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Estimating extremely large amounts of missing

precipitation data

Héctor Aguilera, Carolina Guardiola-Albert and Carmen Serrano-Hidalgo
ABSTRACT
Accurate estimation of missing daily precipitation data remains a difficult task. A wide variety of

methods exists for infilling missing values, but the percentage of gaps is one of the main factors

limiting their applicability. The present study compares three techniques for filling in large amounts

of missing daily precipitation data: spatio-temporal kriging (STK), multiple imputation by chained

equations through predictive mean matching (PMM), and the random forest (RF) machine learning

algorithm. To our knowledge, this is the first time that extreme missingness (>90%) has been

considered. Different percentages of missing data and missing patterns are tested in a large dataset

drawn from 112 rain gauges in the period 1975–2017. The results show that both STK and RF can

handle extreme missingness, while PMM requires larger observed sample sizes. STK is the most

robust method, suitable for chronological missing patterns. RF is efficient under random missing

patterns. Model evaluation is usually based on performance and error measures. However, this study

outlines the risk of just relying on these measures without checking for consistency. The RF algorithm

overestimated daily precipitation outside the validation period in some cases due to the

overdetection of rainy days under time-dependent missing patterns.
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INTRODUCTION
Accurate estimation of missing precipitation data remains a

difficult task, particularly for large watersheds with sparse

rain gauge networks and large numbers of missing values

(MV). The high spatio-temporal variability of precipitation

makes it a difficult variable to deal with. Representative pre-

cipitation time series are essential to develop consistent

hydrological or hydrogeological models for suitable water

management (Nkiaka et al. ; Ben Aissia et al. ).

Problems with missing data in climatic series often arise

and are caused by many circumstances, mainly due to the

sources of acquisition, which are usually reports, manual

collection instruments, or remote sensors. Typically, these

problems lead to a combination of random and chronologi-

cal missing data patterns in precipitation time series.
The problem of MV in meteorological series is particu-

larly significant in developing countries where gauging

stations are scarce and the degree of missingness is large

(Yozgatligil et al. ; Radi et al. ; Nkiaka et al. ).

However, the issue becomes global when long series (>30

years) or remote watersheds are considered (Ben Aissia

et al. ).

Simply ignoring missing data can lead to partial and

biased results in data analysis (Harel & Zhou ). A

wide variety of methods exists for infilling MV, but the per-

centage of gaps is one of the main factors limiting their

applicability (Lo Presti et al. ; Yozgatligil et al. ;

Miró et al. ). Simple methods such as mean imputation

and linear interpolation (which just rely on the available
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information of the time series to be completed), arithmetic

averaging, weighted averaging (usually referred to as the

normal ratio method) and inverse distance weighting with

data from neighboring stations, have shown poor perform-

ance when the amount of MV is large (>5–10% MV;

Johnson 2003 in Lo Presti et al. ). In recent years, pro-

gressively more advanced methods have been applied to

fill in gaps in precipitation series. Among them, the most

widely used are neural network-based methods such as

self-organizing maps (Nkiaka et al. ; Ben Aissia et al.

; Miró et al. ; Teegavarapu et al. ), expectation-

maximization algorithms (Schneider ; Yozgatligil et al.

; Ben Aissia et al. ; Miró et al. ), multiple impu-

tation by chained equations (Radi et al. ; Sattari et al.

; Ben Aissia et al. ; Burhanuddin et al. ),

copula-based methods (Bárdossy & Pegram ; Ben Aissia

et al. ), and spatio-temporal imputation (Teegavarapu

; Ben Aissia et al. ).

In the studies reviewed, the degree of missingness in

precipitation time series ranges from low (<1%) to high

(50–60%) with an average around 30%. A percentage of

missingness above 60% is reported in only one article, for

2 out of the 54 rain gauges used (Teegavarapu et al. ).

However, missingness may often be greater, particularly

when longer historical records are considered. One could

think of removing those time series from the analysis.

However, this is not always an option, as the number of

available stations may be too limited or rain gauges with

large percentages of MV may be located in areas representa-

tive of certain smaller scale hydro-meteorological processes

which determine system characterization and modeling.

Precipitation is a semi-continuous variable with a large

proportion of days having zero precipitation. Hydrological

models are very sensitive to this condition, especially in

arid and semi-arid areas where zero rain days are the most

frequent. Interpolation methods tend to overestimate the

number of rainy days and underestimate extreme events,

so that the probability distribution of precipitation is not pre-

served (Simolo et al. ; Teegavarapu ; Miró et al.

). However, in many studies, the distributions of precipi-

tation time series are not considered and only performance

measures are taken into account to compare imputation

methods (Radi et al. ; Burhanuddin et al. ). Recently,

post-interpolation bias-correction methods based on
://iwaponline.com/jh/article-pdf/22/3/578/692717/jh0220578.pdf
quantile matching have been used by some authors

(Teegavarapu ; Miró et al. ). Nevertheless, these

methods cannot be used when the observed sample size is

small and the proportion of MV large because there is not

sufficient ground to compare the probability distributions

of observed and estimated data.

The present study tests three approaches (spatio-tem-

poral kriging, multiple imputation with predictive mean

matching and random forest) to filling in missing daily pre-

cipitation data in a dataset with 64% of MV and where

extreme missingness (>90% MV) is observed in some rain

gauges. Different random and chronological missing pat-

terns in the dataset are assessed. To our knowledge, this

study is the first to consider extreme missingness (>90%)

as well as the RF algorithm to impute precipitation data.
METHODS

Study area and data

A precipitation dataset from 112 rain gauges in the period

October 1975–May 2017 (15,219 × 112 matrix) with an over-

all 64% of missingness was used (Figure 1). The stations are

located all over the 2,640 km2 area covered by the Almonte-

Marismas Aquifer in SW Spain, connected to the Doñana

National Park wetland system. It is a flat area near the sea

where no major orographic barriers are present. Doñana

has a sub-humid Mediterranean climate with Atlantic influ-

ence. Rainfall is quite variable, with a 580 mm yearly

average, about 80% of which is distributed over a wet

period from the end of September to the beginning of

April. Spatial distribution of rainfall is controlled by Atlantic

fronts, which are partially intercepted by small elevations of

up to 70 m located near the coast. In addition, the effect of

Mediterranean and Atlantic air mass shocks increases pre-

cipitation values near the Guadalquivir River.

The distribution of rain gauges according to the percen-

tage of MV is variable and random (Figure 1). Only 25% of

the stations have a percentage of MV below 46.7% and 25%

of them have more than 89% of MV. Some of the stations

with extreme missingness cover wide areas where no other

rain gauges are present, such as those located in the cen-

tral-north and southern parts of the aquifer.



Figure 1 | Location of rain gauges in the study site and boundary of the Almonte-Marismas groundwater system. The number of missing values (MV) in each rain gauge is represented by

the quartile interval of the overall distribution of the percentage of missing values. Stars represent the rain gauges selected for model comparison. H-MV, high proportion of

missing values; L-MV, low proportion of missing values.
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Imputation methods

Three imputation methods (spatio-temporal kriging, mul-

tiple imputation with predictive mean matching, and

random forest) that can deal with complex non-linear pat-

terns and relations between rain gauges have been

selected. All of them have proved to be suited for large-

scale imputation in a wide variety of cases, including

environmental data (Genton ; Radi et al. ). Further-

more, the three methods are freely available in R

programming language (R Core Team ).

Spatio-temporal kriging (STK) is a geostatistically based

method that takes spatio-temporal correlations into account

(Genton ). The method estimates a spatio-temporal

covariance/variogram model and performs spatio-temporal

interpolation (Gräler et al. ). Among the various types

of spatio-temporal covariance structures available, in the

present study the separable covariance product model

yielded the best results. STK is implemented with the R

package gstat (Pebesma ). Multiple imputation by

chained equations generates m imputations based on

sequential imputation regression models of each variable

conditioned by all other variables (van Buuren et al. ).
om http://iwaponline.com/jh/article-pdf/22/3/578/692717/jh0220578.pdf
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Applying Rubin’s rules, the point estimate is the mean of

the m estimates (Rubin ). When predictive mean match-

ing (PMM) is used as the estimating regression model,

imputed values are sampled only from the k observed

values of the respective variable that match predicted

values as closely as possible (White et al. ). Therefore,

plausible imputed values are guaranteed. PMM is

implemented here with the R package micemd (Audigier

& Resche-Rigon ), which allows for parallel calcu-

lations. The last method, missForest (Stekhoven &

Bühlmann ), is a non-parametric iterative imputation

method based on the random forest (RF) algorithm

(Breiman ). It trains a RF on observed values of each

variable as a first step, followed by predicting the missing

values and then proceeding iteratively until the stopping cri-

terion is met or the user-specified maximum number of

iterations is reached. The non-parametric nature of RF has

the advantage of not having to make any assumptions

about the distributions of data or imputation models. It

only requires the observation to be pairwise independent.

Although this hypothesis does not hold for daily rainfall,

we assume it can be relaxed due to the inherent robustness

of the random forest algorithm against correlated variables
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by randomly sampling a subset of the variables at each split

(Breiman ). The missForest method is implemented with

the R package missForest (Stekhoven ) and it can be run

in parallel to save computation time. For both PMM and RF

imputation schemes, the variables are imputed with respect

to increasing numbers of MV and predicted values are used

in subsequent imputations.

Imputation performance is closely related to the dis-

tance between rain gauges. In the case of STK, this

relation is explicit, as the spatial correlation has a decreasing

trend up to the spatial variogram range. Distance-based cor-

relation is also implicitly accounted for by data-driven

methods (PMM and RF) as they search for best predictors

across all rain gauges. Nevertheless, in this study, we focus

on the amount of MV and missing patterns as key factors

for performance that can be directly compared between

methods.

Imputation framework

Ideally, a controlled experiment with a complete dataset

would provide a useful benchmark to assess the perform-

ance of imputation methods. It would also allow

comparison of the probability distributions of observed

and estimated rainfall under different degrees of missing-

ness. However, in the present study case, when missing

values are filtered out, only a small subset of ten rain
Table 1 | Summary statistics and percentage of missing values (MV) in daily precipitation ser

method comparison

Rain gauge Mean (mm) Median (mm) SD (mm)

H-MV1 1.02 0 5.42

H-MV2 1.32 0 6.05

H-MV3 2.45 0 7.55

H-MV4 1.82 0 6.74

H-MV5 2.37 0 7.46

L-MV6 1.64 0 6.12

L-MV7 1.50 0 5.91

L-MV8 1.51 0 5.86

L-MV9 1.63 0 6.25

L-MV10 1.53 0 6.15

SD, standard deviation; n, number of available records.

://iwaponline.com/jh/article-pdf/22/3/578/692717/jh0220578.pdf
gauges spread around the limits of the aquifer and 18

years of data remain. This reduced dataset is not representa-

tive of the spatial characteristics of the study area. Moreover,

a smaller amount of information conditions the perform-

ance of data-driven methods (PMM and RF), so results

might not be representative of the real situation. In such

cases, there is a high risk of not adequately characterizing

the performance of methods.

Ten rain gauges located across the study site showing

different missingness characteristics were selected to com-

pare the performance of the three methods (Figure 1). The

selection criteria were based on spatial coverage of the

study area, degree of missingness, missing data patterns,

and both presence and absence of nearby rain gauges with

fairly complete time series in order to account for spatio-

temporal variability. Five of them, named H-MV, have a

very high degree of missingness (90% to 98% MV), while

the other five (L-MV) show lower amounts of missing infor-

mation (6% to 25% MV). Summary statistics of these rain

gauges along with their percentage of missing values are pro-

vided in Table 1 (raw time series and summary statistics

from all 112 rain gauges is provided as Supplementary

material 1, Table S1). All median values of daily precipi-

tation equal 0. This is related to the positive skewness of

the distribution of daily precipitation. Mean and standard

deviation are similar in both groups of rain gauges, but the

range of observed values is larger in L-MV gauges than in
ies in the period October 1975–May 2017 of the ten rain gauges selected for imputation

Range (mm) Rainy days (%) MV (%) n

70.20 34.36 97.86 326

70.50 32.00 97.70 350

65.00 16.67 96.61 516

65.00 10.78 95.43 696

77.00 19.20 90.52 1,443

101.50 15.40 25.32 11,365

128.50 19.31 24.21 11,535

90.00 15.35 13.34 13,189

112.50 17.06 6.03 14,302

106.10 13.18 5.66 14,357
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H-MV. The proportion of rainy days lies between 10% and

20% in most cases, which makes the correct identification

of this variable a big challenge.

Two rain gauges, H-MV1 and H-MV2, only have records

in 2008 (Figure 2) but there are two stations with the lowest

degree of missingness lying very close to each of them

(Figure 1). The other three rain gauges with extreme missing-

ness (H-MV3, H-MV4, and H-MV5) are located in the

central-north and southern areas with no fairly complete

stations nearby (Figure 1). Available data in the more com-

plete stations cover extensive sections of the period

studied (Figure 2). Both random (H-MV5, L-MV6, L-MV7,

L-MV8, L-MV9, L-MV10) as well as chronological (H-

MV1, H-MV2, H-MV3, H-MV4, L-MV6, L-MV8, L-MV10)

missing data patterns are observed.

For each of the gauges selected, three sets of train/test

splits were carried out on the available data to analyze

different missing data patterns (Figure 3). Random missing-

ness was assessed with a 50/50 random partition where

50% of the available data was used as the training set and

the remaining 50% of the data as the test set. The time-

dependence structure of rainfall variability was accounted
Figure 2 | Available and missing data in the time series of the ten rain gauges used for mode

om http://iwaponline.com/jh/article-pdf/22/3/578/692717/jh0220578.pdf
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for with the other two splits. When the first 50% of the

series is kept as observational data for training and the last

50% is estimated and used for testing, the pattern is called

‘Last half’. If the last 50% of the data series is used for train-

ing and the first 50% of the series is filled for testing, the

pattern is referred to as ‘First half’. Each imputation

method was applied to impute the MV using the training

sets for the ten stations and all available data for the remain-

ing 102 stations.

Instead of the usual 80/20 or 75/25 data partition

between the train and test sets in predictive models, an

ambitious 50/50 split was chosen. The idea behind this

decision was to increase the amount of validation data in

rain gauges with little available information as well as push-

ing the capacities of the three methods to the limit.

STK and PMM are capable of imputing zero rainfall

values but RF imputes averaged non-zero predictions. How-

ever, in multiple imputation with PMM, the average of m

imputations is then taken as the estimate of the final

value, therefore non-rain days will be missed unless all

imputed values equal zero. To adequately fill in zero rain

days with the RF and PMM algorithms, a correction with
l evaluation.



Figure 3 | Methodological scheme of the validation approach for precipitation data imputation. First ten rain gauges with different degrees of missingness are selected for model

evaluation. Three train/test splits accounting for different missing data patterns are carried out. Imputation of missing values in all rain gauges is then performed with each

method using the training data of the selected rain gauges and all available data of the remaining 102 stations. The results are then compared in terms of several performance

metrics. MV, missing values; STK, spatio-temporal kriging; PMM, multiple imputation with predictive mean matching; RF, random forest; R2, coefficient of determination; dr,

refined index of agreement; HK, Hanssen–Kuipers discriminant; ME, mean error; MAE, mean absolute error; NRMSE, normalized root mean squared error.
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dummy variables was introduced as a pre-processing bias--

correction strategy. The incomplete data matrix was

extended with one dummy variable per rain gauge

(15,219 × 224) accounting for the presence (1) or absence

(0) of rain on a certain day. As both methods can impute cat-

egorical variables, first the estimate of the dummy variable

for each date was considered and for each rain gauge all

dates with 0 value were imputed with 0 rain whereas only

for those dates where the dummy variable predicted a

value of 1 was the numeric rain estimation imputed.

Based on the literature reviewed, in the PMM scheme,

due to the large degree of missingness in the dataset,

values of m¼ 30 imputations and k¼ 5 donor pool were

used (White et al. ; Morris et al. ). These values pro-

vided a suitable tradeoff between performance and

computational cost. To compute the 30 imputations, the

mode was used to get an estimate of the dummy variable

on each date and the mean for the quantitative rainfall

values, as mentioned above. In terms of computational

cost, the inclusion of extra variables in the PMM and RF

methods is offset by the parallel processing implemented

in the R packages micemd and missForest.

The spatio-temporal experimental variogram was mod-

eled with a spatial component using a spherical variogram

with a 45 km range, and a temporal component using an

exponential variogram with a range of 6 days. These ranges

indicate that rainfall presents spatial correlation up to 45 km

and temporal correlation up to 6 days. The total fitted
://iwaponline.com/jh/article-pdf/22/3/578/692717/jh0220578.pdf
spatio-temporal sill was of 36 mm2/day. Measurement errors

were taken into account in the standardized spatial and tem-

poral models by means of the partial nuggets (i.e., 0.2 mm2/

day and 0.5 mm2/day, respectively). The spatio-temporal var-

iogram was then input into the spatio-temporal ordinary

kriging algorithm to estimate MV in each rain gauge. Further

information on the characteristics of the spatio-temporal var-

iogram are provided as Supplementary Material 2.

RF and STK have the disadvantage that negative rainfall

values can arise. This is usually solved with a post-proces-

sing correction by assigning zero values to all the negative

imputation results.

Evaluation of methods

The performance of the estimation methods used was com-

pared and assessed using the coefficient of determination

(R2), refined index of agreement (dr), Hanssen–Kuipers dis-

criminant (HK), mean error (ME), mean absolute error

(MAE), and normalized root mean squared error expressed

as a percentage (NRMSE). The first three are measures of

goodness-of-fit and model performance, while the last

three are error metrics to measure bias and accuracy.

The dimensionless dr index is highly consistent com-

pared to other popular indices such as the Nash and

Sutcliffe index and suitable for comparison of competing

methods, particularly for daily precipitation estimation in

arid locations (Willmott et al. ). It is bounded by �1
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and 1 and expressed as:

dr ¼
1�

Pn
i¼1 jŷi � yij

2
Pn

i¼1 jyi � �yj , when
Xn
i¼1

jŷi � yij � 2
Xn
i¼1

jyi � �yj

2
Pn

i¼1 jyi � �yjPn
i¼1 jŷi � yij

� 1, when
Xn
i¼1

jŷi � yij> 2
Xn
i¼1

jyi � �yj

8>>>><
>>>>:

(1)

where yi is the observed value of daily rainfall, ŷi is the

imputed value of daily rainfall missing observation, �y is the

mean of the observed values, and n is the number of obser-

vations. Values close to 1 indicate good model performance.

An advantage of dr is that it approaches 1 slowly, so it pro-

vides greater separation when comparing methods that

perform relatively well.

The HK score is used to distinguish between occur-

rences and non-occurrences of a rain event (Hanssen &

Kuipers ). The score has a range of �1 to þ1, where 0

represents no skill or a random estimate and 1 represents

a perfect estimate. Woodcock () argued that the HK is

universally acceptable for evaluating yes/no meteorological

forecasts. HK is defined as:

HK ¼ AD� BC
(Aþ C)(BþD)

(2)

where A, B, C, D are the number of classified rain events as

defined in contingency Table 2. HK is widely used in precipi-

tation studies (Teegavarapu ; Kim & Ryu ).

Error metrics allow for the comparison of the average

absolute (MAE) and relative (NRMSE) differences between

the observed and the imputed MV. Furthermore, ME pro-

vides a measure of bias. They are calculated as:

ME ¼ 1
n

Xn
i¼1

ŷi � yi (3)
Table 2 | Success and failure combinations when predicting rain and no rain records in

the rain gauges

Rain observation No rain observation

Rain estimation A B

No rain estimation C D

om http://iwaponline.com/jh/article-pdf/22/3/578/692717/jh0220578.pdf
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MAE ¼ 1
n

Xn
i¼1

jŷi � yij (4)

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 (ŷi � yi)

2

n

s

ymax � ymin
�100 (5)

where ymax is the maximum observed value and ymin is the

minimum observed value.

Uncertainty in the estimates of imputed values is gener-

ally not treated in depth in hydrological applications (Ben

Aissia et al. ). Uncertainty on those estimated values

should be considered for any subsequent application.

Methods like copulas provide evaluation of the uncertainty

of the estimations through the conditional distribution of

precipitation at a selected point (Bárdossy & Pegram

). However, it is very difficult to obtain these distri-

butions, especially when most data are missing. Another

way to assess the performance of imputation methods is

through the uncertainty analysis of calibrated and validated

hydrological simulation models. Chen et al. () evaluated

the impacts of rainfall imputation methods and missing pat-

terns on the uncertainty of flow and total phosphorus model

simulations. Nevertheless, if it is not possible to carry out a

thorough uncertainty analysis, it is at least necessary to go

beyond basic performance measures and check how consist-

ent the imputed precipitation data are. The large degree of

missingness of the dataset hampers the comparison of mean-

ingful statistics between the observed and imputed series.

Therefore, a qualitative consistency analysis of the results

was performed in terms of the monthly and yearly distri-

butions of the imputed precipitation series across methods

and missing patterns.
RESULTS AND DISCUSSION

Performance and error analyses

First, results for the test sets are analyzed for each imputation

method by percentage of MV (Figure 4). PMM is the most

sensitive method to the degree of missingness, showing the

worst performance in the presence of large amounts of MV.

The highest median MAE and NRMSE (MAE¼ 1.65 mm,



Figure 4 | Distribution of performance measures (test set) of missing precipitation data imputation in ten rain gauges grouped by proportion of missing values and imputation method. MV,

missing values; PMM, multiple imputation with predictive mean matching; RF, random forest; STK, spatio-temporal kriging; H-MV, high proportion (between 90% and 98%) of MV;

L-MV, low proportion (between 6% and 25%) of MV; R2, coefficient of determination; dr, refined index of agreement; HK, Hanssen–Kuipers discriminant; ME, mean error; MAE,

mean absolute error; NRMSE, normalized root mean squared error.
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NRMSE¼ 10.5%) and the lowest median R2 and HK (R2¼
0.16, HK¼ 0.48) in H-MV cases are observed for the PMM

method (Figure 4(a), 4(c), 4(e) and 4(f)). This is related to

the limitations found for PMM with regard to small dataset

sizes and large amounts ofMV due to the hot-deck character-

istics of the method (White et al. ; Morris et al. ). STK

and RF show similar accuracy in the H-MV imputations in

terms of NRMSE (median values around 8%), but the latter

shows lower MAE (median values are 1.49 mm and

1.26 mm for STK and RF, respectively), and better perform-

ance measures (median R2 is 0.45 for STK and 0.66 for RF;

median HK is 0.56 for STK and 0.70 for RF).

The bias analysis in terms of ME shows three patterns

(Figure 4(d)): underestimation in PMM in both groups of impu-

tations (medianME is�0.56 mm for H-MV and�0.23 mm for
://iwaponline.com/jh/article-pdf/22/3/578/692717/jh0220578.pdf
L-MV), overestimation in RF in cases with fewer MV (median

ME is �0.05 mm for H-MV and 0.30 mm for L-MV), and

slight overestimation in STK in the presence of large missing-

ness (medianMEis0.18 mmforH-MVand0.01 mmforL-MV).

The dr index of agreement indicates overall good model

performance (Figure 4(b)). The lowest median dr is 0.69 for

PMM in H-MV imputations and the highest median dr is

0.81 for PMM in L-MV, dr values of RF and STK lying

between these two. The index indicates that RF is less sensi-

tive to the amount of MV, as similar distributions are

observed for H-MV and L-MV, whereas STK and PMM

show increased dr values in the L-MV group.

L-MV imputations show considerable improvements in

most metrics compared to H-MV imputations (median

R2� 0.60, median HK � 0.60, median MAE � 1.11 mm,
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and median NRMSE � 4%), particularly for PMM. Caution

should be exercised when assessing the large differences in

NRMSE between H-MV and L-MV imputations. Normaliza-

tion in NRMSE is carried out with the range of data

observed (Equation (5)), meaning that rain gauges with

small amounts of observed data may have the denominator

reduced and, thus, increased NRMSE (note range values in

Table 1).

There were two rain gauges in the L-MV case where RF

underperformed, L-MV7 and L-MV8, entailing a wider dis-

tribution of HK and the presence of outliers in the

distributions of dr, ME, and MAE (Figure 4(b)–4(e)).

Figure 5 represents the distribution of performance

measures in the test sets for each imputation method by
Figure 5 | Distribution of performance measures (test set) of missing precipitation data imput

method. PMM, multiple imputation with predictive mean matching; RF, random for

agreement; HK, Hanssen–Kuipers discriminant; ME, mean error; MAE, mean absolute

partition in train and test datasets for each rain gauge. When the first 50% of availa

testing, the pattern is called ‘Last half’. If the last 50% of the data is kept as trainin

‘First half’.

om http://iwaponline.com/jh/article-pdf/22/3/578/692717/jh0220578.pdf
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type of missing data pattern structure. It can be seen that

the poor performance of RF is mainly related to the ‘First

half’ partitions, where the first 50% of the available data of

each series were removed before imputation and then used

for model testing. Positive bias in this missing pattern

(median ME¼ 0.41 mm) doubles that of the ‘Last half’

(median ME¼ 0.20 mm) and is almost four times higher

than ME in the random partition (median ME¼ 0.12 mm).

Furthermore, HK and MAE show wider distributions

towards lower and higher values, respectively (Figure 5(c)

and 5(e)). The underlying reason is the larger joint missing-

ness in the dataset in the first part of the period which limits

the learning capability of the RF algorithm (i.e., data

sparsity).
ation in ten rain gauges grouped by missing pattern (train/test data splits) and imputation

est; STK, spatio-temporal kriging; R2, coefficient of determination; dr, refined index of

error; NRMSE, normalized root mean squared error. ‘Random’ refers to 50/50 random data

ble data in each series is kept as training data and the last 50% is estimated and used for

g data and the first 50% is estimated and used for testing, the pattern is referred to as
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The previously observed bias towards underestimation

in PMM is stronger in the case of random missing patterns

(Figure 5(d)). Median ME values across data partitions in

PMM are �0.51 mm for ‘Random’, �0.34 mm for ‘Last

half’ and �0.24 mm for ‘First half’. This negative bias is

the effect of averaging within the range of observations in

the multiple imputation scheme. It also yields relatively con-

stant absolute error (MAE) and dr across missing patterns

(Figure 5(b) and 5(e)). However, the poorer performance

of PMM compared to STK and RF is evidenced by the

wider distributions of R2 and NRMSE for all missing

patterns (Figure 5(a) and 5(f)).

Again, the HK plot in Figure 5(c) corroborates the suc-

cessful introduction of dummy variables to account for the

occurrence of rainy and non-rainy days in data-driven

methods compared to the spatio-temporal based STK

method. Median values of the HK score across missing pat-

terns range from 0.52 to 0.59 for STK and from 0.62 to 0.77

in RF.

The lowest performance of STK (median R2¼ 0.46,

median MAE¼ 1.54 mm, median NRMSE¼ 6.6%, median

dr¼ 0.75) is observed in imputations of random splits,

where RF has a very good performance (median R2¼ 0.63,

median HK¼ 0.77, median MAE¼ 1.18 mm, median

NRMSE¼ 5.3%, median dr¼ 0.79). Conversely, chronologi-

cally ordered imputations are better accomplished through

STK.

The correction with dummy variables in the RF and

PMM algorithms implied doubling the number of variables.

However, the possibility of carrying out parallel calculations

with the R packages micemd and missForest saved comput-

ing time. Total processing times were 7 hours for PMM, 12

hours for RF, and 10 hours for STK on a system with
Table 3 | Best performing method in missing precipitation data imputation for each rain gaug

Gauge H-MV1 H-MV2 H-MV3 H-MV4 H-MV

Pattern

First half RF/STK STK RF STK RF

Last half RF/STK STK RF RF RF/S

Random STK RF RF RF RF

Acronyms to the right of the slash symbol represent final selected methods after consistency

H-MV, high percentage of missing values; L-MV, low percentage of missing values; PMM, mul

kriging.

://iwaponline.com/jh/article-pdf/22/3/578/692717/jh0220578.pdf
Intel(R) Core(TM) i7- 4790 CPU @ 3.60 GHz, x64-based pro-

cessor and 7.98 GB usable RAM. STK has large

computational cost due to the computational complexity

of matrix inversion.

Table 3 shows the best imputation method for each rain

gauge and missing pattern according to the performance

and error measures analyzed. The criterion for method

selection was based on ranked goodness-of-fit measures

(HK>R2> dr) and on ranked error measures (MAE>

NRMSE>ME). The order of the measures was decided

upon their discriminatory capacity shown in Figures 4 and 5,

and on their relative importance for the phenomenon (i.e.,

a higher weight was given to HK due to the importance

of correctly assigning rainy/non-rainy days). Out of the 30

models, RF was the best option in 16 cases, STK in 9

cases, and PMM in 5 cases. RF is the preferred method in

the presence of large amounts of MV (H-MV rain gauges)

and in cases of random missing patterns. STK is selected

in time-dependent missing patterns in both H-MV and

L-MV gauges. PMM is only suitable for imputing rainfall

data in cases where the percentage of MV is below 25%.

In summary, the results are encouraging given the large

degree of missingness and they support the suitability of the

introduction of dummy variables to impute non-rainy days.

Performance and error measures are comparable and

often better than those achieved in other studies infilling

daily precipitation data using different techniques (Lo

Presti et al. ; Simolo et al. ; Bárdossy & Pegram

; Teegavarapu ; Radi et al. ; Kim & Ryu ;

Burhanuddin et al. ; Teegavarapu et al. ; Jahan

et al. ). All these studies consider much lower degrees

of missingness, but results are highly dependent on the net-

work structure and the climatological conditions.
e and missing pattern according to performance and error measures

5 L-MV6 L-MV7 L-MV8 L-MV9 L-MV10

STK PMM STK PMM RF

TK STK STK STK PMM PMM

RF/STK PMM RF RF RF

analysis (section below).

tiple imputation with predictive mean matching; RF, random forest; STK, spatio-temporal
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Both the volume of MV and the missing patterns con-

dition the performance of the imputation methods. PMM

is not suitable for imputing precipitation datasets with

extreme missingness and limited observations. Both RF

and STK show similar performance regarding the degree

of missingness. However, the spatio-temporal structure of

STK provides better results with time-dependent missing

patterns, whereas RF is the best method to impute random

missingness. STK is spatially based and the spatio-temporal

separable covariance function accounts for intrinsic pro-

cesses in the data structure that hold when sequential data

are available. That is the reason why it performs better

under chronological missing data patterns than under

random missing data patterns. Conversely, the opposite

holds for the data-driven RF method.

Finally, PMM has a generalized negative bias

(i.e., underestimation) due to the imputation of averaged

observed values, while RF tends to overestimate obser-

vations under chronological missing data patterns. On a

case-by-case basis, RF was the best method in 50% of the

tests carried out (Table 3).

Consistency analysis

In real-world situations, we should expect a combination of

random and chronological missing data patterns in precipi-

tation datasets (Figure 2). From the results in the previous

section, the RF algorithm emerges as a valid imputation

method in cases of extreme missingness provided that suffi-

cient information from other rain gauges is available. Based

on the HK score, the inclusion of dummy variables allows

for successful determination of the occurrence of rainy

and non-rainy days (Figures 4(c) and 5(c)). However, the

RF method showed bias towards overestimation under

chronological missing patterns (Figure 5(d)). This could

pose a serious risk for hydrological modeling if bias is sys-

tematically propagated through the time series. However,

error measures depend on the particular train/test split

and systematic bias is not guaranteed.

To analyze the consistency of the imputations we have

aggregated the complete dataset (1975–2017) of the imputed

series by hydrologic year and by month (Figure 6 and

Figure S1 in Supplementary material 3). Annual precipi-

tation is the sum of daily precipitation for each year and
om http://iwaponline.com/jh/article-pdf/22/3/578/692717/jh0220578.pdf
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monthly is the average of monthly totals. Consistency analy-

sis was based on the visual inspection of the plots in Figure 6

allowing detection of systematic bias in the imputed series.

Large overestimations can be observed with the RF

method in some cases of chronological missing patterns.

Specifically, based on performance and error measures, RF

was the selected imputation method in H-MV1 for the

‘First half’ and ‘Last half’ missing patterns and in H-MV5

for the ‘Last half’ partition (Table 3). However, annual and

monthly aggregates show the inadequacy of the method in

these cases (Figure 6(a)–6(d)). The underperformance of

RF in the ‘First half’ estimation of H-MV1 results in overes-

timation of annual precipitation in the first part of the

period. This has a particular effect on the summer months

(June, July, and August), for which monthly averages

exceed 20 mm (Figure 6(a)) when values close to zero are

expected. In the ‘Last half’ case of H-MV1, we find the oppo-

site circumstance; the RF method appears to underestimate

precipitation from the 1990s onwards, taking into account

that the average annual precipitation in the Doñana area

is higher than 500 mm and that the ME for this train/test

split was �0.77 mm.

The overestimation problem is worse for H-MV5. Obser-

vations in this rain gauge were recorded in the period 1975–

1980 (Figure 2). During this period all methods yield similar

annual estimations, but from the mid-1980s onwards, RF

under the ‘Last half’ missing pattern severely overestimates

precipitation (Figure 6(c) and 6(d)).

The RF method overestimated precipitation data in the

‘First half’ missing pattern of L-MV7 and L-MV8

(Figure 6(g)–6(j)), as was detected by performance and

error measures. In the L-MV group, RF was the best

choice under random missing patterns (Table 3). In these

cases, monthly and annual imputed precipitation series

show consistent results, except for some overestimation in

L-MV6 during the first years of the period analyzed (RF_R

lines in Figure 6(f)).

The RF algorithm outperformed other imputation

methods with mixed data-type datasets (Stekhoven &

Bühlmann ). Tang & Ishwaran () tested different

RF missing data algorithms on 60 datasets and found good

robust performance under moderate to high missingness.

They also observed that performance improved with increas-

ing correlation. This might be a partial cause for the bad



Figure 6 | Mean monthly (a), (c), (e), (g), (i) and total annual (b), (d), (f), (h), (j) precipitation in imputed series of rain gauges with high proportion (H-MV) and low proportion (L-MV) of missing

values. The small hyphen symbols account for mean monthly values in H-MV rain gauges having up to three months with records in the time series. The larger rectangle-shaped

symbols account for mean monthly values in L-MV rain gauges having a minimum of 20 months with records in the time series. The plus symbols represent observed total

annual precipitation in L-MV gauges that have a minimum of 340 observations per year. The plots include all imputation methods and missing data patterns analyzed. Note the

last value of the annual precipitation plots only considers the period from October 2016 to May 2017. STK, spatio-temporal kriging; PMM, multiple imputation with predictive

mean matching; RF, random forest; FH, first half; R, random; LH, last half.
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performance of RF in the cases we are considering. Chrono-

logical missing patterns limit the ability of the data-driven

model to learn the correlation structure in daily precipi-

tation time series. The dummy variable estimation

procedure becomes very sensitive to this issue with the

result that non-rainy days go undetected and instead a pre-

dicted amount is imputed. Another important result drawn

from the H-MV plots in Figure 6 is that RF is highly sensitive

to the available information. The few months with observed

data in H-MV1 and H-MV5 represent wet autumn periods.

When information in other rain gauges is also missing

under chronological missing patterns, the RF algorithm is

forced to ‘learn’ these exceptional wet patterns as the ‘typi-

cal’ situation and extrapolate them to other periods (see

also Figure S1 in Supplementary material 3).

Underestimation with PMM in the presence of large pro-

portions of MV is evident for all missing pattern scenarios.

Its performance improves as the proportion of MV

decreases but monthly and annual values remain in the

lower ranges (Figure 6).

The STK method shows the most consistent results

across missing patterns and proportions of MV (Figure 6).

No apparent bias towards under- or overestimation is

observed. Slight differences between imputed series with

different missing patterns are only present in L-MV6 and

L-MV7 (Figure 6(e)–6(h)). The separable covariance product

model is, thus, a robust spatio-temporal covariance structure

for missing precipitation interpolation under extreme miss-

ingness independently of the missing pattern. Although

some rain gauges are distant from all the others, they are

still within the range of the spatial variogram (i.e., 45 km),

which quantifies the extent of the spatial correlation. There-

fore, in this site, STK can provide consistent imputations

even if the distance to the target rain gauge is large, but

always within the variogram range (see, for example, L-

MV6 in Figures 1, 6(e) and 6(f)). Nevertheless, the HK

score validation results suggest that STK is less accurate in

identifying rainy and non-rainy days (Figures 4(c) and

5(c)). This is not problematic for water management on

monthly to multi-annual time scales as very small rainfall

amounts are imputed in false positive non-rainy day cases.

However, it must be taken into account for finer time-

scale analyses (i.e., fast conduit flow in karstic systems, sur-

face water–groundwater interactions, etc.). Teegavarapu
om http://iwaponline.com/jh/article-pdf/22/3/578/692717/jh0220578.pdf
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() showed that a combination of association rule

mining with spatial interpolation methods such as ordinary

kriging reduced the overestimation of rainy days. However,

in that study, only 15 rain gauges were used and the number

of association rules grows exponentially based on the

number of stations. Further improvements on STK for miss-

ing precipitation estimation could be achieved with the

development of spatio-temporal indicator kriging

implementations.

Given the information provided by the consistency

analysis, some corrections were made in the method choices

(Table 3). After the update, STK overtakes RF as the best

method for estimating missing daily precipitation data in

southwest Spain.

Taking into account the computational costs of each

method, our results support using STK for missing precipi-

tation data imputation under extreme missingness and

time-dependent missing patterns. RF is a suitable choice

under any degree of missingness with random missing pat-

terns. Finally, PMM should only be used in cases of lower

amounts of MV, but some risk of underestimation still

exists due to the effect of averaging multiple imputations.
CONCLUDING REMARKS

The reconstruction of daily precipitation time series for

hydrological modeling is a delicate task. In this study, we

have tackled the added difficulty of estimating extremely

large amounts of MV (overall 64% MV), which is a challen-

ging pre-processing step for fine scale spatio-temporal

analysis. Besides suitable performance and error measures,

additional considerations must be taken into account to

fully describe the phenomena under study. In the results pre-

sented, the ME suggested a slight overestimation problem

with the RF method, particularly in the ‘First half’ simu-

lations (Figure 5(d)), but this fact could be masked by

other metrics and/or not be systematic. However, when

the whole imputed dataset is aggregated in a monthly and

annual basis, it can be seen that overestimation is propa-

gated throughout the series, entailing potential mistakes in

surface water and groundwater modeling. Therefore, when

uncertainty analysis is not feasible, at least consistency of

the imputations must be checked before validating the
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results of a given method. We found this is not a common

practice in some precipitation imputation studies and,

thus, we strongly recommend including some kind of con-

sistency analysis for method validation.

In our study, we were able to use a big network of 112

rain gauges covering an area of around 3,000 km2. This

will not always be the case, especially in regions where

weather monitoring networks are scarce and sparse. In

such circumstances, distant rain gauges need to be con-

sidered to test whether the imputation method is capable

of finding regional correlations and non-linear patterns at

larger regional scales.

STK simulates the distribution of precipitation under

chronological missing patterns more consistently than RF

and PMM, at the expense of higher computing times. Over-

all, encouraging results were obtained through the

application of these techniques to extreme missingness.

With the available data, STK provided consistent results

for two rain gauges that only had data in one year in a

series of 42 (98% MV). In fact, we should expect improved

results of the imputation methods if all available data were

used, as 50% of the data in ten rain gauges was removed

for model comparison.

The missForest RF algorithm emerges as a computation-

ally efficient alternative method for daily missing

precipitation estimation when the missing pattern is predo-

minantly random. A correction with dummy variables

allowed non-physically based algorithms to determine zero

rain days, a crucial factor for hydrological modeling. Further

developments in data-driven methods such as taking season-

ality in precipitation into account could provide more

reliable estimations.
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