.0059 -0.0236 -0.0011 58 0.9438 64 

Model 4 0.0157 -0.3443 -0.0186 0.0058 -0.0228 -0.0011 58 0.945 

Model 5 0.0082 -0.1769 -0.0285 -0.4038 0.0064 -0.0357 58 0.946 64 

      

TECHNOLOGY 

17-EASTMAN KODAK COMPANY    

ek γ γ  1 γ  2 γ  3 a0 a  1 a  2 Number  

of Bonds

R2 

64 

-0.0008

Number 

of Reg 
0 

Model 1    0.003 0.0984 -0.0005 29 0.9257 33 

Model 2 -0.0089   0.0102 0.0235 -0.0012 29 0.9379 33 

Model 3 -0.0177 0.3019  0.0102 0.0247 -0.0013 29 0.9394 33 

Model 4 -0.0247 0.541 0.0092 0.04 -0.0012 29 0.9421 33 

Model 5 -0.022 -0.0653 -0.083 0.0092 0.039 -0.0011 29 0.9429 33 

18-XEROX CORP    

xrx γ γ  1 γ  2 γ  3 a0 a  1

-0.0249 

0.482 

 

0 a  2 Number  

of Bonds

R  2 Number 

of Reg 

Model 1    0.0151 -0.1022 -0.0017 39 0.921 64 

Model 2 -0.0024   0.0157 -0.1123 -0.0004 39 0.9235 64 

Model 3 -0.0224 0.4989  0.0189 -0.1562 0 39 0.926 64 

Model 4 -0.0215 0.4888 -0.1402 0.0214 -0.1788 0 39 0.9286 64 

Model 5 -0.027 0.5427 -0.1375 0.5588 0.0229 -0.1936 -0.0004 39 0.9308 64 

19-TEXAS INSTRUMENTS    

txn γ0 γ1 γ2 γ3 a0 a1 a2 Number  

of Bonds

R2 Number 

of Reg 

Model 1    0.0094 -0.0164 -0.0007 24 0.8947 54 

Model 2 0.0049   0.0066 0.0114 -0.0004 24 0.9142 54 

Model 3 0.0135 -0.1859  0.0057 0.0232 -0.0004 24 0.9153 54 

Model 4 0.0348 -0.7707 -0.1243 0.0045 0.0367 0 24 0.9211 54 

Model 5 0.0251 -0.5054 -0.0549 -0.6919 0.0045 0.0347 0.0003 24 0.8947 54 

20-INTL BUSINESS MACHINES    

ibm γ0 γ1 γ2 γ3 a0 a1 a2 Number  

of Bonds

R2 Number 

of Reg 

Model 1    0.0049 0.0188 -0.0001 24 0.8942 39 

Model 2 -0.016   0.0161 -0.0997 -0.001 24 0.9134 39 

Model 3 -0.0086 -0.1215  0.0154 -0.0918 -0.0009 24 0.9149 39 

Model 4 -0.0352 0.484 -0.0148 0.0196 -0.1394 -0.0012 24 0.9231 39 

Model 5 -0.0305 0.3662 -0.0097 0.2081 0.0204 -0.1442 -0.0014 24 0.9281 39 

 

Table 2: Averages of the Parameter Estimates from the Non-linear Debt Regression. 

 

Table 2 contains the average parameter estimates ( , across the months in Table 1, 

from the non-linear debt regressions.  They are presented for each company and for each model type, 

separated by industries.  Model 1 has no liquidity discount.  Model 2 includes only the first liquidity 

discount parameter , Model 3 contains the first two liquidity discount parameters, and so forth.  The 

number of bonds corresponds to the average number of bonds used in each of the monthly regressions.  The 

average R

)a,a,a,,,, 2103210 γγγγ

0γ

2
 is given.  The Number of Reg refers to the number of distinct regressions performed over the 

observation period given in Table 1. 
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FINANCIALS 

1- SECURITY PACIFIC CORP    

spc γ0 γ1 γ2 γ3 a0 a1 a2 Number  

of Bonds

F-test 

( gamma) 

Number 

of Reg 

Model 1     0.2819   

0.4254 

2.7639+   

0.0701 

-0.6505   

0.1701 

47 0.0002 32 

Model 2 -2.8164+   

0.0448 

   4.1070+   

0.2215 

23.5748+  

0.0045 

-0.0035   

0.4893 

47 0.1124 32 

Model 3 -0.0826   

0.4632 

22.7643+   

0.0049 

  0.7333    

0.3753 

0.1660    

0.2897 

0.0043    

0.3691 

47 0.1409 32 

Model 4 -0.9345   

0.1823 

-0.4333    

0.2218 

12.1760+  

0.0000 

 0.4156    

0.4204 

0.4182    

0.2976 

-0.0169   

0.4886 

47 0.1041 32 

Model 5 -0.0118   

0.4864 

-17.8704+  

0.0167 

0.6163    

0.1043 

171.2255+   

0.0000 

0.2841    

0.4232 

0.4279    

0.3185 

-0.0210   

0.4875 

47 0.0751+ 32 

2- FLEET FINANCIAL GROUP    

flt γ0 γ1 γ2 γ3 a0 a1 a2 Number  

of Bonds

F-test 

( gamma) 

Number 

of Reg 

Model 1     0.6711    

0.3333 

0.3265    

0.2363 

-0.2349   

0.1625 

16 0.3362 57 

Model 2 -2.9728+   

0.0660 

   3.2078+   

0.1705 

-2.6361+   

0.0525 

0.0063    

0.4841 

16 0.4753 57 

Model 3 0.0466    

0.4257 

-42.1781+  

0.0072 

  0.5309    

0.3407 

-0.0869   

0.3625 

-0.0014   

0.3374 

16 0.5717 57 

Model 4 2.0675+   

0.0934 

-2.3262+    

0.0880 

41.4808+  

0.0006 

 0.7369    

0.3163 

-0.2621   

0.3362 

-0.0315   

0.4723 

16 0.5585 57 

Model 5 -0.0178   

0.4609 

-4.8128+    

0.0155 

0.9689    

0.1815 

-264.818+   

0.0006 

0.6068    

0.3416 

-0.2036   

0.3224 

-0.0268   

0.4664 

16 0.5963 57 

3- BANKERS TRUST NY     

bt γ0 γ1 γ2 γ3 a0 a1 a2 Number  

of Bonds

F-test 

( gamma) 

Number 

of Reg 

Model 1     0.1358    

0.4465 

0.0550    

0.3707 

-0.0240   

0.3948 

24 0.0070 4 

Model 2 -0.9243   

0.1781 

   4.4063+   

0.1250 

-5.5819+   

0.0026 

-0.0024   

0.4986 

24 0.0947 4 

Model 3 0.0124    

0.4944 

-55.5685+  

0.0000 

  0.3330    

0.3726 

-0.0825   

0.4556 

-0.0541   

0.4716 

24 0.2150 4 

Model 4 0.7816    

0.2605 

-1.7180+    

0.1478 

3.3353+   

0.0004 

 0.2418    

0.4072 

-0.0214   

0.4537 

-0.0064   

0.4971 

24 0.3556 4 

Model 5 0.0242    

0.4903 

-39.8571+  

0.0000 

0.0222    

0.4097 

-173.768+   

0.0000 

0.1876    

0.4272 

-0.0409   

0.4699 

0.0045    

0.4975 

24 0.3540 4 

4-MERRILL LYNCH & CO 

mer γ0 γ1 γ2 γ3 a0 a1 a2 Number  

of Bonds

F-test 

( gamma) 

Number 

of Reg 

Model 1     8.1734+   

0.0907 

0.3176+   

0.0848 

-4.1362+   

0.0370 

132 0.0000 64 

Model 2 -16.1905+  

0.0105 

   16.9420+  

0.0370 

-51.7314+  

0.0130 

-0.1162   

0.4191 

132 0.1769 64 

Model 3 -0.6937   

0.2778 

493.1328+  

0.0002 

  2.2514+   

0.1293 

-0.4761   

0.3090 

-1.4089   

0.1719 

132 0.2475 64 

Model 4 -13.8636+  

0.0514 

17.9381+   

0.0777 

21.1521+  

0.0009 

 2.1107+   

0.1437 

-0.4735   

0.2976 

-0.0284   

0.4751 

132 0.2454 64 

Model 5 -0.0949   

0.4619 

194.8086+  

0.01461 

-1.6719+   

0.0647 

1193.061+   

0.0000 

19.7803+  

0.1557 

-0.4329   

0.3161 

-0.0334   

0.4748 

132 0.2458 64 

       

FOOD & BEVERAGES 

5-PEPSICO INC 

pep γ0 γ1 γ2 γ3 a0 a1 a2 Number  

of Bonds

F-test 

( gamma) 

Number 

of Reg 

Model 1     0.2749    

0.4294 

2.2308+   

0.0712 

0.2828    

0.1724 

57      0.0001 64 

Model 2 -7.2623+   

0.0260 

   3.6325+   

0.1568 

10.3711+  

0.0100 

-0.0041   

0.4838 

57     0.2893 64 

Model 3 0.0115    

0.4501 

-191.0761+ 

0.0003 

  0.3657    

0.3755 

0.2069    

0.3807 

-0.0775   

0.3547 

57     0.3477 64 

Model 4 2.0088+   

0.1166 

-5.9499+    

0.0888 

63.3143+  

0.0000 

 0.2374    

0.4196 

0.2693    

0.3693 

-0.0017   

0.4899 

57     0.3519 64 

Model 5 0.0042    

0.4832 

-53.3278+  

0.0170 

1.1639    

0.1482 

-217.142+   

0.0000 

0.2549    

0.4174 

0.1950    

0.3878 

0.0011    

0.4899 

57     0.3823 64 
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6-COCA-COLA ENTERPRISES INC    

cce γ0 γ1 γ2 γ3 a0 a1 a2 Number  

of Bonds

F-test 

( gamma) 

Number 

of Reg 

Model 1     1.3866    

0.3260 

0.8110    

0.0815 

-0.6902   

0.1385 

24 0.0161 31 

Model 2 -7.8061+   

0.0222 

   4.9461+   

0.0225 

-11.2644+  

0.0433 

0.0201    

0.4644 

24 0.1309 31 

Model 3 -0.1935   

0.4205 

-8.1359+    

0.0107 

  0.8045    

0.2795 

-0.2558   

0.4236 

0.3406    

0.2459 

24 0.1616 31 

Model 4 -4.2193+   

0.0386 

3.6938+    

0.0703 

21.1966+  

0.0151 

 0.7362    

0.3086 

-0.2211   

0.4206 

0.0064    

0.4869 

24 0.2094 31 

Model 5 -0.0318   

0.4784 

21.2825+   

0.0000 

-1.3620   

0.1006 

-25.8086+   

0.0000 

0.6432    

0.3263 

-0.1745   

0.4282 

0.0081    

0.4884 

24 0.2427 31 

        

AIRLINES 

7-AMR CORPORATION     

Amr γ0 γ1 γ2 γ3 a0 a1 a2 Number  

of Bonds

F-test 

( gamma) 

Number 

of Reg 

Model 1     5.7981    

0.0330+ 

1.2952    

0.1603 

0.9313    

0.1477 

26 0.0173 31 

Model 2 -17.7134+  

0.0134 

   5.0806+   

0.0306 

-16.3786+  

0.0053 

-0.0089   

0.4752 

26 0.3054 31 

Model 3 -0.1897   

0.3911 

-168.585+  

0.0000 

  1.0632    

0.2063 

-0.1146   

0.4043 

-0.1466   

0.2490 

26 0.3957 31 

Model 4 -1.6442+   

0.0502 

-1.1826    

0.0592 

-295.966+  

0.0000 

 1.1666    

0.2594 

-0.1536   

0.3400 

0.0046    

0.4911 

26 0.2729 31 

Model 5 0.0003 

0.4584 

-49.6778+  

0.0101 

-2.3903+ 

0.0146 

-1431.08+ 

0.0000 

1.0377   

0.2608 

-0.1159   

0.3616 

0.0119   

0.4910 

26 0.2069 31 

8-SOUTHWEST AIRLINES CO 

luv γ0 γ1 γ2 γ3 a0 a1 a2 Number  

of Bonds

F-test 

( gamma) 

Number 

of Reg 

Model 1     6.9117+   

0.0664 

-2.7826+   

0.0398 

-3.9155+   

0.0540 

27 0.0044 59 

Model 2 5.0020+   

0.0505 

   3.7845+   

0.1339 

-13.2640+  

0.0000 

-0.0479   

0.4773 

27 0.6245 59 

Model 3 0.1609    

0.3603 

-181.142+  

0.0016 

  0.5043    

0.3324 

-0.0916   

0.4208 

-0.3751   

0.3427 

27 0.6337 59 

Model 4 4.7397+   

0.0589 

-5.0962+    

0.0436 

-99.4887+  

0.0003 

 0.6315    

0.3004 

-0.1701   

0.3891 

-0.0280   

0.4876 

27 0.5360 59 

Model 5 0.0207    

0.4599 

-48.2290+  

0.0113 

-1.2779   

0.0342 

-578.965+   

0.0000 

0.6730    

0.3004 

-0.1965   

0.3822 

-0.0267   

0.4874 

27 0.4910 59 

       

UTILITIES 

9-CAROLINE POWER + LIGHT    

cpl γ0 γ1 γ2 γ3 a0 a1 a2 Number  

of Bonds

F-test 

( gamma) 

Number 

of Reg 

Model 1     0.7559    

0.2540 

-0.0622   

0.2939 

-1.4007   

0.0992 

24 0.0070 6 

Model 2 -0.3761   

0.3572 

   2.2033+   

0.1168 

-1.4132   

0.0525 

-0.0761   

0.4697 

24 0.5641 6 

Model 3 -0.0189   

0.4919 

8.8490+    

0.0594 

  0.3872    

0.3538 

-0.0587   

0.4452 

-0.7423   

0.2500 

24 0.7487 6 

Model 4 -0.4438   

0.3487 

0.6867    

0.3112 

-34.3115+  

0.0337 

 0.4478    

0.3319 

-0.0676   

0.4341 

-0.0468   

0.4813 

24 0.6528 6 

Model 5 -0.0152   

0.4939 

20.1177+   

0.0028 

-1.0647   

0.1694 

-13.7776+   

0.0000 

0.4572    

0.3287 

-0.0569   

0.4453 

-0.0491   

0.4804 

24 0.6955 6 

10-TEXAS UTILITIES ELE CO    

txu γ0 γ1 γ2 γ3 a0 a1 a2 Number  

of Bonds

F-test 

( gamma) 

Number 

of Reg 

Model 1     3.1579+   

0.1335 

-0.8421   

0.1544 

-3.0611+   

0.1217 

29 0.0031 36 

Model 2 5.6394+   

0.0354 

   1.5927    

0.1875 

4.7999+   

0.0434 

-0.0280   

0.4867 

29 0.5150 36 

Model 3 0.1860    

0.4267 

-287.861+  

0.0057 

  0.0949    

0.4626 

0.1011    

0.4510 

-0.1569   

0.4166 

29 0.6128 36 

Model 4 2.5856+   

0.0777 

-3.6714+    

0.0832 

-199.786+  

0.0000 

 0.0956    

0.4627 

0.0882    

0.4372 

-0.0149   

0.4934 

29 0.5015 36 

Model 5 0.0332    

0.4729 

-8.3863+    

0.0117 

-1.6014   

0.1583 

-1339.96+   

0.0000 

0.0233    

0.4908 

0.1099    

0.4520 

-0.0059   

0.4965 

29 0.4466 36 
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PETROLEUM 

11-MOBIL CORP     

mob γ0 γ1 γ2 γ3 a0 a1 a2 Number  

of Bonds

F-test 

( gamma) 

Number 

of Reg 

Model 1     4.1398+   

0.2184 

0.5739    

0.0327 

-0.6277   

0.1417 

31 0.0009 51 

Model 2 -13.74+    

0.0221 

   8.6393+   

0.0211 

-18.98+    

0.0232 

-0.0453   

0.4783 

31 0.2297 51 

Model 3 0.0144    

0.3389 

-151.1+     

0.0063 

  1.1888    

0.1893 

-0.1405   

0.3904 

-0.4414   

0.3152 

31 0.2513 51 

Model 4 1.3997    

0.0402 

-7.853+     

0.0242 

-13.24+    

0.0003 

 1.3660    

0.2240 

-0.2807   

0.3361 

-0.0370   

0.4835 

31 0.2480 51 

Model 5 -0.0400   

0.4382 

-36.91+     

0.0000 

1.1006    

0.1106 

-397.9+     

0.0084 

1.3519    

0.2258 

-0.3080   

0.3467 

-0.0282   

0.4844 

31 0.2808 51 

12-UNION OIL OF CALIFORNIA    

ucl γ0 γ1 γ2 γ3 a0 a1 a2 Number  

of Bonds

F-test 

( gamma) 

Number 

of Reg 

Model 1     2.7483+   

0.1729 

0.2021    

0.1026 

-1.4434   

0.0947 

31 0.0034 64 

Model 2 -2.821+    

0.0219 

   4.9479+   

0.1369 

-12.06+    

0.0293 

-0.0343   

0.4763 

31 0.4866 64 

Model 3 -0.3393   

0.3619 

459.71+    

0.0000 

  1.0650    

0.2884 

-0.3185   

0.3474 

-0.3399   

0.3005 

31 0.5034 64 

Model 4 -8.225+    

0.0889 

11.537+    

0.0962 

-48.24+    

0.0000 

 1.0700    

0.3257 

-0.3444   

0.3442 

-0.0188   

0.4866 

31 0.4501 64 

Model 5 -0.0714   

0.4494 

122.63+    

0.0108 

-2.235+    

0.0520 

523.49+     

0.0000 

0.9765    

0.3291 

-0.3127   

0.3531 

-0.0163   

0.4871 

31 0.4858 64 

13-SHELL OIL CO     

suo γ0 γ1 γ2 γ3 a0 a1 a2 Number  

of Bonds

F-test 

( gamma) 

Number 

of Reg 

Model 1     0.1369    

0.4520 

1.4713    

0.1115 

0.1705    

0.1416 

36 0.0004 36 

Model 2 -6.415+    

0.0213 

   4.9529+   

0.0338 

-10.48+    

0.0616 

0.0038    

0.4838 

36 0.1563 36 

Model 3 -0.1550   

0.4263 

2.5431+    

0.0000 

  0.8302    

0.2609 

-0.1863   

0.4031 

0.0650    

0.3316 

36 0.2239 36 

Model 4 -0.3532   

0.0616 

-3.344+     

0.0776 

-70.64+    

0.0173 

 0.9976    

0.2641 

-0.3071   

0.3684 

-0.0062  

0.4902 

36 0.2557 36 

Model 5 -0.0172   

0.4765 

-14.66+     

0.0151 

-0.4279   

0.0847 

2.2451+     

0.0000 

0.9377    

0.2547 

-0.2704   

0.3694 

-0.0160   

0.4887 

36 0.3123 36 

     

DEPARTMENT STORES 

14-SEARS ROEBUCK + CO     

s γ0 γ1 γ2 γ3 a0 a1 a2 Number  

of Bonds

F-test 

( gamma) 

Number 

of Reg 

Model 1     1.3235    

0.2311 

1.6674+   

0.1404 

0.6127    

0.1129 

42 0.0004 57 

Model 2 -4.816+    

0.0820 

   3.6028+   

0.1500 

7.1801+   

0.0553 

0.0345    

0.4645 

42 0.4363 57 

Model 3 0.0469    

0.4351 

-154.6+     

0.0078 

  0.4636    

0.3584 

0.1066    

0.3929 

0.1999    

0.2974 

42 0.4946 57 

Model 4 2.2220+   

0.1358 

-6.796+    

0.1243 

-117.6+    

0.0000 

 0.6184    

0.3588 

-0.0089   

0.3510 

0.0119    

0.4848 

42 0.4445 57 

Model 5 0.0872    

0.4454 

-123.1+     

0.0099 

-1.860+    

0.1366 

276.31+     

0.0000 

0.5578    

0.3566 

0.0545    

0.3580 

-0.0093   

0.4805 

42 0.3375 57 

15-DAYTON HUDSON CORP    

dh γ0 γ1 γ2 γ3 a0 a1 a2 Number  

of Bonds

F-test 

( gamma) 

Number 

of Reg 

Model 1     0.5250    

0.4189 

1.1928    

0.1272 

0.8991   

0.1494 

20 0.0423 48 

Model 2 -44.83+    

0.0000 

   1.7267+   

0.2341 

-1.1274   

0.0091 

0.0032    

0.4915 

20 0.0912 48 

Model 3 -0.3282   

0.3738 

-246.0+     

0.0000 

  0.2030    

0.4221 

0.0430    

0.4597 

0.0764    

0.4209 

20 0.1869 48 

Model 4 6.9778+   

0.1076 

-19.17+     

0.0890 

-57.59+    

0.0000 

 0.1708    

0.4349 

0.0528    

0.4619 

0.0014    

0.4973 

20 0.2439 48 

Model 5 -0.0132   

0.4818 

-130.1+     

0.0027 

-1.2059   

0.0780 

-1597.8+    

0.0000 

0.1591    

0.4392 

0.0404    

0.4585 

0.0053   

0.4971 

20 0.2591 48 
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16-WAL-MART STORES, INC    

wmt γ0 γ1 γ2 γ3 a0 a1 a2 Number  

of Bonds

F-test 

( gamma) 

Number 

of Reg 

Model 1     6.2730+   

0.0431 

-3.089+    

0.0668 

-2.443+    

0.0482 

58 0.0013 64 

Model 2 6.5468+   

0.0455 

   2.5800+   

0.0963 

-10.95+    

0.0151 

-0.0317   

0.4833 

58 0.6031 64 

Model 3 0.1441    

0.4111 

-108.5+     

0.0002 

  0.3646    

0.3699 

-0.0695   

0.4450 

-0.2371   

0.3638 

58 0.6788 64 

Model 4 5.1426+   

0.0467 

-8.805+     

0.0826 

-58.55+    

0.0000 

 0.3793    

0.3768 

-0.1032   

0.4309 

-0.0080   

0.4949 

58 0.6017 64 

Model 5 0.0077    

0.4701 

-34.19+     

0.0107 

-0.7960   

0.0480 

-542.183+   

0.0000 

0.3664    

0.3776 

-0.1143   

0.4351 

-0.0051   

0.4957 

58 0.6193 64 

      

TECHNOLOGY 

17-EASTMAN KODAK COMPANY    

ek γ0 γ1 γ2 γ3 a0 a1 a2 Number  

of Bonds

F-test 

( gamma) 

Number 

of Reg 

Model 1     1.3771    

0.2553 

3.7408+   

0.0661 

-1.0150   

0.1370 

29 0.0023 33 

Model 2 -12.00+    

0.0001 

   4.5982+   

0.0565 

5.6228+   

0.0026 

-0.0353   

0.4758 

29 0.1432 33 

Model 3 -0.4943   

0.3495 

461.49+    

0.0017 

  0.8045    

0.2764 

0.0248    

0.4316 

-0.4289   

0.2565 

29 0.2158 33 

Model 4 -8.196+    

0.0843 

15.403+    

0.0677 

-72.37+    

0.0000 

 0.7044    

0.3226 

0.0492    

0.4171 

-0.0108   

0.4919 

29 0.2479 33 

Model 5 -0.0350   

0.4806 

186.67+    

0.0094 

-1.746+    

0.0209 

-68.3966+   

0.0000 

0.5711    

0.3336 

0.0472    

0.4269 

-0.0069   

0.4937 

29 0.3489 33 

18-XEROX CORP     

xrx γ0 γ1 γ2 γ3 a0 a1 a2 Number  

of Bonds

F-test 

( gamma) 

Number 

of Reg 

Model 1     6.9969+   

0.0645 

-3.615+    

0.0770 

-1.768+    

0.1017 

39 0.0003 64 

Model 2 -1.823+    

0.0744 

   7.6634+   

0.0959 

-43.89+    

0.0105 

-0.0175   

0.4616 

39 0.5057 64 

Model 3 -0.4643   

0.3299 

500.22+    

0.0006 

  1.2901    

0.1983 

-0.4918   

0.3202 

-0.2347   

0.2911 

39 0.4381 64 

Model 4 -4.213+    

0.0784 

8.8823+    

0.0635 

-119.8+    

0.0003 

 1.3794    

0.2047 

-0.5756   

0.3089 

0.0015    

0.4892 

39 0.4192 64 

Model 5 -0.0574   

0.4641 

100.16+    

0.0009 

-4.227+    

0.0562 

649.613+    

0.0000 

1.3643    

0.2035 

-0.5659   

0.3135 

-0.0046   

0.4879 

39 0.4322 64 

19-TEXAS INSTRUMENTS    

txn γ0 γ1 γ2 γ3 a0 a1 a2 Number  

of Bonds

F-test 

( gamma) 

Number 

of Reg 

Model 1     4.8313+   

0.2245 

-1.1123   

0.0549 

-1.6203   

0.1055 

24 0.0070 54 

Model 2 1.6465+   

0.0075 

   1.5178    

0.2652 

3.4678+   

0.0079 

-0.0210   

0.4833 

24 0.2911 54 

Model 3 0.2326    

0.3668 

-290.84+    

0.0090 

  0.2001    

0.4243 

0.1176    

0.4243 

-0.2104   

0.3762 

24 0.3984 54 

Model 4 6.6159+   

0.0732 

-13.281+    

0.0977 

-175.9+    

0.0000 

 0.1310    

0.4512 

0.1390    

0.4140 

-0.0052   

0.4947 

24 0.3697 54 

Model 5 0.0623    

0.4577 

-109.99+    

0.0120 

-0.9385   

0.0740 

-681.103+   

0.0000 

0.1089    

0.4594 

0.1262    

0.4196 

-0.0010   

0.4956 

24 0.4350 54 

20-INTL BUSINESS MACHINES    

ibm γ0 γ1 γ2 γ3 a0 a1 a2 Number  

of Bonds

F-test 

( gamma) 

Number 

of Reg 

Model 1     2.3048+   

0.1920 

0.4984    

0.1489 

-0.1800   

0.2187 

24 0.0070 39 

Model 2 -30.72+    

0.0033 

   4.2548+   

0.0647 

-24.18+    

0.0046 

-0.0237   

0.4898 

24 0.2624 39 

Model 3 -0.1740   

0.3715 

-162.97+    

0.0000 

  0.4147    

0.3503 

-0.0593   

0.4192 

-0.1913   

0.4211 

24 0.3137 39 

Model 4 -8.451+    

0.0473 

9.2233+    

0.0589 

86.762+   

0.0000 

 0.5169    

0.3345 

-0.1197   

0.4025 

-0.0091   

0.4956 

24 0.3152 39 

Model 5 -0.0596   

0.4567 

78.0873+   

0.0207 

0.7851+   

0.0733 

150.454+    

0.0000 

0.5224    

0.3323 

-0.1155   

0.4047 

-0.0121   

0.4948 

24 0.3242 39 
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Table 3: T-Scores and Average P-values for the Estimated Parameters from the 

Non-linear Debt Regression 
 

In each cell under the columns (  the first number is the t-score for the 

corresponding average parameter estimate in Table 1.  This t-score is adjusted for the fact that the 

regressions contain overlapping time intervals.  The adjustment to the average standard error is: 
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where  is the standard error of the relevant coefficient from the iiσ̂ th  regression and m is the number of 

regressions.  The second entry is the average P-score obtained from the t-tests of the individual regression 

coefficients.  The P-score from an individual t-test corresponds to the probability of rejecting the null 

hypothesis that the coefficient is zero when it is true. 

 

The Number of Bonds corresponds to the average number of bonds used in each of the monthly 

regressions.   

The Number of Reg refers to the number of distinct regressions performed over the observation period 

given in Table 1. 

The F-test column contains the average P-score where the P-scores are obtained from the F-tests of the 

individual regressions.  The P-score from an individual F-test corresponds to the probability of rejecting the 

null hypothesis when it is true. The first row corresponds to the null hypothesis .  The 

second through fifth rows correspond to the null hypothesis: (i) , (ii) , 

(iii) , and  (iv) , respectively.

0aaa 210 ===

0= 0 = γγ0γ 01 =

0210 === γγγ 03210 ==== γγγγ  

 
+ Significant at 90% level. 
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 γ0 γ1 γ2 γ3 a0 a1 a2 

Model 1     8/18 9/18 11/18 

Model 2 8/18    11/18+ 13/18 11/18 

Model 3 12/18 16/18   11/18+ 12/18 10/18 

Model 4 15/18 17/18 11/18  10/18 13/18 12/18 

Model 5 17/18+ 18/18+ 15/18+ 15/18+ 11/18+ 15/18+ 15/18+ 

 
+  denotes best value. 

 

Table 4: Unit Root Tests Summary 
 
The modified Dickey-Fuller (DF) test statistic is given as the t-statistic of the ρ  coefficient in the linear 

regression:  where y
ttt

yy ερµ ++=∆ −1 t represents the time t value of each parameter,  , 

and   is an error term.  The null hypothesis for a unit root is 

1ttt yyy −−=∆

tε 0=ρ .  In the table, the entries under the 

 columns correspond to the number of companies for the relevant coefficient 

where the null hypothesis of a unit root is rejected at the 90 percent level.  There are 18 total companies – 

tests for a unit root. 

)a,a,a,, 2103γ,, 1γ( 20 γγ
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Firm 

Averages 

Number  

of Bonds 

R2 Number 

of Reg 

GCV RMSE RMSE/ 

Price 
e- γ  λ  1ydf 

Model 1 37 0.8555 44.7 1.7655 1.1770 0.0115 1.0000 0.0133 0.0136 

Model 2 37 0.8709 44.7 1.6659 1.1246 0.0110 1.0072 0.0185 0.0174 

Model 3 37 0.8753 44.7 1.8080 1.1367 0.0111 1.0074 0.0187 0.0175 

Model 4 37 0.8844 44.7 1.9313 1.1277 0.0111 1.0079 0.0189 0.0174 

Model 5 37 0.8910 44.7 2.3073 1.1298 0.0111 1.0082 0.0192 0.0174 
 

 

 

 

Table 5: Summary Statistics for Model Performance 
 

The Number of bonds corresponds to the average number of bonds used in each of the monthly regressions.  

The R2 is the average value across all the regressions. 

The Number of Reg refers to the number of distinct regressions performed over the observation period. 

Given are the average Generalized Cross Validation statistics (GCV) and the average Root Mean Squared 

Error (RMSE) where the averages are taken across all the months in Table 1 from the non-linear debt 

regressions. 

RMSE/ Price is the average Root Mean Squared Error (RMSE) from Table 4 divided by the average bond 

price.  It is a measure of the percentage pricing error. 

)exp( γ−  is the average liquidity discount determined using the estimated liquidity discount parameters 

underlying Table 2. 

λ is the default intensity assuming a constant recovery rate of .5, based on the estimated default parameters 

underlying Table 2. 

1 yr dfp is the 1-year default probability for the various models, based on the estimated default parameters 

underlying Table 2, and using a constant recovery rate of .5. 
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