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ABSTRACT
Passive traffic measurement increasingly employs sampling at the
packet level. Many high-end routers form flow statistics from a
sampled substream of packets. Sampling is necessary in order to
control the consumption of resources by the measurement opera-
tions. However, knowledge of the statistics of flows in theunsam-
pled stream remains useful, for understanding both characteristics
of source traffic, and consumption of resources in the network.

This paper provide methods that use flow statistics formed from
sampled packet stream to infer the absolute frequencies of lengths
of flows in the unsampled stream. A key part of our work is infer-
ring the numbers and lengths of flows of original traffic that evaded
sampling altogether. We achieve this through statistical inference,
and by exploiting protocol level detail reported in flow records. The
method has applications to detection and characterization of net-
work attacks: we show how to estimate, from sampled flow statis-
tics, the number of compromised hosts that are sending attack traf-
fic past the measurement point. We also investigate the impact on
our results of different implementations of packet sampling.

Categories and Subject Descriptors
C.2.3 [Computer–Communications Networks]: Network Opera-
tions—Network monitoring; G.3 [Probability and Statistics]

General Terms
Measurement, Theory

Keywords
Packet Sampling, IP Flows, Maximum Likelihood Estimation

1. INTRODUCTION

1.1 Motivation and Challenges
Passive traffic measurement increasingly employs sampling at

the packet level to control the consumption of resources in mea-
surement subsystems and infrastructure. As a first example, many
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high end routers form flow statistics from only a sampled substream
of packets in order to limit the consumption of memory and pro-
cessing cycles involved in flow cache lookups. As a side benefit, the
rate at which flow statistics are produced is reduced, in most cases,
lowering the requirement for bandwidth to transmit flow statistics
to a collector, and for processing and storage costs at the collector.
As a second example, reports on individual packets are exported
from a router to a collector. Keeping a record of every packet in the
network is infeasible: packet sampling at the router is necessary to
control usage of processing resources, bandwidth to the collector,
and processing and storage costs at the collector.

Sampling entails an inherent loss of information. For some pur-
poses, loss is easy to correct for. Assuming that 1 inN packets are
selected on average, the total number of packets in the stream can
be estimated by multiplying the number of sampled packets byN .
Assuming sampling decisions to be independent of packet size, the
total number of bytes can be estimated in the same way.

However, more detailed characteristics of the original traffic are
not so easily estimated. Quantities of interest include the number of
packets in the flow—we shall refer to this as the flow length—and
the total bytes that those packets contain. When packet sampling
is employed in routers, the measurements reported are those for
the sampled packet stream rather than the original packet stream.
We call the statistics so formed sampled flow statistics. What rela-
tion do the sampled flow statistics bear to the flow statistics of the
original unsampled packet stream? Some original flows will not be
sampled at all, and longer flows are more likely to be sampled than
shorter ones. Thus simply scaling all sampled flow lengths byN
will not give a good estimate of the number of original flows, or the
distribution of their lengths.

Knowing the number and lengths of the unsampled flows re-
mains useful characterizing traffic and the resources required to
accommodate its demands. Here are some applications:

Resources Required for Collecting Flow Statistics:flow cache uti-
lization and the bandwidth for processing and transmitting flow
statistics are sensitive to the sampling rate, the number of flows,
and flow lengths and duration; see [8, 9].

Characterizing Source Traffic:the measured numbers of flows and
the distribution of their lengths have been used to evaluate gains in
deployment of web proxies [11], and to determine thresholds for
setting up connections in flow-switched networks [12].

Characterizing Network Attacks:in particular, estimating the num-
ber of hosts generating the attack traffic in a set of sampled flow
statistics. This will be an application of our method in Section 8.

Although sampled traffic statistics are increasingly being used
for network measurements, to our knowledge no studies have ad-



dressed the problem of estimating the characteristics of flows in the
original unsampled packet stream—in particular the frequencies
at which different numbers of packets per flow occur—from the
same characteristics of flows constructed from the sampled packet
stream. This is the topic addressed in this paper. For the applica-
tions described above, we envisage packet sampled flow statistics
would be either be constructed directly at routers, or formed at a
collector by aggregation of reports on individual sampled packets
collected by a router that forms no flow statistics itself.

Since sampling picks on average 1 inN packets from an orig-
inal flow, it is tempting to propose the following simple scaling
argument: attribute to each sampled flow of length` an original
flow of lengthN`. While simple to implement, this approach has a
number of drawbacks. First, it takes no account of flows that have
none of their packets sampled, and so the total number of original
flows is undercounted. Specifically, the inferred frequencies of the
original flows are biased against (i.e. undercount) shorter flows,
since these are less likely to be sampled. Although it is possible to
compensate any inference against this bias (and we do so later in
the paper) a second drawback remains: the inferred distribution of
flow lengths would be concentrated on integer multiples ofN . In
practice, measured flow length distributions are smoother, so some
effective manner of smoothing would be required. This need is par-
ticularly evident for small flow lengths. WhenN is large, much of
the detail of the original flow length distribution may be at lengths
much shorter thanN , the shortest length that would be inferred
from simple scaling. We need to resolve this detail.

With either independent or periodic sampling, flow with lengths
far shorter thanN will usually have at most one packet sampled.
Hence it is a challenge to use the information contained in the fre-
quencies of sampled flow lengths to resolve what details one can
of the distribution of original flows shorter thanN . Consider the
problem of trying distinguish the following sets of original flows
from their sampled counterparts: (i) 2,000,000 flows of size 1, and
(ii) 1,000,000 original flows of size 2, separately subject to 1 in
N packet sampling. The expected number of sampled packets is
the same in each case. WhenN is as large as 10,000, the mean
number of sampled flows of size 1 is200 (to the nearest integer) in
each case, and there is only a 1% chance that case (ii) yieldsany
sampled flows of length 2. This demonstrates that large differences
in the frequencies of original flows can be difficult to distinguish
on the basis of the frequencies of the sampled flows alone: further
information on the flows is needed to distinguish such cases.

With sampling periodN = 100, there is only a 1% difference
between cases (i) and (ii) in the number of sampled flows of size
1, but there are now an appreciable number of sampled flows of
length 2 in case (ii), 100 on average. Any inference method that is
to distinguish the frequencies of short original flows must therefore
estimate each original frequency as a function of asetof sampled
frequencies, rather than simply scaling a single frequency.

We expect knowledge of inferred frequencies to be limited to
smoothed versions. Consider two original flow length distributions
identical except that one is supported on even lengths, the other on
odd, i.e., one of the distributions can be obtained by shifting the
other one place to the right. From the above arguments it is evident
that for sufficiently large sampling period, the resulting sampled
flow length distributions will be indistinguishable. Thus, the best
we can hope to do is inferred some smoothed set of frequencies.

1.2 Contribution and Outline
The work of this paper meets these challenges using three ap-

proaches. The first formalizes the above scaling argument and
shows in particular how to smooth the distribution so as to more

accurately predict the distributions of flow lengths shorter thanN .
The second uses maximum likelihood estimation and associated
techniques to estimate the full distribution of packet and byte lengths.
The third uses protocol level detail commonly reported in flow
statistics (specifically, TCP flags, when available) to supplement
the flow level information and render the estimators more accurate.

Section 2 describes the sampling model, the use of protocol level
information to supplement sampled flow length statistics, and com-
plexities that arise when multiple measured flows arise from an
original flow. In Section 3 we address another question: to what ex-
tent do the details of the sampling process affect the sampled flow
length distribution, and our ability to infer? Two different imple-
mentations of sampling with the same rate—e.g. periodic and inde-
pendent random sampling—will select different individual packets.
However, we find in practice that the distributions of flow lengths
that they produce are quite similar. If the differences are ignorable,
two useful conclusions may be drawn. First, the implementation
details of these two types of packet sampling are relatively unim-
portant as far as flow length distributions are concerned. This helps
foster uniform interpretation of sampled flow lengths across differ-
ent vendor implementations. Second, when modeling the sampling
process in this paper, we are at liberty to chose the implementation
which is most convenient for computational purposes.

In Section 4 we show how protocol level detail in the flows can
be used to resolve detail of the frequencies of small flow lengths
with the scaling based estimator. Section 5 briefly describes a mo-
ment based estimator, which while having bad statistical proper-
ties itself, is useful in understanding our second main method: a
Maximum Likelihood estimator implemented with the Expectation
Maximization (EM) algorithm, presented in Section 6. Both esti-
mators are evaluated against packet and flow traces in Section 7.

Lastly, the class of inference problems solved here have another
networking application. By letting the variable standing for flow
length instead represent the number of packets produced by a com-
promised host during a certain network attack we can use sampled
flow statistics to infer the total number of compromised hosts that
sent traffic to a network, i.e., including those from which no attack
packets were sampled. This is described in Section 8. We conclude
with some proposals for further work in Section 9.

1.3 Related Work
The work most closely related to this paper is [9], which raised

the idea of inferring properties of original flows, specifically the
mean flow length, from packet sampled flow statistics. The cur-
rent paper goes much further: we infer the complete distribution of
flow lengths. In this paper, the packet sampling model reflects cur-
rent practice: packets are sampled with some average probabilityp.
Other recent work has proposed a different packet sampling scheme
in order to better capture the statistics of longer flows [10]. Adjust-
ment of the sampling rate in order to meet constraints on estimation
accuracy was proposed in [2]. The work of [5] concerned a differ-
ent problem: the efficient estimation of the distribution of packet
sizes under sampling. Independent and periodic1 in N sampling,
as well as stratified sampling out of finitely many bins, were com-
pared. The problem of estimating the number of distinct classes in
a population from the distribution of class frequencies in a sample
has been considered in [13]. In the current setting, this corresponds
to estimating the total number of original flows. However, these
estimators perform poorly in our application. We investigate the
differences between flow length frequencies arising from random
and periodic sampling. Discrepancy measures for fitting measured
distribution to models have been considered in [5] and [19].



2. FLOWS, SAMPLING & INFORMATION

2.1 The Formation of Flow Statistics
An IP flow is a set of packets, observed in the network within

some time period, that share a common key. An example is the
“raw” flows observed at a router, where the flow key distinguishes
individual source and destination IP address, and TCP/UDP port
numbers. In order to compile flow statistics, the router maintains
a table of records indexed by flow key. A flow is said to be active
at a given time if there exists a record for its key. When a packet
arrives at the router, the router determines if a flow is active for the
packet’s key. If not, it instantiates a new record for the packet’s
key. The statistics for the flow are updated for the packet, typically
including counters for packets and bytes, arrival times of the first
and most recent packet of the flow.

Flow statistics can be thought of as summarizing application
level transactions. However, the router does not assume knowl-
edge of application level flow structure, in particular when the flow
has ended. Instead, the router must terminate flows, by criteria that
may include: (i) interpacket timeout: the time since the last packet
observed for the flow exceeds some threshold; (ii) protocol: e.g.,
observation a FIN or RST packet of the Transmission Control Pro-
tocol (TCP) [22]; (iii) memory management: releasing memory for
new flows; (iv) aging: to prevent data staleness, flows are termi-
nated after a given elapsed time since the arrival of the first packet
of the flow. When the flow is terminated, its statistics are exported,
and the associated memory is released for use by new flows.

Flow definition schemes have been developed in research envi-
ronments, see e.g. [1, 4], and are being standardized [16]. Reported
flow statistics typically include the elements of the key, the arrival
times of the first and last packets, and the number of packets and
bytes in the flow. Flow statistics are commonly produced using
Cisco’s NetFlow [3]. In Inmon’s sFlow [14], reports on sampled
packets are exported from routers to a collector. Packet sampling
capabilities for routers are currently being standardized [21]. In this
context, aggregation of sampled packet reports into flow statistics
could be performed in the collection system.

2.2 Flow Semantics and Sampling
A good definition of a flow should encapsulate each application

transaction through the flow summary. However, two factors hin-
der the effectiveness of such encapsulation. First, new applications
may generate packets in patterns that are not well captured by the
flow definitions. Second, packet sampling removes cues for flow
delineation from the packet stream. The FIN packet marking the
end of a TCP connection may not be sampled. Interpacket timeout
is expected to become the dominant method of termination for TCP
flows when the sampling rate is low. We will use the termoriginal
flow to describe a set of application level packet grouped indepen-
dently of any specific termination rule used by routers. Once a mea-
surement mechanism has been defined, we can speak of ameasured
flow. Either type of flow can be calledsampled; for an original flow
this means a substream of packets sampled from it, while a sampled
measured flow means a flow measured from such a substream.

2.3 Dependence on the Sampling Model
Within the functional requirement of sampling packets at a given

rate, a number of different implementations are possible. Imple-
mentations include independent sampling of packets with proba-
bility 1/N , and periodic selection of everyN th packet from the full
packet stream. In both cases we will callN the sampling period,
i.e., the reciprocal of the average sampling rate. To what extent
would the distributions of sampled flow lengths be expected to dif-

fer, and what are the ramifications for modeling and inference?
Periodic sampling introduces sampling correlations, since fol-

lowing selection of a given packet, none of theN − 1 following
packets are selected. Although this biases against selection of mul-
tiple closely spaced packets, there may not be a large impact when
sampling from high speed links that carry many flows concurrently.
In this case, successive packets of a given flow can be interspersed
by many packets from other flows, effectively randomizing the se-
lection. While such randomization may not be effective at lower
speed routers carrying fewer flows (e.g. edge routers), packet sam-
pling is not expected to be so necessary for flow formation in this
case. In Section 3 we test these expectations by implementing in-
dependent and periodic sampling algorithms on packet level traces.

2.4 General Flows and TCP flows
Under independent sampling of packets with probabilityp, the

number of packetsk sampled from an original flow of̀ packets
follows the binomial distributionBp(`, k) =

�
`
k

�
pk(1− p)`−k. In

many implementationsp = 1/N whereN is an integer. In this
paper we will assume this to be the case, although the conclusion,
and usually the proofs, hold independently of this assumption.

For TCP flows, additional information is available in the flow
statistics, at least in NetFlow statistics. The TCP protocol signals
the start and end of connections with packets that are distinguished
by flags in the TCP header; see e.g. [6]. The first packet of a
connection has a SYN flag set; the last has the FIN flag set. A
NetFlow statistic includes the cumulative OR of the code bits of
flow’s packets. By inspecting the code bits of the flow, we may
determine whether a given flag was set in any packet of the flow.
We will refer to a packet with a SYN flag set as a SYN packet, and
a flow containing a SYN packet as a SYN flow. Here we assume:

• original TCP flows are well-behaved in the sense that they
contain exactly one SYN packet.

Under this assumption, the probability that a sampled SYN flow
contains a SYN packet isp, the average packet sampling proba-
bility. In Section 3.3 we will find that NetFlow traces support the
assumption that TCP flows include at least one SYN packet. In
packet traces, an overwhelming majority of TCP flows that con-
tained at least one SYN packet, contained exactly one.

In Section 4 we show that the numbers of measured SYN flows
of can be used to estimate the number of original TCP flows that
were not sampled at all, and hence the total number of original
TCP flows. Exploiting the information in the distribution of short
sampled SYN flows is essential to making accurate prediction of
the distribution of short original flows for scaling-based inference.
Although the method applies only to TCP traffic, this is the ma-
jority of Internet traffic. In one of the traces used in this study,
FLOW, TCP traffic comprises 76% of the flows, 84% of the packets,
and 95% of the bytes. Furthermore, the TCP-specific scaling-based
method does offer some advantages of the EM-based method in es-
timating the total number of flows. The relative advantages of the
two methods are discussed in Section 9.

A parallel methodology could be based on FIN flags, since all
TCP sessions should end with a FIN packet. However, there may
be many flows for which this is not the case: a SYN-flooding denial
of service attack that employs flows comprising one SYN packet.

2.5 Sparse Flows and Splitting
Packet sampling can actuallyincreasethe number of measured

flows in some circumstances. Given a sampling periodN and a
flow interpacket timeoutT , we say that a given original flow of
packets issparseif the typical time between sampled packets ex-



ceedsT . In this case, a single original flow may give rise to multi-
ple flow statistics. Consider an original flow comprisingn pack-
ets distributed over an interval of durationt. The typical time
between sampled packets istN/n, thus sparseness requires that
tN/(nT ) > 1. It also requires that there is typically more than one
sampled packet, i.e.,n/N > 1. Combining, we can say that the
threshold for sparseness is crossed when

t/T > n/N > 1. (1)

Sparseness is most likely to arise in flows containing many packets
occurring with relatively low frequency. It is found that streaming
and multimedia applications can generate sparse flows for settings
of the sampling parameters within a likely operating range: sam-
pling periodN = 100 and flow interpacket timeoutT = 30s; [9].

The potential for flow splitting has ramifications for the present
work. Suppose a sparse original flow is split by sampling into a
number of sampled measured subflows. With no additional infor-
mation other than the flow lengths, the best we can hope is to infer
the distribution of the lengths of a notional set of original subflows,
whose combined length is that of the original flow. Thus in the
presence of splitting, we will tend to infer more, and shorter, flows
than were actually present. There are three ways to ameliorate this:

Suppression of splitting:increasing the flow interpacket timeout
suppresses splitting; from (1) flows are less sparse. However, this
remedy has the potential side effect of combining sampled mea-
sured flows with the same key that came from distinct original
flows. Also, buffer requirements for the flow cache are increased.
In general, it may be desirable to systematically change the flow
interpacket timeout according to the sampling rate.

Surgery on flows:if there is no control over the flow timeout, an-
other possibility is to emulate the effects of increasing timeout by
joining flows with matching keys, qualified by semantic informa-
tion provided in the flow records. For example, a measured TCP
flow containing a SYN packet signifies a starting TCP connection,
so should not be joined to a preceding flow with matching key.

Exploiting protocol information:Since the SYN packet at the start
of a TCP flow is sampled with probabilityp, the number of origi-
nal TCP flows can be estimated from the number of sampled SYN
flows. This limits the amount of surgery that should be performed.

2.6 Experimental Packet and Flow Data
The experimental portion of this work was performed using four

packet traces and a flow trace. TracePEERING was derived from
10,000,000 IP packets seen at a peering link during a period of 37
minutes. TraceCAMPUS was derived from 10,065,600 IP packets
seen at LAN near the border of a campus network during a pe-
riod of 300 minutes. TraceABILENE was collected from an OC48c
link in the Abilene network. This study used 532,567,007 UDP
and TCP packets present during a 2 hour period in the westbound
direction of the Abilene-I IPLS-CLEV trace. TraceCOS was col-
lected at an OC3 link at Colorado State University. This study used
approximately 37 million packets collected during January 25 and
26, 2003; this period was chosen to overlap the onset of the Slam-
mer worm [17], to support the work of Section 8. Further details on
ABILENE andCOScan be found at [18]. TraceFLOW comprised un-
sampled raw NetFlow statistics collected in an aggregation network
during 1 day in September 2002. There were 229,448,460 records,
representing 6,009,481,415 packets and 3,107,927,460,309 bytes.

The packet traces were used as input to applications which sam-
pled packets (either independently or periodically) and formed flow
statistics from the sampled stream. The flow key comprised source
and destination IP addresses and TCP/UDP port numbers. The flow

Sampling PeriodN
packets 10 100 1000
37M 2× 10−5 0.015 0.002
3.7M 0 0.044 0.16
0.37M 0 0.34 0.10

Table 1: Comparing Random and Periodic Sampling: Chi-
square P-values. for sampling periodN = 10, 100 and 1, 000,
using subportions of traceCOS

interpacket timeout was 30 seconds. Protocol specific information,
such as TCP SYN or FIN packets, is not used to demarcate flows.

3. EVALUATING THE SAMPLING MODEL
We investigate the dependence of the frequencies of sampled

flow lengths on whether periodic or simple random packet sam-
pling is employed. We can formulate this question at two levels.
First, we can ask whether the distributions obtained by different
sampling methods are statistically distinguishable; standard statis-
tical tests can be used to determine this. But even if two distribu-
tions are distinguishable, they may not differ to an extent that con-
cerns us in practice. Our second approach is to formulate a notion
of how two distributions might be “close enough” for the purposes
of applications using the distributions, and apply it to the measured
sampled flow length distributions. In both cases we also investigate
the dependence of distinguishability on data size.

3.1 Distinguishing Distributions
Consider two set of sampled flow length frequenciesg = {gi :

i = 1, . . . , n} and g′ = {g′i : i = 1, . . . , n′} created from a
set of original flows,g being produced with independent random
sampling, andg′ by periodic sampling. We takeg as our reference
distribution, and ask whetherg′ would be judged as arising from
the same distribution. The appropriate chi-squared statistic is:

χ =
X

i

(g′i − gi)
2

gi
. (2)

We represent it through the associated one-sided chi-squared P-
valueP (χ), i.e., the proportion of the time that a value ofχ or
greater would be obtained ifg andg′ were drawn from the same
distribution. In hypothesis testing we would fix a significance level
(probability)P0 (e.g. 5%) and reject the (null) hypothesis—thatg′

is drawn from the same distribution asg—if P (χ) < P0.
Table 1 showsP (χ) for traceCOS and subsets comprising the

first 1/10th and1/100th of the packets. Following the recommen-
dation of§4.3 in [23], we binned adjacent frequencies so as to be
no less than5. The number of bins was11 in one case, at least
71 in all others. Using a common significance levelP0 = 5% we
see that in many cases the two distributionsare statistically distin-
guishable, except whenN = 1, 000 or the smallest fraction of the
trace is used. This indicates persistent differences between the two
distributions that are not washed out by averaging over long traces.
The closer agreement for largeN reflects that for higher sampling
periods the difference in the sampling algorithms tends to blur be-
cause most flows that are sampled have only one packet sampled.

3.2 Distributional Discrepancies
Although the length frequency distributionsg andg′ obtained by

random and periodic sampling can be distinguished, the differences
are, in fact, small. Figure 1 displays the frequencies distribution for
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random sampling, and the relative error|1− g′i/gi|. (A small num-
ber of points with smallg′i ≥ gi = 0 are excluded). Although
the relative errors for the larger frequencies are small (1 in 100 or
smaller), they remain large enough to distinguish the distributions
even for large data sets. Such behavior will occur if, for example, a
small subset of the flows are consistently treated differently in the
two sampling methods. Although we do not investigate the origin
of these discrepancies, a candidate subset is those flow contain-
ing packets that are back-to-back in the original stream: successive
back to back packets can never both be periodically sampled.

It is desirable to capture the distributional discrepancies in a sin-
gle measure. Standard measures based on hypothesis tests (such
as those used in a related context in [19]) will blow up for large
datasets since even small persistent errors will eventually exceed
the likely statistical error.

We can deem the two distributions “close enough” for practical
purposes, if the typical relative difference between the frequencies
is sufficiently small. For a given lengthi, we normalize the absolute
difference between the frequencies by their mean value to obtain
the relative difference2|gi − g′i|/(gi + g′i). To obtain the typical
relative difference over alli we average the relative differences that
weights them by the mean values(gi + g′i)/2. Thus we attach
more weight to a relative difference of a given size when it occurs
for a larger frequency. Altogether, this resulted in the following
weighted mean relative difference (WMRD):

WMRD =

P
i |gi − g′i|P

i(gi + g′i)/2
. (3)

TheWMRD for traceCOSis show in Table 2. For the full trace the
WMRD is less than 1% for all sampling periods considered. Similar

Sampling PeriodN
packets 10 100 1000
37M 0.0069 0.0063 0.0015
3.7M 0.023 0.022 0.032
0.37M 0.032 0.039 0.13

Table 2: Comparing Random and Periodic Sampling:WMRD .
for sampling period N = 10, 100 and 1, 000, using subportions
of trace COS
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accuracy was found the tracesABILENE, CAMPUS and PEERING.
Although there is no generally agreed standard for the necessary
accuracy of length distributions, we expect the accuracy to within
1% will be sufficient for many applications.

3.3 TCP Specific Assumptions
We now examine the assumption of Section 2.4 that TCP flows

contain one SYN packet. First: how frequently do TCP flows con-
tain at least one SYN packet? The answer depends on the flow defi-
nition: a short interpacket timeout may split a TCP connection into
several flows, not all of which contain a SYN packet. We find some
indication in theFLOW dataset, where we found that 84% of TCP
flows were SYN flows; similar proportions were found in other
flow traces. Investigating the same question using packet traces is
problematic, since initial SYN packets will not be measured from
flows already in progress when trace collection starts.

Second: how frequently do TCP flows contain at most one packet?
In the packet traces we determined the proportion of those TCP
flows containing at least one SYN packet, that contained exactly
one SYN packet. ForCAMPUS, it was 98.8%; inPEERING94.6%.

A single SYN packet in an original TCP flow is expected to be
the first packet of the flow. However, our method is insensitive to
the position of the SYN packet in the flow, since the probability to
sample a single packet is assumed independent of its position.

3.4 Sampling, Components and Nonadditivity
As discussed further in Section 8, traceCOS contains packets

generated by hosts infected by the Slammer worm. These are man-
ifested as (overwhelmingly) single packet flows. The impact on
the original flow length distribution can be seen in Figure 2, which
shows the flow length distribution of the original traffic, complete,
and with worm packets excluded (upper two curves). The two
curves are practically identical except for flows of length1.

The lower two curves in Figure 2 show the sampled flow length
frequencies for independent sampling with period1, 000. The con-
tribution of the work traffic is barely visible at the scale of the ag-
gregate. This reiterates the example of Section 1.1 where we saw
that sampled flow length distributions alone does not contain suffi-
cient information to infer all details of the original distribution.

The motivates making maximal use of the information that is
present in the flows, or otherwise available. Since different ap-
plications are not expected to exhibit the same flow length distri-



butions, traffic may be segmented into classes of interest, e.g. by
TCP/UDP port number. Both inference techniques presented in this
paper (scaling with enhanced smoothing, and th EM-method) gen-
erally produced estimates that are non-additive in the sampled fre-
quencies. Hence segmentation will reduced cross-contamination of
estimates between applications, and potentially increase accuracy.
As an example, we identify worm traffic by a combination of port
number and packet length, and analyze it separately in Section 8.

Finally, Figure 2 illustrates another point. It is sometimes thought
that the original flow length distribution can be recovered exclu-
sively by scaling and extrapolating the sampled flow length distri-
bution. This would amount to translating the sampled frequencies
curve within the figure. This example shows that no such transla-
tion would yield a convincing overlap with the curve of the original
frequencies.

4. SCALING-BASED INFERENCE & TCP
Our starting point the simple scaling model described in the in-

troduction: an original flow of lengthNk is attributed to each sam-
pled flow of lengthk. To overcome the limitations described in the
introduction, we apply a smoothing to this simple distribution, and
use reported TCP flags to draw inferences about flows for which no
packet was sampled. Thus this method is limited to inferring char-
acteristics of TCP flows, and assumes the TCP flags are reported in
the flow statistics, in the manner of NetFlow.

For a single flow the scaling idea can be made rigorous through
Maximum Likelihood (ML) estimation. The idea of ML-estimation
is that we are given a family of statistical models each member of
which is specified by a parameter valueθ. The actual parameter
value is to be estimated from measured dataX. For each pos-
sible parameterθ, the model specifies the probabilityPθ[X] that
the measured data would be obtained. The maximum likelihood
estimator (MLE)bθ is the value which maximizes this probability:bθ = arg maxPθ[X]. Maximum likelihood estimators enjoy some
useful general properties: they are consistent (they converge to the
true value as the amount of data grows) and they are efficient (they
have minimal asymptotic variance in the same limit).

4.1 Inference of a Single Flow Length
Sampling the packets of an individual flow of length` with prob-

ability p should yield a flow of average length`p, ignoring splitting.
This suggests an inversion based on dividing measured flow lengths
by p. The following lemma partially justifies this approach.

Lemma 1.Consider̀ objects, sampled independently with prob-
ability p < 1, resulting in k objects. Givenk, the likelihood
Bp(`, k) is maximized at̀ = bk/pc, unlessk/p is an positive
integer, in which casek/p− 1 has equal likelihood.

Whenp = 1/N for integralN , bothNk andNk−1 are equally
likely estimators of̀ . In practice we will select̀ = Nk, for the
reason that number of packets sampled from an inferred flow isk,
on average, i.e., the length of the measured flow.

4.2 Estimation of Length Distribution
We assume a set ofn original flows each containing exactly one

SYN packet, withfi the frequencies of flows withi packets. Packet
sampling is independent with probabilityp = 1/N . Let gi be the
frequency of sampled flows withi packets. Section 4.1 suggests
that we estimate frequencies of the lengths of original flows by as-
cribing the weightgj to the original flow lengthNj. This approach
has the drawback of omitting the mass of flows which had no packet
sampled: the total number of flows will be underestimated. Be-
low we describe two methods to estimate the number of unsampled

flows by employing the frequenciesgSYN
i ≤ gi of sampled SYN

flows, i.e. sampled flows that contain a SYN packet. Both methods
build on the simple scaling method described in the introduction.

4.3 Mean Flow Lengths
As reported in [9], thegi andgSYN

i provide two different ways to
estimate the mean flow length.

Lemma 2. (i) M (1) = N
P

i≥1 gSYN
i is an unbiased estima-

tor of the total number of SYN flows.

(ii) g0 = (N − 1)gSYN
1 is an unbiased estimator of the total num-

ber of unsampled SYN flows, and hence, assuming no flow
splitting, M (2) =

P
i≥0 gi is an unbiased estimator of the

total number of SYN flows.

(iii) P = N
P

i≥0 igi is an unbiased estimator of the total num-
ber of packets in the original flows.

We form estimatorsL(i) = P/M (i), i = 1, 2, of the mean
flow length. Each has distinct advantages.L(2) has lower variance,
sinceM (2) counts all flows.M (2) is more susceptible to bias due to
flow splitting, since it counts all sampled flows, whereM (1) counts
at most only one measured flow from each original SYN flow, i.e.
that containing the SYN packet, if sampled.

Having formed estimators of the total number of original flows,
and of the mean packets per flow, our task is to distribute the weight
of this estimate amongst the possible original flow lengths. The
scaling-based estimators that we describe in the rest of this section
essentially mirror the two approaches of calculating the mean num-
ber of flows, and are subject to the same bias and variance effects.

4.4 Scaling Estimate using only SYN Flows
The first scaling-based estimator uses the countsgSYN

i only. Since
the SYN packet is sampled with probability1/N , we attribute a
weight ofN original flows to each sampled SYN flow. For a sam-
pled SYN flow of lengthj, there arej−1 sampled non-SYN pack-
ets, and so we attribute the weight to original flows withN(j − 1)
non-SYN packets. Thus, we start by attributing a weightNgSYN

j to
original flows of length̀ j = 1 + N(j − 1). For j > 1 we can
smooth this weight over an (integer) interval of widthN with `j as
close to its center as possible. This can be done while satisfying the
conservation law that the average number sampled SYN flows and
sampled packets are equal togSYN

j andj respectively.
The casej = 1 is different. This corresponds to original flows

comprising a single SYN packet, and so the number of sampled
non-SYN packets is zero. The only smoothing of the weight of
NgSYN

1 flows that conserves average flow length is that which con-
centrates all the weight at length1. But this is undesirable, since
it leaves a gap in the estimated distribution for which there is no
particular justification in the data.

Clearly we need to extract more information from thegSYN
i in

order to better distribute the weight fromgSYN
1 . Our strategy here

is motivated by the expectation that the dominant contributions to
gSYN
1 andgSYN

2 will be from shorter flows. To see this, assume the
extreme case that original flows all have lengthL. ThenE[gSYN

1 ] =
fLN−1(1−1/N)L−1 andE[gSYN

2 ] = fL(L−1)N−2(1−1/N)L−2,
and we would have

E[gSYN
1 ]

E[gSYN
2 ]

=
N − 1

L− 1
(4)

The point here is thatE[gSYN
1 ] > E[gSYN

2 ] ⇔ N > L. If in our data
gSYN
1 > gSYN

2 , then the dominant flow lengths are expected to be in
the neighborhood ofL = 1 + (N − 1)gSYN

2 /gSYN
1 < N .



To smooth the dominant weight, we use a more detailed argu-
ment. The aim is to jointly smooth the weights ofgSYN

1 andgSYN
2 uni-

formly over integer intervalsI1 = [1, t] andI2 = (t, b3N/2c] re-
spectively, i.e., the weights at points in the two intervals areh1(t) =
NgSYN

1 /t andh2(t) = NgSYN
2 /(b3N/2c − t) respectively. (Since

higher integer multiples ofN are chosen to be at or near midpoints
of intervals of withN , the upper boundaryb3N/2c of I2 lies adja-
cent to the lower boundary of the interval containing the mass from
j = 3). Our task is to chooset.

Using the smoothings described above for a given choice oft,
the expected number of sampled flows with lengthsi = 1 or 2 that
are generated by original flows with lengths inI1 ∪ I2 are

Gi(t) =
h1(t)

N

tX
j=i

B1/N (j − 1, i− 1)

+
h2(t)

N

b3N/2cX
j=t+1

B1/N (j − 1, i− 1) (5)

whereB1/N (`, k) is the binomial probability
�

`
k

�
(1−1/N)`−k/Nk.

From the foregoing discussion, we expect the dominant contribu-
tions togSYN

1 andgSYN
2 to originate in from shorter flows. This mo-

tivates us to choset such that the ratioG1(t)/G2(t) is close to
gSYN
1 /gSYN

2 . Sincet is an integer variable, we cannot expect the ra-
tios to be equal for somet. Instead, we look for

t∗ = inf

�
t ∈ [1, b3N/2c) :

G1(t)

G2(t)
≤ gSYN

1

gSYN
2

�
(6)

Finally, we also wish to avoid havingt too high; otherwise we run
the risk of unduly favoring larger original flow lengths in our esti-
mator, without strong evidence that we should. One measure of the
accuracy of the inferred distribution is comparison of the average
predicted length with the estimatorL(1). A detailed argument that
we do not reproduce here shows that further restrictingt above en-
ables us to bound the mean length according to the inferred distri-
bution to within a small multiple ofL(1). In this paper, we restrictt
by saying thath1(t) shall not be lower thanh2(t), or equivalently,
t < tmax = b3N/2cgSYN

1 /(gSYN
1 + gSYN

2 ). Summarizing, the value
of t we choose ist(1) = min{t∗, tmax} and the inferred original
frequencies are (settingiN (j) = bN(j − 1

2
)c])

bf (1)
i =

8><>:
NgSYN

1 /t(1), i ∈ [1, t(1)]

NgSYN
2

b3N/2c−t(1)
, i ∈ (t(1), b3N/2c],

gSYN
j , i ∈ b(iN (j − 1), iN (j)], j ≥ 3

(7)

4.5 Mixed Scaling Estimator for TCP Flows
We briefly describe a second variant of the scaling approach.

We use now thefull flow countsgi, but mirroring the approach of
Lemma 2(ii), we also use the unbiased estimatorg0 = (N−1)gSYN

1

of the number of unsampled flows. Analogously to Section 4.4, for
i > 2, the weightgi is distributed uniformly around the original
flow lengthNi. The lowest two weightsg0 andgi are distributed
in two regions[1, t(2)] and(t(2), b3N/2c] wheret(2) is determined
from the lowest two weightsg0 andg1 analogously to (6); we omit
the details. We call the resulting inferred frequenciesbf (2)

i :

bf (2)
i =

8<: g0/t(2), i ∈ [1, t(2)]
g1

b3N/2c−t(2)
, i ∈ (t(2), b3N/2c],

gj/N, i ∈ (iN (j), iN (j + 1)], j ≥ 2

(8)

A discussion of the relative advantages of (7) and (8) reflects that
of Section 4.3.bf (2) uses more data, and thus should be subject to

smaller variance. However,bf (1) is less susceptible to the effects of
flow splitting, under our assumptions, since it counts at most one
measured flow from each TCP flow. We compare the experimental
properties ofbf (1) and bf (2) in Section 7.2.

5. INVERSION AND ITS DEFICIENCIES
Before proceeding to the full ML estimator, we briefly examine

an unbiased estimator, then discard it due to high variance. This
estimator exploits the fact the expected values of the sampled fre-
quenciesgi are an invertible function of the original frequenciesfi.
Here we assume independent packet sampling with probabilityp,
we ignore splitting, and assume that the original flow lengths are
bounded above by somem. Under these assumptions, thegi have
expectationE[gj ] =

Pm
i=1 Cji(m)fi, whereCji(m) = Bp(i, j)

for m ≥ i ≥ j ≥ 1 and0 otherwise. We can prove that

Lemma 3.C(m) is invertible: C−1
ij (m) = Bp(i, j)(−p)−j−i

for m ≥ j ≥ i ≥ 1 and0 otherwise.

This suggests estimatingfi from measuredgi as bf = C−1(m)g,
taking asm the maximum desired original flow length. However,
this estimator is not well-behaved. The alternating parity withj of
the componentsC−1

ij (m) makes estimates very sensitive to vari-
ations ing; some of the estimated frequencies may be negative.
This is manifested in the growth of the variance withm: it can be
shown thatVar bfi grows likep−m = Nm. Unless the possible flow
lengths are small, variance rapidly makes the estimator useless.

6. MAXIMUM LIKELIHOOD ESTIMATION
OF FLOW LENGTH DISTRIBUTIONS

While simple to compute, the multiplicative scaling-based es-
timatorsf (1) andf (2) have the disadvantage that their coarseness
increases on the scale ofN . In this section we present a direct MLE
of the original flow length frequencies that, with sufficient data, can
provide smoothing at all scales. The method has two versions. The
first exploits the sampling properties of SYN flows to estimate TCP
flow frequencies; the second does not rely on the properties of SYN
flows and hence is not restricted to TCP traffic. In what follows we
assume that splitting due to sparseness has been suppressed by any
of the means described in Section 2.5.

6.1 ML Estimation for TCP Flows

6.1.1 Likelihood Function and Stationary Points
Let there ben original flows, and letφi denote the probability

that an original flow hasi packets. All original flows are assumed
to contain exactly one SYN packet. We assume independent packet
sampling with probabilityp = 1/N . Our aim is to estimaten and
φ = {φi}, from the frequenciesgSYN = {gSYN

i } of sampled SYN
flows of lengthi. We now derive an expression for log-likelihood
J (n, φ) to obtaingSYN givenn andφ.

The probability the an original SYN flow gives rise to a sampled
SYN flow is p, i.e., the probability that the SYN packet is sam-
pled. Hence the probability to obtainγSYN =

P
i gSYN

i sampled
SYN flows in total iseK(n) = Bp(n, γSYN). Ignoring splitting,
the probability the sampled SYN flow hasj packets is

P
i≥1 φicij

wherecij is the binomial probabilityBp(i − 1, j − 1). Hence
J (n, φ) = K(n) + L(φ), where

L(φ) =
X
j≥1

gSYN
j log

X
i≥j

φicij (9)



K andL can be are maximized independently overn andφ respec-
tively. The maximizer(s)n∗ of K(n) are as described in Lemma 1.
Following Lemma 2(i), we estimaten by M (3) = γp−1.

We wish to maximizeL(φ) subject to the constraintsφ ∈ ∆ =
{φ : φi ≥ 0,

P
i φi = 1}. Candidates for the MLE are stationary

points ofL. Sincelog is concave, so isL and henceL has a unique
stationary pointφ∗. Differentiating (9) w.r.t. φi, subject to the
constraint

P
i φi = 1, thenφ∗ must be such that the derivative:

∂L(φ)

∂φi
=
X

j

cijg
SYN
jP

k≥j φkckj
(10)

is independent ofi for φ∗. Any φ∗i for whichgSYN
j is proportional toP

i≥j φ∗i cij this property, and in particular, the (normalized) inver-

sion estimator
P

j(c
−1)ijg

SYN
j found from Lemma 3. As discussed

in Section 5,φ∗ is not guaranteed to lie in∆: some of theφ∗i may
be negative. In this case, the MLE must lie in the boundary of∆,
but not be a stationary point ofL.

6.1.2 Expectation Maximization Algorithm
Location of a non-stationary MLE on a boundary by analytical

means is generally difficult. We adopt instead a standard itera-
tive approach: the Expectation Maximization (EM) algorithm [7],
whose application we now describe.

(i) Initialization. Pick some initial flow length distributionφ(0), for
example, the estimate obtained in Section 4.2.

(ii) Expectation.Let fSYN
ij denote the frequencies of original SYN

flows from whichj packets are sampled, including the SYN packet.
ThusgSYN

j =
P

i fSYN
ij , while fSYN

i =
P

j fSYN
ij is the frequency of

original SYN flows of i packets whose SYN packet is sampled.
Form the complete data likelihood function assuming knownfSYN

ij :

Lc(φ) =
X

i≥j≥1

fSYN
ij log φicij . (11)

Form the expectationQ(φ, φ(k)) ofLc(φ) conditional on the known
frequenciesgSYN

j , according to a distributionφ(k):

Q(φ, φ(k)) =
X
i≥j

Eφ(k) [f
SYN
ij | gSYN] log φicij (12)

(iii) Maximization.Defineφ(k+1) = arg maxφ∈∆ Q(φ, φ(k)). Dif-

ferentiating to find the stationary pointφ(k+1) in the interior of∆:

φ
(k+1)
i =

Eφ(k) [fSYN
i | gSYN]

γSYN
=

φ
(k)
i

γSYN

X
i≥j≥1

cijg
SYN
jP

l≥j φ
(k)
l clj

(13)

The first equality in (13) arises from the Legendre equations in the
maximization ofQ(φ, φ(k)) subject toφ ∈ ∆. The second equal-
ity can be established through direct computation of the conditional
probability. φ(k+1) can be thought of as refining the estimateφ(k)

as the expected proportions of sampled SYN flows under the prob-
ability distributionφ(k), given the measured frequenciesgSYN.

(iv) Iteration. Iterate steps (ii) and (iii) until some termination cri-
terion is satisfied, e.g., some metric distance between successive
iterates falls below a specified threshold. Letbφ denote the termi-
nation point. We write our estimate of the absolute frequencies of
original flows asbf (3)

i = M (3)bφi.

6.2 ML Estimation for General Flows
For general flows—e.g. those using the UDP protocol that has

no SYN flag or equivalent—we cannot directly estimate the num-
ber of original flows from the number of measured flows. This is

because the probability for a flow to be sampled depends on its
length, whose distribution is what we are trying to determine! In-
stead we adopt a two stage approach. The first stage is to estimate
the frequenciesφ′i of original flows of lengthi conditional on at
least one of its packets being selected. The second stage is to re-
cover the unconditional distribution.

In order to estimateφ′, we can reuse the formulation of Sec-
tion 6.1.2. This involves constructing analogs of the likelihood
functionsL andLc for the conditional length distribution, and in
particular the the iteration (13), with the following changes. Re-
placegSYN by g, γSYN by γ; φ by φ′ andcij by c′ij = Bp(i, j)/(1−
Bp(i, 0), the probability thatj packets are sampled form a flow
of length i, conditionalon j ≥ 1, i.e., that the flow is sampled.
With this modification, the EM iteration yields an estimatebφ′i of φ′i.
The unconditional flow length distributionφ is related to the condi-
tional distributionφ′ throughφ′i = φi(1 − Bp(i, 0))/

P
i φi(1 −

Bp(i, 0)) for i ≥ 1. We estimate the unconditional distribution asbφi =
bφ′i/(1−Bp(i, 0))P

i≥1
bφ′i/(1−Bp(i, 0))

(14)

The frequencies of original flows are estimated asbf (4)
i = γbφi/(1−

Bp(i, 0)) and the total number of original flows by

M (4) =
X

i

bf (4)
i . (15)

6.3 Issues in Implementation and Execution

Computational Complexity.Let imax denote the maximum original
flow length whose frequency is to be estimated. Tabulation of the
binomial coefficients for the iteration isO(i2max). Let jsize denote
the number of non-zero sampled flow length frequenciesgj to be
employed. Then each EM iteration isO(imaxjsize).

Maximum Sampled Flow Length.In the algorithm, all indicesj for
which there were sampled flows of lengthj (i.e. for whichgj > 0)
were included in the iteration. However, the tails of sampled data
sets often exhibit lengthsj for which there is only one or a handful
of sampled flows, and which are isolated in the sense that that there
are no neighboring lengthsj with gj > 0. In some cases there will
be many such flows, even though they represent a small proportion
of all flows. Computational complexity of the iteration can be re-
duced by removing all sampled flows above a certain lengthjmax,
instead treating them with the simple scaling method.

For the general flow estimatorbf (4), jmax can be chosen as fol-
lows. Consider sampling the packets of an original flow of length
Nj independently with probability1/N . The average length of
the sampled flow isj, and the probability that no packet is sam-
pled is (1 − 1/N)Nj ≈ e−j . Thus if simple scaling is applied
to all flows of length greater thanj, the likely error in estimat-
ing the total number of corresponding original flows is aboute−j .
Thus for a given target proportionate errorε, we can choose any
jmax ≥ j(ε) = dlog(1/ε)e. For example,j(10%) = 3 and
j(1%) = 5. On the other hand, there may be reliable sampled
frequencies at lengths longer thanj(ε), and these should not be
excluded from the iteration. We now discuss criteria for reliability.

Criteria for Use of Sampled Frequencies.The examples discussed
toward the end of Section 1.1 show that no inference method can
be expected to conjure the true distribution out of thin data. At very
high sampling rates, the distribution of sampled flow lengths tends
to degenerate onto length1, with relatively small weight at higher
lengths. Conversely, substantially different distributions of original
flow lengths may be distinguished by only small differences in the



sampled frequencies. For this reason, the frequencies included in
the iteration should have some reliability attached to them.

A basic criterion is that they should be distinguishable from0.
We view a small sampled frequencygj as a variable that arose from
a Poisson distribution whose mean is estimated bygj . We can say
thatgj is distinguishable from0 at significance levelε if the proba-
bility that gj would have been zero under the Poisson distribution is
less thanε. Thus, we requiree−gj < ε, in other words,gj ≥ j(ε).

Combining with the criterion of the previous item, we see that
if gj < j(ε) for somej < j(ε), then it is unlikely the sampled
data is sufficiently reliable for inference. Using the same Poisson
model, we can associated with a sampled frequencygj a variance√

gj , and so the likely relative error in1/
√

gj .

Maximum Original Flow Length.We use the likelihood from Lemma 1
to estimate the likely range of values of original flow lengths. Given
a sampled flow lengthj, the (normalized) likelihoodN−1B1/N (`, j)
can be thought of as the posterior distribution of the original flow
length` ≥ j with the non-informative (uniform) prior, i.e., with
no knowledge of the distribution of original flow lengths assumed.
The meanmj and variancevj of this distribution areN(j +1)− 1
and(j + 1)N(N + 1) respectively. Givenjmax, we takeimax =
mj + s

√
vj , i.e., some number of standard deviations above the

mean inferred original flow length. Suppose we want to makes
large enough that the chance the original flow length exceedsimax

is at mostε. Then we should takeθ(s) = 1− ε whereθ is the cu-
mulative distribution function of the standard normal distribution.
But 1 − θ(s) < e−s2/2 and hences <

p
j(ε2). Thus as a rule of

thumb we can takeimax ≈ N(jmax +
p

jmaxj(ε2)).

Termination of the Iteration.The iterated distributions have smooth-
ness inherited from the binomial probabilityb1/N (j, i). Sharp fea-
tures in the original distribution can require extended iteration to
resolve, running the risk of noisy or oscillatory behavior in the iter-
ates as a function of original flow length. In practice we have found
that termination of the iteration around the onset of such oscilla-
tions in the interval[1, Njmax] is effective in capturing features of
the original flow length distribution. The final inferred original fre-
quencies can be obtained by taking the restriction of the iteration
based estimate to[1, Njmax] then concatenating with the scaling
estimate obtained from the with frequenciesgj with j > jmax.

Comparison of Iterative Methods for TCP.Here, either of the esti-
matorsbf (3) and bf (4) can be used. Being based on measured SYN
flows, bf (3) is expected to provide better estimates of the total num-
ber of inferred flows. One the other hand, it makes use of less data,
using only the sampled SYN flows; for this reason the frequency
estimates are expected to have higher variance forbf (3), or, equiva-
lently, be useful for smaller sampling periodsN than isbf (4).

7. EVALUATION AND COMPARISON
In this section we apply the estimators derived in the previous

section to experimental traffic traces. Inference is performed on
flow statistics derived from sampled version of the traces, and com-
pared with the unsampled flow statistics of the original traces. We
compare different estimators applied to the same trace. We use the
weighted mean relative difference as a measure of estimation accu-
racy. In most cases the inferred distributions are accurate to within
a few percent. We expect this will be sufficiently accurate for many
networking applications.

7.1 Data Considerations
In this section we evaluate performance of the estimators of flow

length distributions on the trace datasets. We used the packet trace

datasets described before,CAMPUS, PEERING, ABILENE andCOS.
In experiments evaluating the TCP-specific estimatorsbf (1) andbf (2),
subtraces were extracted fromPEERING and CAMPUS as follows.
Only packets from the set of original TCP flows (as delineated by
a key comprising source and destination IP address and port num-
bers, and a 30 second interpacket timeout) that started with a SYN
packets. This was done primarily to eliminate edge effects: since
the traces were collected by packet monitors, SYN packets from
flows that started before trace collection commenced will not be
present in the trace. This is particularly important for thePEERING

trace, whose length 37 minutes, is comparable with the duration of
some longer flows in the trace. Restricting the original packet data
to flows starting with a SYN packet eliminated 56% of TCP in the
(shorter)PEERING trace, and 15% in the (longer)CAMPUS trace.
Our characterization of this as an edge effect, rather than deviation
from expected TCP behavior, is supported by the fact that in the
traceFLOW of NetFlow statistics, the proportion of TCP flows not
containing a SYN packet was negligible.

Flow splitting wasnot corrected for, so that original flows may
give rise to multiple measured flows. We find below that the es-
timators perform well despite imperfect conformance with the as-
sumptions underlying Sections 4 and 6.

7.2 Scaling-based Estimators:bf (1) and bf (2)

We evaluated the performance of the scaling-based estimatorsbf (1) and bf (2) on theCAMPUSandPEERINGdatasets, for a range of
sampling periodsN . Packet sampling was performed using deter-
ministic sampling of the original packet stream. Some typical out-
comes are displayed in Figure 3, which shows inferred and actual
flow length frequencies for theCAMPUS dataset. The right figure
uses the estimatorbf (1) for sampling periodsN = 10, 30 and100.

Observe that whereas the inferred frequencies are clearly distin-
guishable from the actual frequencies due to their stepwise nature,
the broad features are similar. At short flow lengths, the manage-
ment of the widths of the first two steps reflects well the distribution
of short flow lengths. Without these manipulations, too little weight
would have been attached to the shorter flow lengths. Note that the
original distribution has a strong peak at length5; we cannot hope
to distinguish the frequencies of lengths shorter than this using only
the weights of the first two steps onceN grows much larger than5.
Thus our approach to allocating weights evenly over the first two
intervals represents a conservative use of the information available.

The left hand plot in Figure 3 compares the two estimatorsbf (1)

and bf (2) at sampling periodN = 30. Observebf (1) more closely
captures the peak of the actual frequencies at length 5.bf (2) is
clearly more accurate at longer flow lengths, reflecting its smaller
variance due to its use of data from all flows, not just the SYN
flows used bybf (1). (This behavior suggests possibly combining
the strengths of the two estimators in their best domains).

In order to compare the accuracy ofbf (1) and bf (2) quantitatively,
we calculated the weighted mean relative difference of each in-
ferred frequencies with the actual frequencies. This was done block-
wise, in the sense that for each comparison, the frequencies to be
compared were aggregated over the piecewise constant blocks of
the scaling-based distribution before theWMRD was calculated.
This enables us to factor out the smoothing from the comparison,
so comparing the effects of the different choice of block bound-
aries. TheWMRD values are shown in Table 3. This showsbf (2)

to be uniformly better thanbf (1) in predicting the block weights.
(As remarked above,bf (1) better captures the peak frequency). The
absolute values of theWMRD look quite good. We expect the few
percent error forbf (2) should be acceptable for use in many net-
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Figure 3: SCALING -BASED ESTIMATORS : original TCP flow length distribution and scaling estimators for CAMPUS dataset. Left:
estimator bf (1) for sampling sampling periodsN = 10, 30 and 100. Right: bf (1) and bf (2) for N = 30. Observe better accuracy forbf (1) at lower flow lengths, but greater variability at longer flow lengths.

N
10 30 100bf (1) 8.1% 8.3% 14.5%bf (2) 4.9% 2.3% 2.7%

Table 3: Weighted mean relative difference of estimated with
actual flow length distributions, calculated blockwise.CAMPUS

dataset
N

10 30 100bf (1) 17.2% 20.7% 23.5%bf (2) 17.9% 18.8% 18.4%

Table 4: Weighted mean relative difference of estimated
with actual flow length distributions, unaggregated. CAMPUS

dataset

working applications. TheWMRD of the unaggregated distributions
are shown in Table 4. TheWMRD is substantially greater in the un-
aggregated case, since the smoothing of the inferred distribution
takes no account of distribution within blocks. Nonetheless, we
expect that discrepancies in the distribution of single flow lengths
of roughly 20% may be acceptable for some applications. If only
coarser distributional information is required, Table 3 shows the
block aggregates to be considerably more accurate.

7.3 ML Estimation with the EM algorithm

7.3.1 Estimation of TCP flow lengths:bf (3)

To evaluate the TCP specific version of the EM estimator,bf (3),
we returned to theCAMPUS andPEERINGdatasets. Using the ter-
mination criteria described in Section 6.3, 5 iterations were per-
formed for sampling periodN = 10. The WMRD was 5.0% for
CAMPUS, noticeably better than the unaggregatedWMRD for the
scaling based estimators reported in Table 4.

Accuracy was far worse with sampling periodN = 100, with
WMRD about 50%. This is apparently due to insufficient data. For
both datasets there are only a total of 100 sampled flows of length
greater than 2, and at most 3 flows of any individual length greater
than 3, and in both cases there were only 13 flows of length 3.

N = 10 N = 100

trace class WMRD M (4) WMRD M (4)

COS web 54% 11% 60% 14%
COS DNS 16% 8% 37% 32%

FLOW TCP+UDP - - 11% 4%
FLOW DNS/UDP - - 3% 3%

Table 5: Weighted mean relative difference in flow length fre-
quencies, and estimation error in total number of flowscM (4),
for COS and FLOW datasets

According to the Poisson analysis of Section 6.3, only sampled fre-
quenciesgj for j = 1, 2 have better than around 30% likely accu-
racy, so it is not surprising that iteration is not very accurate with
this amount of data. However, as expected, the TCP based method
estimates the total number of TCP flows withM (3) quite well, to
within 6% for bothN = 10 andN = 100.

7.3.2 Estimation of general flow lengths:bf (4).
We evaluated the general flow length estimatorbf (4) using the

COStrace. We extracted two subtraces: web flows (TCP flows with
destination port 80) and DNS flows (as identified by destination
port 53). The inferred frequencies forN = 10 and N = 100
are shown in Figure 4. Notice the original web frequencies are
not smooth at short lengths; as remarked in Section 6.3 the iter-
ative estimate is smoother than the actual distribution. The DNS
flow length frequencies are comparatively smooth: the iterated pre-
dictions are fairly close. TheN = 100 prediction falls off more
quickly that the actual frequencies. In this case, only the lowest
three sampled frequencies are readily distinguishable from0, so
the lack of accuracy at higher flow lengths is not surprising. For
comparison, the total number of sampled flows bears no clear rela-
tion to the number of original flows: for DNS flows it was 2% and
20% of the respective original flows forN = 10 andN = 100; for
web, these numbers were 48% and 6% respectively.

TheWMRD between the inferred and actual frequencies are shown
in Table 5, along with the error in estimating the total number of
flows with M (4). Accuracy of inferred frequencies for web traf-
fic is only to within about a factor of2. This is a result of the ill
matching of the smooth inferred distribution to the non-smooth ac-
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Figure 4: EM- BASED FLOW LENGTH ESTIMATION OF GENERAL FLOWS : Dataset COS: (Left) Web traffic; (Right) DNS traffic.
Sampling periodsN = 10 and 100. Estimation using bf (4). Note logarithmic axes.

tual frequencies. Similarly with the scaling-based estimators, there
would be closer agreement between slight smoothed (i.e. aggre-
gated) versions of these distributions. Indeed, the total number of
flows is estimated to within about 15%, except for the case of DNS
with N = 100. As mentioned above, there was very little useful
sampled data in this case.

Table 5 also show results for sampling periodN = 100, using
two components of theFLOW dataset: all TCP and UDP traffic, and
DNS/UDP traffic. The results here were noticeably more accurate
that for COS. We believe this is because the original flow length
frequencies are somewhat smoother that those ofCOS. SinceFLOW

does not contain packet level detail, we emulated the effects of in-
dependent packet sampling with probability1/N by taking each
flow of length` and generating a random numberk of packets fol-
lowing the binomial distributionB1/N (`, k). This procedure ig-
nores flow splitting, but using results similar to Theorem 1 of [9],
we are able to show that the total number of sampled flows is un-
derestimated by only about 10% on average for sampling period
N = 100.

8. ESTIMATION OF HOST INFECTIONS
As a concrete example we wish to estimate the number of hosts

that have been compromised in a network attack, and are them-
selves sending out attack traffic. In particular, we wish to estimate
the number of such hosts that send traffic past a given collector
or set of collectors of sampled flow statistics. By combining with
routing information, we may identify the numbers of infected hosts
in different regions of the network.

A recent example of such at attack arose in the MS SQL server
worm that started activity on January 25, 2003; see e.g. [17]. In-
fected hosts send out a sequence attacking packets to randomly cho-
sen destination IP addresses. The source IP address is not spoofed.
The attack packets have the following signature: a 404 byte UDP
packet with destination port 1434. Since the destination IP address
of attack packets is chosen randomly from packet to packet, it is
very unlikely that two attack packets with the same destination IP
address will be present from the same attacker within the flow in-
terpacket timeout. Indeed, [17] reports the largest directly observed
attack rate from a host of 26,000 scans per second. At this rate, the
chance that a given 32 bit address will recur within a 30 second pe-

riod is about0.02%. Thus it is reasonable to assume for simplicity
that all attack packets give rise to a single packet flow statistic.

Assume packet sampling with probabilityp = 1/N . Since the
original flows comprise one packet, then each attack flow is present
in the sampled flow statistics with probabilityp. Thus, counting the
number of distinct source IP addresses will undercount the number
of infected hosts: some hosts may have none of their attack packets
sampled.

We can map the problem of detecting the number of hosts onto
the problem previously solved. For each attacking host (i.e. source
IP address matching the profile) represented in the sampled flow
statistics, we compute the numberi of attack flows detected in the
sampled flow statistics. Letgi denote the absolute frequency of
hosts sourcingi measured attack flows. Then we estimate the distri-
bution of the actual number of hosts sourcingi attacks flows using
the estimatorbf (4). The total number of infected hosts is estimated
asM (4) =

P
i≥1

bf (4).
We tested the method on theCOSdataset. Within the trace there

were 4,542,157 worm packets originating from 49,200 hosts. How-
ever, the distribution was highly skewed in the tail: three hosts orig-
inated 3,005,083 and 978,841 and 38,770 of the worm packets seen
in the trace, i.e. at least 88% of the total worm packets. All other
hosts originated less than 2,250 packets each. We conjecture that
the hosts generating the largest numbers of packets were located in
the campus at which the trace was taken; in this case, most of the
randomly chosen target addresses would be on external networks
and hence be routed past the trace collector.

We performed inference of the total number of attacking hosts
for N = 10 andN = 100. For N = 10, we tookjmax = 50;
there wereM+ = 72 hosts originating more than50 packets. Os-
cillatory behavior in the inferred distribution onset at about 100 it-
erations. At this point there were 43,403 inferred hosts; added with
M+ this yielded about 88% of the true number. ForN = 100, we
took jmax = 10; there wereM+ = 16 originating more than10
sampled packets. Oscillatory behavior of the inferred distribution
onset after about 1000 iterations. At this point there were 27,178
inferred hosts; added withM+ this yielded about 55% of the true
number. By comparison, the number of sampled hosts were 14,667
for N = 10, and 3,469 forN = 100.

For our problem, the first order unsmoothed jackknife estima-



tor Duj1 from [13] takes the formDuj1(N) = d(N)/(1 − (1 −
1/N)g1/q(N)) whered(N) is the number of hosts represented
in the sampled trace, andq(N) the number of sampled packets.
Duj1(10) = 14, 912 andDuj1(100) = 3, 672, little different from
the number ofsampledhosts. Other estimators recommended in
[13] are refinements ofDuj1, and exhibit roughly the same behav-
ior. To be fair, these estimators are intended for use when the sam-
pling rate is not very small; their representation of the frequency
distribution through a limited number of moments cannot be ex-
pect to capture the high variability of actual frequencies.

9. CONCLUSIONS AND FURTHER WORK
This paper was motivated by the desire to understand detailed

flow statistics of Internet traffic on the basis of flow statistics com-
piled from sampled packet streams. Increasingly, only sampled
flow statistics are available: inference is required to determine the
flow characteristics of the original unsampled traffic.

In this paper we have proposed using two inference methods.
The scaling method codified the heuristic that when sampling1 out
of N packets, since sampled flows have roughly1/N of their pack-
ets sampled, the length of the original flow should beN times the
sampled flow. To pin this down we needed to estimate the number
of unsampled flows, this required extracting additional information
in the form of the number of sampled SYN packets.

In the scaling approach, the hard work was in adjusting the low-
est order weights to better reflect the underlying distribution. Clearly
there is scope to extend this approach to better tune the distribution
of weights from longer flows. An open question is whether a sim-
ilar analysis for general flows can be used estimate the number of
unsampled flows in the absence of protocol information.

The EM algorithm is an iterative approach to ML estimation of
flow length frequencies. It does not require protocol level informa-
tion, although it can exploit it. The versatility comes at the cost of
computational complexity, and less control over the total number
of inferred flows. The main challenge for the method is selection
of a good termination criterion. Prolonged iteration was found to
lead to some oscillatory behavior in the tail of the inferred distribu-
tion. Our rule of thumb was to terminate before such oscillations
become pronounced. Estimation of the head of the distribution was
found to be reasonably accurate at this point, to within a factor of
2 at worst, down to a few percent in some cases. In future work we
propose to augment the EM approach with second order methods
to achieve faster convergence. Another avenue is to use prior statis-
tical models for the distributions to favor conformance with model
distributions by use of penalized likelihood [15].
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