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■ Abstract A moment estimator ofθ , the coancestry coefficient for alleles within
a population, was described by Weir & Cockerham in 1984 (100) and is still widely
cited. The estimate is used by population geneticists to characterize population struc-
ture, by ecologists to estimate migration rates, by animal breeders to describe genetic
variation, and by forensic scientists to quantify the strength of matching DNA profiles.
This review extends the work of Weir & Cockerham by allowing different levels of
coancestry for different populations, and by allowing non-zero coancestries between
pairs of populations. All estimates are relative to the average value ofθ between pairs
of populations. Moment estimates for within- and between-populationθ values are
likely to have large sampling variances, although these may be reduced by combining
information over loci. Variances also decrease with the numbers of alleles at a locus,
and with the numbers of populations sampled. This review also extends the work of
Weir & Cockerham by employing maximum likelihood methods under the assump-
tion that allele frequencies follow the normal distribution over populations. For the
case of equalθ values within populations and zeroθ values between populations, the
maximum likelihood estimate is the same as that given by Robertson & Hill in 1984
(70). The review concludes by relating functions ofθ values to times of population
divergence under a pure drift model.
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INTRODUCTION

In 1984, Weir & Cockerham (100) published a set of equations for estimating the
parameterFST or θ that describes the genetic structure of populations. The paper
is still widely cited; in the first three months of 2002 the methods it described were
applied to data on ash trees (59), Barbus (86), barley (42), barnacle (22), butterfly
(18), cherry (54), cod (44), cord grass (85), Drosophila (32), eelgrass (64), frog (84),
housefly (23), insects (58, 103), ladybird beetle (92), mackerel (11), moose (41),
mountain lion (24), pig (45), pine (66, 68), quelea (19), red drum (33), redfish
(72), river otter (9), rodent (14), salmon (37), scallops (67), sea trout (94), seaweed
(88), shrimp (28), snail (13), stonefly (76), sugar beet (89), trout (38, 48), tsetse fly
(47), wombat (7), zooplankton (34), and humans (1, 36, 53) among other species.
Population biologists, ecologists and human geneticists have a substantial interest
in being able to quantify the genetic relationships among their populations; it is
therefore timely to re-visit the 1984 paper they cite. It may be especially useful to
allow for different values ofθ in different populations.

This discussion regards population structure, or the genetic differentiation of
populations within the same species, as allelic frequency variation over popula-
tions. The restriction to allele frequencies, as opposed to genotypic frequencies,
carries an implicit assumption of Hardy-Weinberg equilibrium at the loci under
consideration. Even if two populations are maintained under the same evolution-
ary conditions they will have different allele frequencies because of the stochastic
nature of these forces. Different evolutionary conditions for a set of populations
will increase the differentiation among them, andθ can be defined in terms of
variances and covariances of allele frequencies. The magnitude of these coeffi-
cients therefore reflects the evolutionary history of the populations being studied,
although the observed allele frequencies also reflect the sampling processes within
each population. The various approaches to estimatingθ can differ according to
whether they use only expected variances and covariances of allele frequencies or
the entire frequency distributions. Use of the whole distribution may appear to be
better, but there is an implicit constraint on the class of evolutionary scenarios if
second-moment parameters are assumed to completely characterize a distribution.

The emphasis on within-species variation, and the usual use of unlinked loci
means that coalescent approaches for non-recombining DNA sequences and deep
evolutionary divergences [e.g., (61, 93)] are not considered.
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LITERATURE REVIEW

Estimation Strategies

The search for the best estimators ofθ , and the evaluation of existing estimators,
continues. One way of distinguishing estimators is to consider how much of the
distribution of allele frequencies across populations is used. It is shown below that
the variances and covariances of allele frequencies across populations depend on
θ as well as on the mean frequencies. This suggests thatθ can be estimated from
just the first and second moments of the allele frequency distribution, and this
is the essence of the method of moments used by Weir & Cockerham (100). No
particular evolutionary model leading to specific values forθ is assumed. Other
methods assume the form of the whole distribution, which constrains applicability
to certain evolutionary scenarios. The Dirichlet distribution used by Balding &
Nichols (4) and Lange (49) assumes an evolutionary equilibrium, and is appropriate
under the infinite alleles mutation model. Strictly, it is the Multinomial-Dirichlet
distribution that is needed. The Dirichlet distribution is not appropriate for the
stepwise mutation model (35). It is not clear that there is an evolutionary model
for which the normal distribution used by Smouse & Williams (81), Long (51),
and Nicholson et al. (60) and employed below in this review is appropriate, but it
is justified by convenience and an appeal to large sample theory.

More statistical issues were addressed by Weicker et al. (95). The estimator ofθ

described by Weir & Cockerham (100) used the actual sample sizes in each sample
in order to reduce bias, and Weicker et al. showed that good approximations to
that estimator can be found that use the average sample size. These authors also
presented confidence intervals found by bootstrapping over loci, with an implicit
assumption that the number of loci is not small. Questions of both bias and variance
were covered by Raufaste & Bonhomme (62) for loci with multiple alleles. The
simplest models assume that allele frequency distributions have the same variances
and covariances for all alleles, so thatθ could be estimated separately for each al-
lele. Raufaste & Bonhomme confirmed the prediction of Weir & Cockerham (100)
that their weighting was satisfactory for larger values ofθ , whereas an alternative
weighting of Robertson & Hill (70) was better for smallθ . The Robertson & Hill
approach is equivalent to the multivariate approaches (51) described below.

This review is concerned with the relationships of pairs of alleles within and
between populations, but a further hierarchy of relationships when there are sub-
populations nested within populations, sub-subpopulations nested within subpop-
ulations, and so on (97, 105). The nested analysis of variance structure is a natural
framework for the analysis of that situation, and a generic definition of population-
structure parameters for a hierarchy of populations was given by Rousset (75).

The growing use of Bayesian methods to population genetics is reflected by sev-
eral papers that use such methods to characterize population structure (30, 39, 40,
71). Allele frequencies are assumed to follow a Dirichlet distribution across pop-
ulations, or a beta distribution in the case of loci with two alleles.
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Non-Frequency Measures

Althoughθ is defined in terms of variances of allele frequencies, there are parallel
measures that use other parameters. The fact that mutation at microsatellite markers
is generally between pairs of alleles with similar numbers of repeat units suggests
that allele size (i.e., number of repeats) can be used in place of allele frequency
(79). Balloux & Goudet (5) and Balloux & Lugin-Moulin (6) were concerned
with the case where the stepwise mutation model holds for microsatellite markers.
They compared two estimators of the form

∑
loci Va/

∑
loci Vt where the variance

components (Va among populations andVt total) were for allele frequencies (100)
or allele sizes (57). They compared the estimators for data simulated under a
finite island model and concluded that neither estimator was best overall, although
the Weir-Cockerham estimator was better for higher levels of gene flow. Weir &
Cockerham (100) pointed out that the performance of their estimator reflects the
method they used for combining information over multiple alleles at a locus, and
they predicted better behavior for higher values ofθ . It is the magnitudes of the
parameter, rather than the forces leading to those values, that should affect the
quality of the estimator in the multiple-alleles case.

Merilä & Crnoka (56) compared estimates ofθ from various genetic markers
with an analogous quantity,QST, defined for quantitative traits (83). The esti-
mate is based on the genetic variances of an additive quantitative trait,Va among
populations andVw within populations, and is given byVa/(Va + 2Vw). If allele
frequencies are available for the same loci that affect the quantitative trait, values
of θ andQST should be equal.

Estimation of Migration Rates

Molecular ecologists, in particular, have been interested in inferring migration rates
from estimates ofθ , usually by employing the equilibrium result for the infinite-
island migration model:θ = 1/(1+ 4Nm). HereN is the effective population size
of each island andmis the migration rate between each pair of islands. Because this
is a monotonic transformation ofθ , it is not clear that much is gained over simply
presentingθ estimates, especially as real populations are unlikely to conform to
the many assumptions that lead to this result (101). Cockerham & Weir (15, 16)
discussed more general relationships betweenθ andm. Kinnison et al. (46) fitted
Nmto estimatedθ values without assuming equilibrium. A recent review is given
by Rousset (74), and a multivariate normal approach was adopted by Tufto et al.
(87). Analogous work uses estimates ofθ to estimate effective population size
(8, 90).

Allocation of Individuals to Populations

Even though the genetic variation within human populations tends to be much
greater than that among populations, there is often sufficient genetic differentia-
tion among populations, as described byθ , to allow individuals to be allocated
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to populations. The problem was discussed for blood-type markers by Spiel-
man & Smouse (82) and Smouse & Spielman (80). More recent studies, pri-
marily by forensic scientists, have used microsatellite markers (10, 25, 52, 77, 78).
Cornuet et al. (17) evaluated several methods for allocating individuals by assess-
ing their behavior as functions ofθ . Dawson & Belkhir (20) assessed the quality
of their Bayesian method for assigning individuals to groups within a population
by estimatingθ from the resulting grouped data.

Forensic Applications

Genetic profiles are now widely used for human identification in a forensic setting,
and also for inferring relationships in cases of disputed parentage or the identifica-
tion of remains. The key question generally involves determining the probability
of a set of profiles under alternative hypotheses about the sources of those profiles.
In the simplest forensic situation where the profile of a suspect matches that of
a stain found at the scene of a crime, this reduces to determining the probability
that an unknown person in a population has the profile given that a suspect is
known to have the profile (26). When allele frequencies are assumed to have a
Dirichlet distribution over populations, this probability is a function ofθ (3, 4),
and forensic scientists routinely estimateθ for the populations with which they
work (4, 30, 102).

ESTIMATION OF θ

The parameterθ provides a description of the relationship between pairs of alleles
in a population. It could be defined as the probability that the two alleles are
identical by descent, but this is restrictive in that its values are then constrained to lie
in the range [0,1]. A more general definition is in terms of correlation coefficients,
and can be expressed in terms of indicator variablesxju for the jth allele in a
sample:

xju =
{

1 allele is of typeAu

0 otherwise.

Thenθ is the correlation betweenxju andxj ′u for different alleles (j 6= j ′), where
the underlying expectation process is over replicates of the population. This cor-
relation should be written asθu to allow for selection or mutation differences for
different allelic types, but these differences generally are assumed not to exist.
Although θ is designed to capture evolutionary variation, values of its estimates
also reflect the sampling process leading to the data employed. Weir (97) made
the distinction between genetic and statistical sampling for these two sources of
variation. Another way of expressing this concept is to say thatθ measures relat-
edness of pairs of alleles within a population relative to the total (i.e., the expected)
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population and this is why Wright (104) used the notationFST, whereSdenotes
subpopulation andT denotes the total population.

Under the random mating assumption, expectations of the indicator variables
do not depend on the particular values ofj, and

E(xju) = pu

E
(
x2

ju

) = pu

E(xjux j ′u) = p2
u + pu(1 − pu)θ, j 6= j ′,

wherepu is the population frequency of alleleAu, an expected value over replicates
of the population. The expression forE(xjux j ′u) can be taken as a definition of
θ , and clearly Var(xju) = pu(1 − pu), Cov(xju, xj ′u) = pu(1 − pu)θ so thatθ is
indeed a correlation coefficient over replicate populations.

It may be convenient to write the expected value ofxjux j ′u as Pu,u, the prob-
ability with which the two alleles are both of typeAu. However, for a population
mating by random union of gametes, this quantity is the same as the homozygote
frequencyPuu. For nonrandom mating populations, it is necessary to distinguish
the cases where the alleles are in the same or different individuals and the indi-
cator variables need to be defined asxjku for the kth allele in thejth individual.
Expectations are then

E(xjku) = pu

E
(
x2

jku

) = pu

E(xjkuxj ′k′u) =
{

p2
u + pu(1 − pu)F, j = j ′, k 6= k′

p2
u + pu(1 − pu)θ j 6= j ′ ,

whereF is the total inbreeding coefficient (sometimes written asFIT). ThenPuu =
p2

u + pu(1 − pu)F differs from Pu,u = p2
u + pu(1 − pu)θ .

Becauseθ refers to variation over the evolutionary process, it cannot be es-
timated from a sample from a single population. Inferences made from a single
sample are for within-population parameters such as the within-population in-
breeding coefficientf, or FIS. This quantity satisfiesf = (F − θ )/(1 − θ ), and
it describes the relationship of pairs of alleles within individuals relative to that
between individuals within the same population. There is generally little interest in
within-population analogs ofθ , as the point of estimatingθ is to make inferences
about evolutionary processes.

MOMENT ESTIMATES

With the assumption of no local inbreeding,FIS= 0, FIT = FST= θ , estimation of
θ makes use only of sample allele frequencies, although these need to be inferred
from sample genotype frequencies. Second moments of allele frequencies can be
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expressed in terms ofθ , suggesting that estimators can be constructed from sample
second moments.

Overall Estimates

The variation described byθ is estimated in practice from allele frequency variation
among different populations, and it has been customary to regard extant populations
as providing the replicates inherent in its definition. This carries the assumption
that each sampled population has the sameθ value, and this will now be relaxed. To
distinguish the populations sampled, an indexi is added to the indicator variables
for theith sample. A general set of expectations for thejth allele in theith sample are

E(xi ju ) = pu

E
(
x2

i ju

) = pu

E(xi ju xi ′ j ′u) =
{

p2
u + pu(1 − pu)θi i = i ′, j 6= j ′

p2
u + pu(1 − pu)θi i ′ i 6= i ′ .

Each population is assumed to have the same (expected) allele frequency. Weir &
Cockerham (100) assumed thatθi i ′ = 0 for all i ′ 6= i . Later they relaxed those
assumptions (15, 98).

Sample allele frequencies are denoted by tildes, and the average frequency
over samples is denoted by a bar. If there areni alleles sampled from theith of r
populations:

p̃iu = 1

ni

ni∑
j =1

xi ju

p̄u = 1∑
i

ni

r∑
i =1

ni p̃iu,

so that

E( p̃iu) = pu

E( p̄u) = pu

Var(p̃iu) = 1

ni
pu(1 − pu)[1 + (ni − 1)θi ] 1.

Cov(p̃iu, p̃i ′u) = pu(1 − pu)θi i ′ . 2.

Subsequent developments are simplified with additional notation:

πu = pu(1 − pu)

φi = 1

ni
[1 + (ni − 1)]θi ]
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Equations 1, 2 can be taken as defining theθ parameters and therefore can serve
as a starting point. They could be derived by considering two sets of expectations,
one within (W) and one among (A) populations. Ifpiu is the frequency of allele
Au in the ith population, the usual multinomial distribution gives:

EW( p̃iu) = piu

VarW( p̃iu) = 1
ni

piu(1 − piu).

}
3.

Among populations, the moments are

EA(piu) = pu

VarA(piu) = pu(1 − pu)θi

}
4.

to introduce theθ ’s. The method of moments for estimatingθ makes no more
statements concerning the distribution of thepiu’s about pu. Balding & Nichols
(3, 4) assumed a Dirichlet distribution with parameters (1− θi )pu/θi for Au which
also gives Equations 4, as does the normal distributionN(pu, πuθi ) assumed by
Nicholson et al. (60). Combining Equations 3 and 4 leads to Equations 1 and
2, emphasizing that expectations in such equations are total (within and among
populations). Foulley & Hill (31) contrasted the use of the normal and Dirichlet
distributions.

When it is assumed thatθi = θ for all i andθi i ′ = 0 for all i 6= i ′, Weir &
Cockerham (100) note that there are two unknown quantities,πu andθ , and define
two mean squares. In the notation of Weir (97):

MSPu = 1

r − 1

r∑
i =1

ni ( p̃iu − p̄u)2

MSGu = 1
r∑

i =1
(ni − 1)

r∑
i =1

ni p̃iu(1 − p̃iu).

The average allele frequencȳpu includes sample size weights. An alternative is to
use an unweighted averagēp∗

u = ∑r
i =1 p̃iu/r . Estimates based on̄pu or p̄∗

u will
be better whenθ or (1− θ )/ni , respectively, are larger. Following Robertson (69),
a weighted estimate could be obtained from the two.

Under the general model, the mean squares have expected values

E(MSPu) = πu

r − 1

[
r∑

i =1

nicφi − 1∑r
i =1 ni

r∑
i,i ′=1
i 6=i ′

ni ni ′θi i ′

]

E(MSGu) = πu
r∑

i =1
(ni = 1)

(
r∑

i =1

ni −
r∑

i =1

ni φi

)
,
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wherenic = ni − n2
i /

∑r
i =1 ni . There are two special cases that lead to simplifica-

tion.
In the special case thatθi = θ for all i andθi i ′ = 0 for all i 6= i ′,

E(MSPu) = πu[(1 − θ ) + ncθ ]

E(MSGu) = πu(1 − θ ),

where

nc = 1

r − 1

(
r∑

i =1

ni −
∑r

i =1 n2
i∑r

i =1 ni

)
= 1

r − 1

r∑
i =1

nic.

This led Weir & Cockerham (100) to their moment estimator ofθ :

θ̂ Mu = MSPu − MSGu

MSPu + (nc − 1)MSGu
.

To the extent that the expected value of this quantity is the ratio of expectations of
its numerator and denominator, it is unbiased forθ .

In the special case of balanced data,ni = n for all i,

E(MSPu) = πu[(1 − θw) + n(θw − θa)]

E(MSGu) = πu(1 − θw),

where

θw = 1

r

r∑
i =1

θi

θa = 1

r (r − 1)

r∑
i,i ′=1
i 6=i ′

θi i ′ ,

so that the moment estimate, now written asβ̂, is providing an estimate of (θw −
θa)/(1 − θa). This result should also hold if all of the sample sizes are large
and approximately equal. In general, however, the usual moment estimate is of a
complex function of theθi ’s andθi i ′ ’s. Alternative statistics lead to estimates of
weighted averages ofθi ’s andθi i ′ ’s, as shown below.

Under the assumption that the same value ofθ applies to each allele at a lo-
cus, Weir & Cockerham (100) combined information over alleles by summing
numerator and denominator separately

θ̂ M =

m∑
u=1

(MSPu − MSGu)

m∑
u=1

[MSPu + (nc − 1)MSGu]
, 5.
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and they found by simulation that this method of weighting over alleles generally
provides low bias and variance. No explicit account is taken of the correlation
among frequencies of different alleles. If data are collected from a series ofL loci,
and ifθ is assumed to apply equally to each locus, then an obvious extension is to
add mean squares over loci:

θ̂ M =

L∑
l=1

ml∑
u=1

(MSPlu − MSGlu)

L∑
l=1

ml∑
u=1

[MSPlu + (nc − 1)MSGlu ]

.

Properties of Moment Estimate

Because of the difficulty in describing the properties of ratio estimates, Dodds
(21) and Weir (97) suggested numerical resampling for obtaining the sampling
distribution of θ̂ M . Resampling over populations would change the structure of
the data, but resampling over loci would exploit the assumption that (unlinked)
loci provide independent replicates of the evolutionary process. Resampling was
also used by Raymond & Rousset (63). Jiang (43) used a Taylor series expansion
and approximate higher-order moments of sample allele frequencies to obtain the
mean and variance of̂θ M . Li (50) appealed to asymptotic theory to show that the
mean square MSPu has a chi-square distribution in the two-allele case,

MSPu ∼ πu[1 + (nc − 1)θ ]χ2
(r −1),

and that the mean square MSGu tends to a constant value ofπu(1 − θ ). This
assumes that theθi ’s are equal and that theθi i ′ ’s are zero. These results allowed
her to derive expressions for the mean and variance ofθ̂ :

E(θ̂ M ) = θ − 2(1− θ )

r − 1

(
1 + (nc − 1)θ

nc

)2

Var(θ̂ M ) = 2(1− θ )2

r − 1

(
1 + (nc − 1)θ

nc

)2

.

The variance formula differs slightly from the variance of the intraclass correlation
given by Fisher (29), but is equal to that result for large sample sizes.

Population-Specific Estimates

If independent populations have different values ofθi , maybe reflecting the dif-
ferences in population size or differences in environmental influences, there is the
danger of having an over-parameterized model. There arer independent sample
allele frequencies̃piu for allele Au. In the two-allele case, this meansr observa-
tions but (r + 1) parameters: the frequencypu and ther values ofθi . It is possible
to construct estimates, but they will not be unique. Form > 2 alleles at a locus,
however, there are more [r(m − 1)] independent sample allele frequencies than
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there are parameters: (m − 1) parameterspu plus r parametersθi . Similarly, for
L > 1 diallelic loci, there are more observations (rL allele frequencies) than there
are parameters (L allele frequencies andr θ ’s). The following discussion assumes
that there are at least as many allele frequencies in the data as there are parameters
to be estimated.

If the terms in the mean square within populations are weighted bynic instead
of ni , the sums of squares corresponding to MSP and MSG have expectations

E
[

r∑
i =1

ni ( p̃iu − p̄u)2

]
= πu

[
r∑

i =1

nicφi − 1∑r
i =1 ni

r∑
i,i ′=1
i 6=i ′

ni ni ′θi i ′

]

E
[

r∑
i =1

nic p̃iu(1 − p̃iu)

]
= πu

[
r∑

i =1

nic −
r∑

i =1

nicφi

]
,

suggesting that, for independent populations (θi i ′ = 0), πu can be estimated as

π̂u =

r∑
i =1

ni ( p̃iu − p̄u)2 +
r∑

i =1
nic p̃iu(1 − p̃iu)

r∑
i =1

nic

.

Therefore, from the relationship

E
[

m∑
u=1

p̃iu(1 − p̃iu)

]
=

(
m∑

u=1

πu

)
(1 − φi ),

a moment estimate ofφi for independent populations is

φ̂i = 1 −

(
r∑

i =1

nic

)
m∑

u=1

p̃iu(1 − p̃iu)

m∑
u=1

r∑
i =1

[
ni ( p̃iu − p̄u)2 + nic p̃iu(1 − p̃iu)

] . 6.

The estimate of the mean of theφi ’s is

ˆ̄φ = 1 −

(
r∑

i =1

nic

)
m∑

u=1

r∑
i =1

p̃iu(1 − p̃iu)

r
m∑

u=1

r∑
i =1

[
ni ( p̃iu − p̄u)2 + nic p̃iu(1 − p̃iu)

] .

A
nn

u.
 R

ev
. G

en
et

. 2
00

2.
36

:7
21

-7
50

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f 
L

au
sa

nn
e 

on
 0

6/
15

/1
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



21 Oct 2002 13:8 AR AR174-GE36-24.tex AR174-GE36-24.SGM LaTeX2e(2002/01/18)P1: IBC

732 WEIR ¥ HILL

When the sample sizes are equal,ni = n for all i,

φ̂i = 1 −

m∑
u=1

p̃iu(1 − p̃iu)

m∑
u=1

[
1

r − 1

r∑
i =1

( p̃iu − p̄u)2 + 1

r

r∑
i =1

p̃iu(1 − p̃iu)

] .

Further, when the numberr of samples is large

φ̂i ≈ 1 −

m∑
u=1

p̃iu(1 − p̃iu)

m∑
u=1

p̄u(1 − p̄u)

ˆ̄φ ≈

m∑
u=1

r∑
i =1

( p̃iu − p̄u)2

r
m∑

u=1

p̄u(1 − p̄u)

.

For each independent locus indexed byl = 1, 2, . . . L, the estimate ofφi may
be written as 1− xli /yl where

xli =
m∑

u=1

p̃liu (1 − p̃liu )

yl = 1
r∑

i =1

nlic

m∑
u=1

r∑
i =1

[
nli ( p̃liu − p̄lu)2 + nlic p̃liu (1 − p̃liu )

]
,

showing the addition of locus subscripts on sample sizes and allele frequencies.
These terms have expectations

E(xli ) = (1 − φi )
ml∑

u=1

πlu

E(yl ) =
ml∑

u=1

πlu .

Information from loci with the same values ofφi can be combined as for the earlier
Weir & Cockerham estimator (100):̂φi = 1 − (

∑
l xli )/(

∑
l yl ). The sampling

distribution of this combined estimate may be found by bootstrapping over loci if
L is not small.

Nicholson et al. (60) were especially interested in SNP loci, which generally
have only two alleles. In that case, the two summands in the sums over allelesu
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are the same and only one needs to be used. Ifp̃i is the frequency of one of the
alleles at a locus, the equal sample size estimate is

φ̂i = 1 − p̃i (1 − p̃i )

1

r − 1

r∑
i =1

( p̃i − p̄)2+1

r

r∑
i =1

p̃i (1 − p̃i )

,

and, for a large number of samples,

φ̂i ≈ 1 − p̃i (1 − p̃i )

p̄(1 − p̄)
.

Averaging over samples recovers the “classical” estimate (27)

ˆ̄φ ≈

r∑
i =1

( p̃i − p̄)2

r p̄(1 − p̄)
.

Care is needed in interpreting the values of the estimatesφ̂i , as differences may
reflect differences among the sample sizesni or among the coefficientsθi , or both.

When the populations are not independent,θi i ′ 6= 0, the estimate ofφi shown
in Equation 6 is actually estimating (φi − θA)/(1 − θA), where

θA =

r∑
i,i ′=1
i 6=i ′

ni ni ′θi i ′

r∑
i,i ′=1,

i 6=i ′

ni ni ′

.

The weighted averageθA reduces to the simple arithmetic mean,θa, of theθi i ′ ’s
when the sample sizes are equal. An estimate ofβi i ′ = (θi i ′ −θA)/(1−θA) is given
by

βi i ′ = θi i ′ − θA

1 − θA
=̂ 1 −

(
r∑

i =1

nic

)
m∑

u=1

[
p̃iu(1 − p̃i ′u) + p̃i ′u(1 − p̃iu)

]
2

m∑
u=1

r∑
i =1

[
ni ( p̃iu − p̄u)2 + nic p̃iu(1 − p̃iu)

] . 7.

where=̂ denotes “is estimated by.” These estimates sum to zero. In the case of only
two samples, this estimate is zero as required. The corresponding single-population
equation is

βi = θi − θA

1 − θA
=̂ 1 −

( r∑
i =1

nic

) m∑
u=1

ni

ni − 1
p̃iu(1 − p̃iu)

m∑
u=1

r∑
i =1

[ni ( p̃iu − p̄u)2 + nic p̃iu(1 − p̃iu)]

. 8.
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This is to replace Equation 6, although the difference between them is trivial for
large sample sizes.

By analogy toθA, the weighted averageθW can be defined as

θW =

r∑
i =1

ni θi

r∑
i =1

ni

,

which reduces to the simple arithmetic average,θw, when the sample sizes are
equal. The quantityβW = (θW − θA)/(1 − θA) can be estimated as

β̂W = 1 −

(
r∑

i =1

nic

)
m∑

u=1

n2
i

ni − 1
p̃iu(1 − p̃iu)(

r∑
i =1

ni

)
m∑

u=1

r∑
i =1

[
ni ( p̃iu − p̄u)2 + nic p̃iu(1 − p̃iu)

] . 9.

For equal sample sizes this reduces to the estimator in Equation 5 given by Weir &
Cockerham (100). Because it serves as an estimator in the case of unequal sample
sizes, however, it may be preferred to the Weir & Cockerham estimator.

There are two unsatisfactory aspects of this development. In the first place,
it is seen that the quantities being estimated depend on the sample sizes, unless
those sizes are equal. A more serious problem is the involvement of the average
between-population relatedness quantityθA. Unless there are grounds for assuming
this quantity is zero, all estimates are relative to that value. This does not prevent
a comparison among the values ofθi or θi i ′ , but it does prevent their absolute
value being estimated. There is the same need for a reference population when
inbreeding coefficientsFIT are to be estimated. The issue is similar to that faced
in the reconstruction of phylogenetic trees. Trees cannot be rooted unless there is
information from an outgroup.

Finally, for large numbers of large samples,

θi − θA

1 − θA
=̂ 1 −

m∑
u=1

p̃iu(1 − p̃iu)

m∑
u=1

p̄u(1 − p̄u)

10.

θi i ′ − θA

1 − θA
=̂ 1 −

m∑
u=1

[ p̃iu(1 − p̃i ′u) + p̃i ′u(1 − p̃iu)]

2
m∑

u=1

p̄u(1 − p̄u)

. 11.
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NORMAL THEORY APPROACH

Moment estimators have the property of being unbiased but little else is known
about their sampling properties. If the sampling distribution for the data is known,
then likelihood methods can be employed. If individuals, and hence genotypes,
are sampled randomly from a single population their counts follow a multinomial
distribution among samples from the same population. When there is random union
of gametes in the population, allele counts are also multinomially distributed over
samples from the population. For large samples, the multinomial distribution can be
approximated by the multivariate normal distribution, and it will now be assumed
that the normal distribution applies also across populations. Normality has also
been assumed by previous authors (51, 60, 81, 87). IfP̃ is the vector of sample
allele frequencies:

P̃ ∼ MVN(P, V),

where

P̃ =


p̃1

p̃2

· · ·
p̃r

 , P =


p

p

· · ·
p

 , V =


V11 V12 · · · V1r

V21 V22 · · · V2r

· · · · · · · · · · · ·
Vr 1 Vr 2 · · · Vrr

 .

The vectors̃pi andp have (m− 1) components̃piu and pu, one for each of (m−
1) of the alleles at the locus. The (m− 1) × (m− 1) matricesV i i ′ have elements
Vii ′uu′ . Wheni = i′ andu = u′ these elements are the variances ofp̃iu , otherwise
they are the covariances ofp̃iu and p̃i ′u′ . Their values are:

Vii ′uu′ =


pu(1 − pu)φi i = i ′, u = u′

−pu pu′φi i = i ′, u 6= u′

pu(1 − pu)θi i ′ i 6= i ′, u = u′

−pu pu′θi i ′ i 6= i ′, u 6= u′.

Overall Estimate

If there is no relationship among alleles from different populations,θi i ′ = 0, then
the vectors̃pi are independent. These vectors also have the same expected value,
but they have the same variances only if theφi values are the same. Unless the
sample sizes are very large, this requires not only equalθi values, but also equal
sample sizesni . Suppose now thatφi = φ, becauseθi = θ and because theni ’s
are either equal or so large that they are approximately equal. The sample allele
frequency vectors̃pi are then independently and identically distributed and, from
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standard theory, the quadratic form

Q =
r∑

i =1

(p̃i − p̄)′V−1
i i (p̃i − p̄)

= 1

φ

r∑
i =1

m∑
u=1

( p̃iu − p̄u)2

p̄u

has a chi-square distribution

Q ∼ φχ2
(r −1)(m−1).

The mean allele frequencies arēpu = ∑r
i =1 ni p̃iu/

∑r
i =1 ni as before, and the

estimate of the common valueθ is

θ̂ N = 1

n − 1

(
n

(r − 1)(m − 1)

r∑
i =1

m∑
u=1

( p̃iu − p̄u)2

p̄u
− 1

)
12.

when the sample sizes are equal, or

θ̂ N = 1

(r − 1)(m − 1)

r∑
i =1

m∑
u=1

( p̃iu − p̄u)2

p̄u
13.

when the sample sizes are large (70). If data are available fromL independent
loci, the lth of which hasml alleles, the sum over loci of the quadratic forms has
a chi-square distribution withd = (r − 1)

∑L
l=1(ml − 1) df, and the estimates are

simply averaged over loci.
From the properties of the chi-square distribution

E(θ̂ N) = θ

Var(θ̂ N) = 2[1 + (n − 1)θ ]2

(n − 1)2d
≈ 2θ2

d
.

Similar expressions were given by Foulley & Hill (31).
The chi-square distribution also provides confidence intervals. For example, if

X0.025 andX0.975 are the 2.5th and 97.5th percentiles of theχ2
d distribution, a 95%

confidence interval is(
d

X0.975

[
θ̂ N + 1

n − 1

]
− 1

n − 1
,

d

X0.025

[
θ̂ N + 1

n − 1

]
− 1

n − 1

)
for equal sample sizes, and (

dθ̂ N

X0.975
,

dθ̂ N

X0.025

)
for large sample sizes.
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Population-Specific Estimates

When the populations are independent,θi i ′ = 0 for all i 6= i ′, but with different
values ofθi , the variance matrixV can be written as a Kronecker product:

V = Π ⊗ Φ,

where

Π =

p1(1 − p1) −p1 p2 · · ·
−p1 p2 p2(1 − p2) · · ·

· · · · · · · · ·



Φ =

φ1 0 · · ·
0 φ2 · · ·

· · · · · · · · ·

 .

If there arer samples andm alleles at the locus,V has determinant

|V| =
(

r∏
i =1

φi

)m(
m∏

u=1

pi

)r

and inverse

V−1 = Φ−1 ⊗ Π−1,

where

Π−1 =


1
p1

+ 1
pm

1
pm

· · ·
1
pm

1
p2

+ 1
pm

· · ·
· · · · · · · · ·



Φ−1 =


1
φ1

0 · · ·
0 1

φ2
· · ·

· · · · · · · · ·

 .

Ignoring terms that do not include the parameters of interest in likelihood
expressions, the log-likelihood function is

ln L = −1

2
ln(|V|) − 1

2
(P̃ − P)′V−1(P̃ − P)

= −m

2

r∑
i =1

ln(φi ) − r

2

m∑
u=1

ln(pu) − 1

2

r∑
i =1

m∑
u=1

( p̃iu − pu)2

φi pu
.

Because thepu’s sum to one, it is necessary to add a Lagrangian term before
maximizing this function in order to find the maximum likelihood estimates of the
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pu’s andφi ’s. The modified function and its derivatives are

ln L = −m

2

r∑
i =1

ln(φi ) − r

2

m∑
u=1

ln(pu) − 1

2

r∑
i =1

m∑
u=1

p̃2
iu

φi pu

+ 1

2

r∑
i =1

1

φi
+ λ

(
m∑

u=1

pu − 1

)

∂ ln L

∂φi
= − m

2φi
− 1

2

m∑
u=1

p̃2
iu

φ2
i pu

− 1

2φ2
i

∂ ln L

∂pu
= − r

2pu
+ 1

2

r∑
i =1

p̃2
iu

φi p2
u

+ λ

∂ ln L

∂λ
=

m∑
u=1

pu − 1.

Setting the derivatives to zero provides equations that need to be solved numeri-
cally. One approach would be to iterate

φi = 1

m

m∑
u=1

( p̃iu − pu)2

pu
14.

pu =

r∑
i =1

(
1 − p̃2

iu

φi pu

)
m∑

u=1

r∑
i =1

(
1 − p̃2

iu

φi pu

) .

Theθi ’s are then recovered from theφi ’s.
In the special case of equalφi ’s (which implies equal sample sizes as well as

equalθi ’s), the log-likelihood becomes

ln L = −rm

2
ln(φ) − r

2

m∑
u=1

ln(pu) − 1

2φ

r∑
i =1

m∑
u=1

p̃2
iu

pu
+ r

2φ
+ λ

(
m∑

u=1

pu − 1

)
This leads to the iterative equations

φ = 1

rm

r∑
i =1

m∑
u=1

( p̃iu − pu)2

pu

pu =

r∑
i =1

(
1 − p̃2

iu

φpu

)
m∑

u=1

r∑
i =1

(
1 − p̃2

iu

φpu

) .
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A comparison with the estimate ofθ in Equations 12 and 13 emphasizes that
the maximum likelihood estimates of allele frequencies are not the sample allele
frequencies (see Appendix), although the two will be equal for largem andr. It
appears to be satisfactory in practice (simulation results not shown) to replacepu

in the estimates ofφi andφ by the sample average values̄pu and change them
divisor to (m− 1):

θ̂ i N = 1

n − 1

(
rn

(r − 1)(m − 1)

m∑
u=1

( p̃iu − p̄u)2

p̄u
− 1

)
. 15.

Averaging the estimates from Equation 15 over samples gives the estimate in
Equation 12 and there is a corresponding simplification for large sample sizesn.
This approximation requires independent populations.

The advantage of the likelihood approach is that hypotheses about theφi ’s can
be tested. The hypothesisH0 : φi = φ can be tested by comparing the likelihoods
maximized under no constraint and under the constraint of the hypothesis.

NUMERICAL RESULTS

The moment estimators discussed here were applied to the simple case of three
populations having the tree structure shown in Figure 1. Data were simulated
assuming a pure drift model, and means and standard deviations of estimates from
1000 replicates are shown in Table 1. The simulation was for a single locus with
m = 5 alleles, all equally frequent initially. Populationi = 0, of size 500 alleles,
resulted from 5 generations of random mating. Populationi = 3 was of size
300 alleles, andt1 + t2 was 20 generations. Populationi = 4, of 500 alleles,
resulted fromt2 = 10 generations of random mating from populationi = 0.

Figure 1 Three-population tree.
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TABLE 1 Moment estimates, using Equations 7 and 8, for populations in
Figure 1. (Parameter values given in text.)

Populations

1 2 3 1&2 1&3 2&3 βW

θ parameter .210 .053 .076 .032 .010 .010

β parameter∗ .196 .036 .060 .015 −.007 −.007 .097

β estimate .195 .033 .060 .017 −.008 −.008 .096

SD of estimate .130 .047 .066 .049 .046 .037 .052

*β = (θ − θA)/(1 − θA)

Populationsi = 1 andi = 2, of 50 and 500 alleles, respectively, resulted from
t1 = 10 generations of random mating after populationi = 4. All sample sizes
wereni = 100, i = 1, 2, 3.

The moment methods were then applied to data made publicly available by the
FBI (12). Three samples, each of about 200 people, were collected from the United
States and typed at 13 microsatellite markers, the “CODIS” set of loci. Sample
properties for these loci are shown in Table 2: the locus name, the number of alleles
ml and the adjusted sample size termsnlc for thelth locus. Estimates of the within-
population coancestriesθi are shown in Table 3, and of the between-population
coancestriesθi i ′ in Table 4.

TABLE 2 Sample properties of FBI data (12)

Heterozygosity

Locus No. Alleles Sample size AA CA HI

D3S135 10 414.6 .763 .795 .719

vWA 10 385.5 .809 .811 .769

FGA 22 385.5 .863 .860 .878

D8S117 13 385.5 .778 .797 .792

D21S11 21 384.8 .861 .853 .811

D18S51 17 385.5 .873 .876 .875

D5S818 10 384.9 .739 .682 .718

D13S31 9 384.8 .688 .771 .827

D7S820 10 414.6 .782 .806 .772

CSF1PO 11 414.6 .781 .734 .707

TPOX 11 414.0 .763 .621 .607

THO1 8 414.6 .727 .783 .757

D16S53 8 412.6 .798 .767 .771

AA: African American, CA: Caucasian, HI: Hispanic.
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TABLE 3 Single-population estimates, from Equation 8,
for FBI data (12)

βi

Locus AA CA HI Average β̂W

D3S135 .010 −.030 .069 .017 .019

vWA .000 −.002 .050 .017 .019

FGA .007 .012 −.008 .003 .006

D8S117 .026 .003 .009 .012 .015

D21S11 −.012 −.003 .047 .012 .014

D18S51 .011 .008 .010 .010 .012

D5S818 −.018 .061 .012 .019 .021

D13S31 .132 .028 −.042 .036 .040

D7S820 .014 −.016 .026 .008 .011

CSF1PO −.048 .015 .051 .006 .008

TPOX −.118 .090 .112 .027 .030

THO1 .078 .008 .041 .043 .045

D16S53 −.011 .028 .024 .014 .016

All loci .010 .017 .032 .020 .020

AA: African American, CA: Caucasian, HI: Hispanic.

The development based on normal theory shown above suggests that sample
variances decrease with the number of alleles per locus, the number of loci, and
the number of samples. The simulation results shown in Table 1 show rather large
standard deviations for the case of only three samples, and this may account for
the very large variation among loci for the results in Tables 3 and 4. Of course it
may also be that the different loci are not providing replicates of the same evolu-
tionary history. Loci may have been subjected to different selection pressures, for
example, and variation amongθ values has been suggested as a means of detecting
selection, as recently reviewed by Vitalis et al. (91) and applied by Marshall &
Ritland (55). If loci can be regarded as providing replication of the same process,
however, then averaging over loci is appropriate. The variation among loci is much
reduced when the three population-specific estimates are averaged, or when only
a common value is estimated.

DISCUSSION

This review has extended Weir & Cockerham (100) in two directions. Most signif-
icantly, it has allowed the separate estimation of population- and population-pair
specific values ofθ . Previously it was assumed that populations were independent
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TABLE 4 Two-population estimates, from Equation 7, for FBI data (12)

β̂i i ′ β̂W

Locus AA&CA AA&HI CA&HI AA&CA AA&HI CA&HI

D3S135 −.018 .026 −.009 .010 .016 .030

vWA −.018 .006 .010 .019 .021 .017

FGA .006 −.002 −.004 .006 .004 .008

D8S117 −.012 .002 .009 .029 .018 .000

D21S11 −.008 −.008 .015 .003 .029 .010

D18S51 −.004 −.008 .011 .016 .021 .001

D5S818 .003 −.039 .033 .021 .037 .006

D13S31 .058 −.021 −.032 .026 .067 .026

D7S820 .001 .004 −.006 .000 .019 .013

CSF1PO −.024 −.009 .034 .010 .012 .002

TPOX −.043 −.053 .097 .030 .049 .007

THO1 −.034 .028 .006 .077 .035 .021

D16S53 −.009 −.009 .018 .020 .018 .011

Total −.008 −.006 .014 .021 .023 .020

AA: African American, CA: Caucasian, HI: Hispanic.

and that either each population had the same value ofθ or a population-average
value was being estimated. The other extension has been the adoption of multi-
variate normal methods as an alternative to the method of moments. There may be
an increase in computational burden and increase in bias with these methods, but
there is the gain of a distributional form for the estimates.

Natural populations of the same species are unlikely to have the same value
of θ , if only because they have different sizes. Although the reconstruction of
intra-specific trees can proceed satisfactorily on the basis of the usual estimates
of averageθ values (65, 98), there are occasions when population-specific values
are needed. There is the immediate issue of degrees of freedom. Forr populations,
there arer within-population values andr(r − 1)/2 between-population values to
be estimated. As there arem − 1 independent allele frequencies for a locus with
m alleles, there are onlyr(m − 1) independent observations in all, so only loci
with large numbers of alleles can be used. WithL loci, there is an increase in the
number of observed allele frequencies toLr(m− 1) and an increase tor(r + 1)/2
+ L(m − 1) parameters, so that even diallelic SNPs can be used. The constraints
are less severe if the between-population coefficientsθi i ′ are ignored, but it needs
to be recognized that the estimates are then actually for a combination of within-
and between-population values.

Under a pure drift model, values ofθ are simple functions of population size
and time. For a pair of populations, the values ofθ within each can be expressed
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Figure 2 Two populations.

in terms ofθ for their most recent common ancestral population. For the situation
in Figure 2:

θi = 1 − (1 − θ12)X
t1
i , i = 1, 2,

whereXi = (2Ni − 1)/2Ni andNi is the constant population size for populations
i = 1, 2. Therefore,

βi = θi − θ12

1 − θ12
= 1 − Xt1

i ≈ t1
2Ni

.

Theβ parameters estimated by Equation 8 for a pair of populations are therefore
furnishing estimates of the time since those populations diverged from an ancestral
population. Although the two times must be the same, the pure drift model shows
that the estimates will be different when the two population sizes are different. The
estimate of Weir & Cockerham (100) is for

βW = θW − θ12

1 − θ12
= 1 − Xt1

1 + Xt1
2

2

≈ 1

2

(
1

2N1
+ 1

2N2

)
t1 = t1

2Nh
,

whereNh is the harmonic mean of the two population sizes. The quantityβW is
proportional to the divergence timet1 (65).

If populationsi = 1, 2, 3, 4 in Figure 1 have sizesNi , and ifXi = (2Ni −1)/2Ni :

θ12 = 1 − (1 − θ0)Xt2
4

θi = 1 − (1 − θ12)X
t1
i = 1 − (1 − θ0)Xt1

i Xt2
4 , i = 1, 2

θ3 = 1 − (1 − θ0)Xt1+t2
3

θ13 = θ23 = θ0.

The β parameters being estimated from the three extant populations 1, 2 and 3
involve the average between-population quantityθA = (θ12+2θ0)/3 although this
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cancels out of the expressions needed to estimate the times:

βi − β12

1 − β12
= 1 − Xt1

i ≈ t1
2Ni

, i = 1, 2

βi − βi 3

1 − β13
= 1 − Xt1+t2

3 ≈ t1 + t2
2N

, i = 1, 2.

Theθ ’s of interest can be expressed in terms of the estimableβ ’s:

θi − θ12

1 − θ12
= βi − β12

1 − β12
, i = 1, 2.

If θ0 is assumed to be zero, the outgroup population 3 allows estimation of all three
measuresθ1, θ2 andθ12 for populations 1 and 2 since thenβ12 = 2θ12/(3 − θ12)
andβi = (3θi − θ12)/(3 − θ12), i = 1, 2.

Moment estimates of theθ ’s involve only the second moments of sample allele
frequencies, whereas likelihood or Bayesian methods use the whole distribution.
Higher-order moments can be expressed in terms of analogs ofθ (96). Ignoring
sample-size terms

E( p̃iu − pu)2 = pu(1 − pu)θ

E( p̃iu − pu)3 = pu(1 − pu)(1 − 2pu)γ

E( p̃iu − pu)4 = pu(1 − pu)(1 − 2pu)(1 − 3pu)δ + 3p2
u(1 − pu)21.

The normal distribution assumption implies thatγ = δ = 0, 1 = θ2, or that there
are no dependencies among a set of four alleles in addition to those between any
pair of them. Assuming that allele frequencies have a Dirichlet distribution over
populations, or thatpiu has a Beta distribution with parameters (1− θ )pu/θ and
(1−θ )(1− pu)/θ (4) implies thatγ = 2θ2/(1+θ ), δ = 6θ3/[(1+θ )(1+2θ )], 1 =
(99). These relations hold for the infinite-allele mutation model, but not for the
stepwise mutation model (35).
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APPENDIX

The failure of the maximum likelihood estimate of mean allele frequencies to
equal their observed values reflects, in part, the approximation of a multinomial
distribution by a multivariate normal. In the general setting of a population with
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proportionsQu in theuth of mcategories, the probability of category countsnu in
a sample of sizen = ∑m

u=1 nu is

Pr({nu}) = n!∏m
u=1 nu!

m∏
u=1

(Qu)nu,

and the means, variances, and covariances of the counts are

E(nu) = nQu

Var(nu) = nQu(1 − Qu)

Cov(nu, nu′ ) = −nQu Qu′ , u 6= u′.

The log-likelihood for the category probabilities is

ln(L({Qu}) =
m∑

u=1

nu ln(Qu).

To accommodate the dependency caused by
∑m

u=1 Qu = 1, the Lagrange mul-
tiplier termλ(1 − ∑m

u=1 Qu) is added to the log-likelihood. Differentiating with
respect toQu gives

∂ ln(L)

∂Qu
= nu

Qu
− λ,

which leads to the maximum likelihood estimates (MLEs)Q̂u = Q̃u whereQ̃u =
nu/n.

For large sample sizes, the multivariate normal distribution provides a good
approximation to the multinomial. The appropriate normal distribution for category
counts will have variance matrixnV whereV hasuth diagonal elementQu(1 −
Qu) and off-diagonal elements− Qu Qu′ , u 6= u′. Omitting themth row and
column removes the singularity of this matrix. The mean vector is thennQ =
n[Q1, Q2, . . . , Qm−1]′. The determinant of the reduced matrix is

∏m
u=1 Qu and its

inverse hasuth diagonal element [1/(Qu)+1/(Qm)] and all off-diagonal elements
equal to 1/(Qm). These results lead to the log-likelihood

ln(L) = −1

2
ln

(
m∏

u=1

Qu

)
− 1

2

m∑
u=1

(nu − nQu)2

nQu
− λ

(
1 −

m∑
u=1

Qu

)
,

where the Lagrange multiplierλ allows allmunknownsQu to be included. Setting
the derivative with respect to eachQu equal to zero gives

1

n

(
λ − 1

2Qu

)
+

(
Q̃u − Qu

Qu
+ (Q̃u − Qu)2

2Q2
u

)
= 0.

Only for largenwill these equations are satisfied byQu = Q̃u, so thatQ̂u = Q̃u are
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approximations to the MLEs in the normal approximation formulation. In general,
however, the MLEs are not simply the observed values.

The Annual Review of Geneticsis online at http://genet.annualreviews.org
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