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Abstract

FST and kinship are key parameters often estimated in modern population genetics studies

in order to quantitatively characterize structure and relatedness. Kinship matrices have also

become a fundamental quantity used in genome-wide association studies and heritability

estimation. The most frequently-used estimators of FST and kinship are method-of-moments

estimators whose accuracies depend strongly on the existence of simple underlying forms

of structure, such as the independent subpopulations model of non-overlapping, indepen-

dently evolving subpopulations. However, modern data sets have revealed that these sim-

ple models of structure likely do not hold in many populations, including humans. In this

work, we analyze the behavior of these estimators in the presence of arbitrarily-complex

population structures, which results in an improved estimation framework specifically

designed for arbitrary population structures. After generalizing the definition of FST to arbi-

trary population structures and establishing a framework for assessing bias and consistency

of genome-wide estimators, we calculate the accuracy of existing FST and kinship estima-

tors under arbitrary population structures, characterizing biases and estimation challenges

unobserved under their originally-assumed models of structure. We then present our new

approach, which consistently estimates kinship and FST when the minimum kinship value in

the dataset is estimated consistently. We illustrate our results using simulated genotypes

from an admixture model, constructing a one-dimensional geographic scenario that departs

nontrivially from the independent subpopulations model. Our simulations reveal the potential

for severe biases in estimates of existing approaches that are overcome by our new frame-

work. This work may significantly improve future analyses that rely on accurate kinship and

FST estimates.

Author summary

Kinship coefficients and FST, which measure relatedness and population structure, respec-

tively, are important quantities needed to accurately perform various analyses on genetic

data, including genome-wide association studies and heritability estimation. However,
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existing estimators require restrictive assumptions of independence that are not met

by real human and other datasets. In this work we find that existing estimators can be

severely biased under reasonable scenarios, first by theoretically determining their proper-

ties, and then using an admixture simulation to illustrate our findings. In particular, we

find that existing FST estimators are downwardly biased, and that existing kinship matrix

estimators have related biases that are on average downward and of similar magnitude but

vary for every pair of individuals. These insights led us to a new estimation framework for

kinship and FST that is practically unbiased for any population structure, as demonstrated

by theory and simulations. Our new approaches—available as open-source R packages—

are easy to use and are more widely applicable than existing approaches, and they are

likely to improve downstream analyses that require accurate kinship and FST estimates.

Introduction

In population genetics studies, one is often interested in characterizing structure, genetic

differentiation, and relatedness among individuals. Two quantities often considered in this

context are FST and kinship. FST is a parameter that measures structure in a subdivided popula-

tion, satisfying FST = 0 for an unstructured population and FST = 1 if every locus has become

fixed for some allele in each subpopulation. More generally, FST is the probability that alleles

drawn randomly from a subpopulation are “identical by descent” (IBD) relative to an ancestral

population [1, 2]. The kinship coefficient is a measure of relatedness between individuals

defined in terms of IBD probabilities, and it is closely related to FST, since the mean kinship of

the parents in a subpopulation is the FST of the following generation [1].

This work focuses on the estimation of FST and kinship from biallelic single-nucleotide

polymorphism (SNP) data. Existing estimators can be classified into parametric estimators

(methods that require a likelihood function) and non-parametric estimators (such as the

method-of-moments estimators we focus on, which only require low-order moment equa-

tions). There are many likelihood approaches that estimate FST and kinship, but these are lim-

ited by assuming independent subpopulations or Normal approximations for FST [3–11] or

totally outbred individuals for kinship [12, 13]. Additionally, more complete likelihood models

such as that of Jacquard [14] are underdetermined for biallelic loci [15]. Non-parametric

approaches such as those based on the method of moments are considerably more flexible and

computationally tractable [16], so they are the natural choice to study arbitrary population

structures.

The most frequently-used FST estimators are derived and justified under the “independent

subpopulations model,” in which non-overlapping subpopulations evolved independently by

splitting all at the same time from a common ancestral population. The Weir-Cockerham

(WC) FST estimator assumes subpopulations of differing sample sizes and equal per-subpopu-

lation FST relative to the common ancestral population [17]. The Weir-Hill FST estimator gen-

eralized WC for subpopulations with different FST values, and first considered arbitrary

coancestry between subpopulations, resulting in estimates of a linearly-transformed FST,

namely ðFST �
~yÞ=ð1� ~yÞ (where ~y is the unknown mean coancestry value between subpopu-

lations) [4, 18, 19]. Weir-Hill has further evolved into the Weir-Goudet approach, incorporat-

ing relatedness for subpopulations and individuals based on allele matching, also estimating a

linearly-transformed FST [20–22]. Note that the Weir-Hill andWeir-Goudet approaches

intended to estimate such linearly-transformed quantities, which may be negative, and they

did not aim to estimate IBD probabilities [4, 18–22]; in contrast, our goal is to estimate IBD
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probabilities, which must be non-negative and valid probabilities. The “Hudson” FST estimator

[23] assumes two subpopulations with different FST values. All of the previous FST estimators

are ratio estimators derived using the method of moments to have unbiased numerators and

denominators, which gives approximately unbiased ratio estimates when their assumptions

are met [4, 17, 23]. We also evaluate BayeScan [10], which estimates population-specific FST
values using a Bayesian model and the Dirichlet-Multinomial likelihood function—thus repre-

senting non-method-of-moments approaches—but which like other existing FST estimators

also assumes that subpopulations are non-overlapping and evolve independently. These FST
estimators are important contributions, used widely in the field.

Kinship coefficients are now commonly calculated in population genetics studies to capture

structure and relatedness. Kinship is utilized in principal components analyses and linear-

mixed effects models to correct for structure in Genome-Wide Association Studies (GWAS)

[16, 24–30] and to estimate genome-wide heritability [31, 32]. Often absent in previous models

is a clear identification and role of the ancestral population T that sets the scale of the kinship

estimates used. Omission of Tmakes sense when kinship is estimated on an unstructured pop-

ulation (where only a few individual pairs are closely related; there T is the current popula-

tion). Our more complete notation brings T to the fore and highlights its key role in kinship

estimation and its applications. The most commonly-used kinship estimator [16, 27, 30–36] is

also a method-of-moments estimator whose operating characteristics are largely unknown in

the presence of structure. We show here that this popular estimator is accurate only when the

average kinship is zero, which implies that the population must be unstructured.

The goal of our work is to consistently estimate IBD probabilities, namely kinship coeffi-

cients and FST, for which there are currently no consistent estimators under general related-

ness. Estimation of these as probabilities, as opposed to linearly-transformed quantities that

may be negative, is important since the probabilistic definition of these parameters was

required to derive their fundamental connections to many applications in genetics, including

allele fixation [1, 2, 37], DNA forensics [3], and heritability [38, 39]. Although IBD probabili-

ties are not absolute, but rather depend on the choice of ancestral population [40], their values

become fixed upon agreeing to estimate them in terms of the Most Recent Common Ancestor

(MRCA) population, which has long been the choice for models of FST [17, 23, 41] and kinship

estimation from pedigrees [42, 43] or markers [12, 13].

Recent genome-wide studies have revealed that humans and other natural populations are

structured in a complex manner that break the assumptions of the above estimators. Such

complex population structures has been observed in several large human studies, such as the

Human Genome Diversity Project [44, 45], the 1000 Genomes Project [46], Human Origins

[47–49], and other contemporary [50–54] and archaic populations [55, 56]. We have also dem-

onstrated that the global human population has a complex kinship matrix and no independent

subpopulations [57–59]. Therefore, there is a need for innovative approaches designed for

complex population structures. To this end, we reveal the operating characteristics of these fre-

quently-used FST and kinship estimators in the presence of arbitrary forms of structure, which

leads to a new estimation strategy for FST and kinship.

Here, we study existing FST and kinship method-of-moments estimators in models that

allow for arbitrary population structures (see Fig 1 for an overview of the results). First, in

section The generalized FST for arbitrary population structures we present the generalized

definition of FST for arbitrary population structures [57]. In section The kinship and coan-

cestry models we review the kinship model for genotype covariance [1, 14] and the coances-

try model for individual-specific allele frequencies [57, 60, 61]. In section Assessing the

accuracy of genome-wide ratio estimators we obtain new strong convergence results for a

family of ratio estimators that includes the most common FST and kinship estimators. Next,
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we calculate the convergence values of these FST (section FST estimation based on the inde-

pendent subpopulations model) and kinship (section Characterizing a kinship estimator

and its relationship to FST) estimators under arbitrary population structures, where we find

biases that are not present under their original assumptions about structure (panels “Indep.

Subpop. FST Estimator” and “Existing Kinship Estimator” in Fig 1). We characterize the limit

of the standard kinship estimator, identifying complex biases or distortions, in agreement

with recent work [21, 62].

Fig 1. Accuracy of FST and kinship estimators: Overview of models and results.Our analysis is based on the generalized
FST definition (section The generalized FST for arbitrary population structures) and two parallel models: the “Coancestry
Model” for individual-specific allele frequencies (πij), and the “Kinship Model” for genotypes (xij). The “Coancestry in

Terms of Kinship” panel connects kinship (φT
jk, f

T
j ) and coancestry (y

T

jk) parameters (section The kinship and coancestry

models). We use these models to study the accuracy of FST and kinship method-of-moment estimators under arbitrary
population structures. The “Indep. Subpop. FST Estimator” panel shows the bias resulting from the misapplication of FST
estimators for independent subpopulations (F̂ indep

ST ) to arbitrary structures (section FST estimation based on the
independent subpopulations model), as calculated under the coancestry model. The “Existing Kinship Estimator” panel

shows the bias in the standard kinship model estimator (φ̂T;std
jk ) and its resulting plug-in FST estimator (F̂ std

ST ; section

Characterizing a kinship estimator and its relationship to FST), as calculated under the kinship model. The “New Kinship
Estimator” panel presents a new statistic Ajk that estimates kinship with a uniform bias, which together with a consistent

estimator of its minimum value (Âmin) results in our new kinship (φ̂T;new
jk ) and FST (F̂

new
ST ) estimators, which are consistent

under arbitrary population structure (sectionA new approach for kinship and FST estimation).

https://doi.org/10.1371/journal.pgen.1009241.g001
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In section A new approach for kinship and FST estimation we introduce a new approach

for kinship and FST estimation for arbitrary population structures, and demonstrate the

improved performance using a simple implementation of these estimators (panel “New Kin-

ship Estimator” in Fig 1). There are two key innovations. First, based on the method of

moments, we derive a statistic that estimates kinship coefficients up to a shared unknown scal-

ing factor. Second, we propose a new condition, the identification of unrelated individual pairs

in the data, which yields the value of the unknown scaling factor and enables the consistent

estimation of kinship matrices and FST. We present a simple implementation of this second

estimator, based on taking the minimum average statistic value between subpopulations,

which in section Simulations evaluating FST and kinship estimators is shown to perform

well under some misspecification, namely in an admixture scenario that does not actually have

subpopulations [63–65]. Elsewhere, we analyze the Human Origins and 1000 Genomes Project

datasets with our novel kinship and FST estimation approach, where we demonstrate its coher-

ence with the African Origins model, and illustrate the shortcomings of previous approaches

in these complex data [59]. In summary, we identify a new approach for unbiased estimation

of FST and kinship, and we provide new estimators that are nearly unbiased.

Results

The generalized FST for arbitrary population structures

The existing FST definition requires individuals to belong to discrete, non-overlapping subpop-

ulations, so it must be generalized in order to apply to arbitrary population structures (such as

the admixture model with individual-specific ancestry proportions considered in our simula-

tions). Our generalized FST can be understood as a two-step strategy: (1) we define FST on a

per-individual basis, and (2) we define FST for a group of individuals as a weighted average of

the per-individual FST values [57].

The inbreeding coefficient f Tj of an individual j relative to an ancestral population T is

defined as the probability that the two alleles at a random locus are identical by descent (IBD)

[37]. Note that the ancestral population T determines what is IBD: only relationships since T

count toward IBD. This total inbreeding coefficient (f Tj ) is the individual analog of Wright’s

total inbreeding coefficient FIT, the latter of which is the mean f Tj over a group of individuals

[2]. Wright partitioned total inbreeding (FIT) into local (FIS) and structural (FST) coefficients

defined by a subpopulation S that contains all individuals in question and evolved from the

ancestral population T, so that FIS is the inbreeding of individuals relative to S (as opposed to

T) and FST is inbreeding of the subpopulation S relative to T, and these coefficients satisfy (1 −

FIT) = (1 − FIS)(1 − FST) [2]. In our generalized definitions for one individual j, we restrict the

subpopulation of interest (S) to be Lj, called the local subpopulation of j, which is the most

recent subpopulation from which j drew its alleles. In this case, f
Lj
j is the local inbreeding coef-

ficient of j (always relative to its local subpopulation Lj), and f TLj is the structural inbreeding

coefficient of j (equal to the inbreeding of the subpopulation Lj relative to T), and being a spe-

cial case of Wright’s equation, they also satisfy [57]

ð1� f Tj Þ ¼ ð1� f
Lj
j Þð1� f TLj Þ: ð1Þ

Now we discuss estimating the three quantities we just introduced. First, the total inbreed-

ing coefficient (f Tj ) should be estimated from the variance of genotypes, using the practically

unbiased approach we introduce in this work. Second, note that the local inbreeding coeffi-

cient (f
Lj
j ) corresponds to (non-population) family relatedness, so it can be taken to be the
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inbreeding calculated from a pedigree if it is available [42]. Note that estimation of the various

inbreeding coefficients from pedigrees was the only approach available to Wright when he

studied cattle and defined inbreeding and FST [2, 37]. Alternatively, in the absence of pedi-

grees, local inbreeding can be estimated from inferred self-IBD blocks or unusually-large runs

of homozygosity [66–68]. Lastly, since the structural inbreeding coefficient (f TLj ) is given by the

previous two quantities (solving from Eq (1)) by

f TLj ¼
f Tj � f

Lj
j

1� f
Lj
j

; ð2Þ

then we propose estimating f TLj using this equation, from the above estimates of f Tj and f
Lj
j .

As a toy example, suppose we estimate a total inbreeding coefficient of f Tj ¼ 0:15 for a

given individual whose parents are first cousins, then the pedigree expectation for its local

inbreeding is f
Lj
j ¼

1

16
¼ 0:0625, and the structural inbreeding (i.e. the FST of this individual)

using Eq (2) is f TLj � 0:093. However, if in the same example (f Tj ¼ 0:15) the individual

instead had parents who were second cousins, then f
Lj
j ¼

1

64
� 0:0156, then the structural

estimate becomes f TLj � 0:137, which is much closer to the total inbreeding value. Thus,

when total inbreeding estimates are much larger than local inbreeding estimates, correcting

for the latter via Eq (2) may not change the numerical estimate of structural inbreeding by a

meaningful amount. Conversely, as the local inbreeding coefficient is reduced exponentially

with the degree of relatedness of the parents (f
Lj
j ¼

1

4nþ1
for n-th cousins), and as local

inbreeding is required to be recent (to exclude population-level inbreeding), then suffi-

ciently-accurate estimates of structural inbreeding can be obtained by estimating non-zero

local inbreeding only for individuals with the most related parent pairs (above a certain

degree of relatedness).

We define the generalized FST across n individuals as the weighted average of the per-indi-

vidual structural inbreeding coefficients (i.e., individual FST values) [57],

FST ¼
X

n

j¼1

wj f
T
Lj
; ð3Þ

where wj is the weight of individual j and the weights are required to sum to one and be non-

negative. The above is a straightforward generalization of Wright’s FST: if every individual j has

Lj = S as its local subpopulation, then Eq (3) becomes FST ¼
Pn

j¼1 wj f
T
S ¼ f TS , where f

T
S is the

inbreeding coefficient of subpopulation S relative to T, so it has the same meaning as Wright’s

FST (the exact weights here do not matter as long as
Pn

j¼1 wj ¼ 1, as required). Moreover, if

each individual j belongs to one of K subpopulations Su (u 2 {1, . . ., K}) and if subpopulations

are weighted equally (
P

j2Su
wj ¼

1

K
for every Su), then Eq (3) becomes FST ¼

1

K

PK

u¼1 f
T
Su
, so it

equals the (unweighted) average subpopulation-specific FST (i.e., f
T
Su
), which is the FST defini-

tion for multiple subpopulations prevalent in modern work [4, 21, 23]. The last case illustrates

the need for weights, which above downweights individuals that belong to subpopulations

with greater numbers of observations. In general, weights allow adjustment for skewed or

unbalanced samples. However, in complicated scenarios without subpopulations and no obvi-

ous sampling biases, for simplicity we recommend using uniform weights (wj ¼
1

n
) for the tar-

get generalized FST.

PLOS GENETICS Estimating FST and kinship for arbitrary population structures

PLOSGenetics | https://doi.org/10.1371/journal.pgen.1009241 January 19, 2021 6 / 36

https://doi.org/10.1371/journal.pgen.1009241


In terms of total and local inbreeding coefficients (using Eq (2)), the generalized FST equals

FST ¼
X

n

j¼1

wj

f Tj � f
Lj
j

1� f
Lj
j

;

which immediately suggests the estimation strategy when estimates of the total and local

inbreeding coefficients are available. For simplicity, in the remainder of this work we shall con-

sider only locally-outbred individuals (f
Lj
j ¼ 0 for all j), for which the generalized FST simply

equals the weighted mean total inbreeding coefficient:

FST ¼
X

n

j¼1

wj f
T
j : ð4Þ

This greatly simplifies our discussion of bias for all of the FST estimators we analyzed; deter-

mining the statistical properties of local inbreeding estimators is beyond the scope of this

work. Moreover, the assumption of locally-outbred individuals is satisfied in all of the simula-

tions presented in this work.

The kinship and coancestry models

The generalized FST above is given solely in terms of inbreeding coefficients. In order to

establish our results and framework, it is necessary to consider kinship coefficients as well.

The kinship coefficient is the extension of the inbreeding coefficient for a pair of individuals:

the kinship coefficient φT
jk of two individuals j and k relative to an ancestral population T is

the probability that two alleles, chosen at random from each individual at a random locus,

are IBD [1]. Note that the self-kinship coefficient is related to the inbreeding coefficient by

φT
jj ¼

1

2
1þ f Tj

� �

[16].

Kinship coefficients determine the covariance structure of genotypes, which is the key to

estimating kinship and FST from genotype data. We shall concentrate on biallelic variants,

which include single-nucleotide polymorphisms, and are the dominant data from genotyping

microarrays and whole-genome sequencing studies. We shall also restrict our attention to dip-

loid organisms in this present work. Genotypes are encoded into variables xij for each locus i

and individual j that count the number of alleles (dosage) of a given reference type, so for dip-

loid organisms xij = 2 is homozygous for the reference allele, xij = 0 is homozygous for the

alternative allele, and xij = 1 is heterozygous. Based on the definition of the IBD probabilities,

the kinship model determines the mean and covariance structure of the genotype random vari-

ables at neutral loci [1, 2, 14, 16, 37]:

E½xijjT� ¼ 2pT
i ;

Covðxij; xikjTÞ ¼ 4pT
i ð1� pT

i Þφ
T
jk;

ð5Þ

where pT
i is the allele frequency at locus i in the ancestral population T and 0 < pT

i < 1.

The coancestry model resembles the kinship model, but it is formulated in terms of allele

frequencies, which simplifies our analysis of FST estimators for subpopulations as well as yield-

ing kinship coefficients under the admixture model we simulate from in this work. Let πij be

the individual-specific allele frequency (IAF) at locus i for individual j, which is a real number
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between zero and one [60, 61]. Our coancestry model assumes that [57]

E½pijjT� ¼ pT
i ;

Cov ðpij; pikjTÞ ¼ pT
i ð1� pTi Þy

T

jk;
ð6Þ

where yT

jk is the coancestry coefficient between individuals j and k relative to the ancestral pop-

ulation T. This model is inspired by coancestry models for subpopulations common in the FST
literature [4, 5, 21, 23], and exactly equals those models when subpopulation sizes go to infin-

ity, in which case j and k index subpopulations rather than individuals, and πij is interpreted as

the true allele frequency at locus i for subpopulation j.

The coancestry model connects to the kinship model under the additional assumption that

the alleles of an individual j are drawn independently from its IAF,

xijjpij � Binomialð2; pijÞ: ð7Þ

In this case, marginalizing the intermediate IAF random variables (πij) and matching the

resulting genotype moments results in the following equivalence [57]:

y
T

jk ¼

(

f Tj if j ¼ k;

φT
jk if j 6¼ k:

ð8Þ

The coancestry coefficient equals the kinship coefficient between two different individuals, but

the self-coancestry coefficient equals the inbreeding coefficient (rather than the self-kinship

coefficient). However, since in the coancestry model alleles are drawn independently condi-

tional on the IAF in Eq (7), then the only structure present is the population structure, so these

coancestry models cannot generate family structures, unlike the more general kinship model

that also encompasses pedigrees. Therefore, despite Eq (8), the kinship and coancestry are not

equivalent models except under the more restrictive assumptions of the coancestry model.

Thus, individuals drawn from this model are always locally-outbred, so yT

jj ¼ f TLj also equals the

structural inbreeding coefficient, and the generalized FST under the coancestry model is there-

fore

FST ¼
X

n

j¼1

wjy
T

jj ; ð9Þ

which also generalizes previous definitions of FST under coancestry for subpopulations [4, 5,

21, 23]. The kinship and coancestry models, and their connection, is included in the overview

Fig 1.

Assessing the accuracy of genome-wide ratio estimators

In this section we change gears to focus on theoretical convergence properties of two broad

estimator families. The resulting theory will be applied repeatedly to various FST and kinship

estimators of interest in later sections.

Many FST and kinship coefficient method-of-moments estimators are ratio estimators, a

general class of estimators that tends to be biased and to have no closed-form expectation

[69]. In the FST literature, the expectation of a ratio is frequently approximated with a ratio of

expectations [4, 17, 23]. Specifically, ratio estimators are often called “unbiased” if the ratio of

expectations is unbiased, even though the ratio estimator itself may be biased [69]. Here we

characterize the behavior of two ratio estimator families calculated from genome-wide data,
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known as “ratio-of-means” and “mean-of-ratios” estimators [23], detailing conditions where

the previous approximation is justified and providing additional criteria to assess the accuracy

of such estimators.

Ratio estimators. The general problem of forming ratio estimators involves random vari-

ables ai and bi calculated from genotypes at each locus i, such that E[ai] = Aci and E[bi] = Bci
and the goal is to estimate A

B
. A and B are constants shared across loci (given by FST or φ

T
jk),

while ci depends on the ancestral allele frequency pT
i and varies per locus. The problem is that

the single-locus estimator ai
bi
is biased, since E ai

bi

h i

6¼ E½ai �

E½bi �
¼ A

B
, which applies to ratio estimators

in general [69]. Below we study two estimator families that combine large numbers of loci to

better estimate A
B
.

Convergence. The solution we recommend is the “ratio-of-means” estimator Âm

B̂m
, where

Âm ¼
1

m

Pm

i¼1 ai, and B̂m ¼
1

m

Pm

i¼1 bi, which is common for FST estimators [4, 17, 19, 23, 70].

Note that E½Âm� ¼ Acm and E½B̂m� ¼ Bcm, where cm ¼
1

m

Pm

i¼1 ci. We will assume bounded

terms (|ai|, |bi|� C for some finite C), a convergent cm ! c, and Bc 6¼ 0, which are satisfied by

common estimators. Given independent loci, we prove almost sure convergence to the desired

quantity (S1 Text),

Âm

B̂m

¼

1

m

X

m

i¼1

ai

1

m

X

m

i¼1

bi

�!
a:s:

m!1

A

B
; ð10Þ

a strong result that implies E Âm

B̂m

h i

! A
B
, justifying previous work [4, 17, 23]. Moreover, the

error between these expectations scales with 1

m
(S1 Text), just as for standard ratio estimators

[69]. Although real loci are not independent due to genetic linkage, their dependence is very

localized, so this estimator will perform well if the effective number of independent loci is

large.

In order to test if a given ratio-of-means estimator converges to its ratio of expectations as

in Eq (10), the following three conditions can be tested. (i) The expected values of each term ai,

bimust be calculated and shown to be of the form E[ai] = Aci and E[bi] = Bci for some A and B

shared by all loci i and some ci that may vary per locus i but must be shared by both E[ai],

E[bi]. In the estimators we study, A and B are functions of IBD probabilities such as φT
jk and

FST, while ci is a function of pTi only. (ii) The mean cimust converge to a non-zero value for

infinite loci. (iii) Both |ai|, |bi|� Cmust be bounded for all i by some finite C (the estimators

we study usually have C = 1 or C = 4). If these conditions are satisfied, then Eq (10) holds for

independent loci and the A and B found in the first step. See the next section for an example

application of this procedure to an FST estimator.

Another approach is the “mean-of-ratios” estimator 1

m

Pm

i¼1
ai
bi
, used often to estimate kinship

coefficients [16, 27, 30–35] and FST [46]. If each
ai
bi
is biased, their average across loci will also

be biased, even asm!1. However, if E ai
bi

h i

! A
B
for all loci i = 1, . . .,m as the number of indi-

viduals n!1, and Var ai
bi

� �

is bounded, then

1

m

X

m

i¼1

ai

bi

�!
a:s:

n;m!1

A

B
: ð11Þ

Therefore, mean-of-ratios estimators must satisfy more restrictive conditions than ratio-of-
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means estimators, as well as large n (in addition to the largem needed by both estimators), to

estimate A
B
well. We do not provide a procedure to test whether a given mean-of-ratios estima-

tor converges as shown above.

FST estimation based on the independent subpopulations model

Now that we have detailed how ratio estimators may be evaluated for their accuracy, we turn

to existing estimators and assess their accuracy under arbitrary population structures. We

study the FST estimators Weir-Cockerham (WC) [17], Weir-Hill [4], “Hudson” [23], and

Weir-Goudet (equals HudsonK below for biallelic loci; S1 Text) [21]. The panel “Indep.

Subpop. FST Estimator” in Fig 1 provides an overview of our results, which we detail in this

section.

The FST estimator for independent subpopulations and infinite subpopulation sample

sizes. TheWC, Weir-Hill, and Hudson method-of-moments estimators have small sample

size corrections that remarkably make them consistent (as the number of independent locim

goes to infinity) for finite numbers of individuals. However, these small sample corrections

also make the estimators unnecessarily cumbersome for our purposes (see Methods, section

Previous FST estimators for the independent subpopulations model for complete formulas).

In order to illustrate clearly how these estimators behave, both under the independent subpop-

ulations model and for arbitrary structure, here we construct simplified versions that assume

infinite sample sizes per subpopulation (Methods, section Previous FST estimators for the

independent subpopulations model). This simplification corresponds to eliminating statisti-

cal sampling, leaving only genetic sampling to analyze [71]. Note that our simplified estimator

nevertheless illustrates the general behavior of the WC, Weir-Hill, and Hudson estimators

under arbitrary structure, and the results are equivalent to those we would obtain under finite

sample sizes of individuals. While the Hudson FST estimator compares two subpopulations

[23], based on that work we derive a generalized “HudsonK” estimator for more than two sub-

populations in Methods, section Generalized HudsonK FST estimator. Note that HudsonK,

first derived in [58], also equals the Weir-Goudet FST estimator for subpopulations [21] when

loci are biallelic, which was derived independently using allele matching (S1 Text).

Under infinite subpopulation sample sizes, the allele frequencies at each locus and every

subpopulation are known. Let j 2 {1, . . ., n} index subpopulations rather than individuals and

πij be the true allele frequency in subpopulation j at locus i. Note that πij are not estimated allele

frequencies, but rather true subpopulation allele frequencies; this abstraction does not result in

a practical estimation approach, but it greatly simplifies understanding of bias for subpopula-

tions in a setting where there there is no statistical sampling. Although in this analysis of FST
estimators the πij values are applied to subpopulations, for coherence with our previous work

we shall call them “individual-specific allele frequencies” (IAF) [60, 61]. Whether for individu-

als or subpopulations, the key assumption is that IAFs satisfy the coancestry model of Eq (6).

In this special case of infinite subpopulation sample sizes, all of WC, Weir-Hill, and HudsonK

simplify to the following FST estimator for independent subpopulations (“indep”; derived in

Methods, section Previous FST estimators for the independent subpopulations model):

p̂T
i ¼

1

n

X

n

j¼1

pij; ð11Þ

ŝ2

i ¼
1

n� 1

X

n

j¼1

ðpij � p̂T
i Þ

2
; ð12Þ
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F̂
indep
ST ¼

X

m

i¼1

ŝ
2

i

X

m

i¼1

p̂T
i 1� p̂T

i

� �

þ
1

n
ŝ

2

i

: ð13Þ

The goal is to estimate FST ¼
1

n

Pn

j¼1 y
T

jj , which is the special case of Eq (9) that weighs every

subpopulation j equally (wj ¼
1

n
8j).

FST estimation under the independent subpopulations model. Under the independent

subpopulations model yT

jk ¼ 0 for j 6¼ k, where T is the most recent common ancestor (MRCA)

population of the set of subpopulations. Note that the estimator in Eq (13) can be derived

directly from Eq (6) and these assumptions using the method of moments (ignoring the exis-

tence of previous FST estimators; S1 Text). The expectations of the two recurrent terms in Eq

(13) are

E
1

m

X

m

i¼1

ŝ
2

i

�

�

�

�

�

T

" #

¼ pð1� pÞTFST;

E
1

m

X

m

i¼1

p̂T
i 1� p̂T

i

� �

�

�

�

�

�

T

" #

¼ pð1� pÞT 1�
FST

n

� �

; where

pð1� pÞT ¼
1

m

X

m

i¼1

pTi 1� pT
i

� �

:

Eliminating pð1� pÞT and solving for FST in this system of equations recovers the estimator in

Eq (13).

Before applying the convergence result in Eq (10), we test that the three conditions listed in

section Assessing the accuracy of genome-wide ratio estimators are met. Condition (i): The

locus i terms are ai ¼ ŝ
2

i and bi ¼ p̂T
i 1� p̂T

i

� �

þ 1

n
ŝ2

i , which satisfy E[ai] = Aci and E[bi] = Bci

with A = FST, B = 1, and ci ¼ pTi ð1� pT
i Þ. Condition (ii): cm ! c ¼ E½pT

i ð1� pT
i ÞjT� 6¼ 0 over

the pT
i distribution across loci. Condition (iii): Since 0 � pij; p̂

T
i � 1, then 0 � ŝ

2

i � 1 and

0 � p̂T
i 1� p̂T

i

� �

� 1

4
, and since n� 2, C = 1 bounds both |ai| and |bi|. Therefore, for indepen-

dent loci,

F̂
indep
ST �!

a:s:

m!1
FST:

FST estimation under arbitrary coancestry. Now we consider applying the independent

subpopulations FST estimator to dependent subpopulations. The key difference is that now

y
T

jk 6¼ 0 for every (j, k) will be assumed in our coancestry model in Eq (6), and now Tmay be

either theMRCA population of all subpopulations or a more ancestral population. In this general

setting, (j, k) may index either subpopulations or individuals. The two terms of F̂ indep
ST now satisfy

E
1

m

X

m

i¼1

ŝ
2

i

�

�

�

�

�

T

" #

¼ pð1� pÞT FST � y
T

� � n

n� 1
;

E
1

m

X

m

i¼1

p̂T
i 1� p̂T

i

� �

�

�

�

�

�

T

" #

¼ pð1� pÞTð1� y
TÞ;
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where yT ¼ 1

n2

Pn

j¼1

Pn

k¼1 y
T

jk is the mean coancestry with uniform weights. There are two equa-

tions but three unknowns: FST, y
T , and pð1� pÞT . The independent subpopulations model satis-

fies yT ¼ 1

n
FST, which allows for the consistent estimation of FST. Therefore, the new unknown

y
T precludes consistent FST estimation without additional assumptions. As shown later, our

additional assumption is that we can identify unrelated individuals in the data, which determines

all unknowns. We defer our complete solution to this problem until kinship and its estimation

challenges have been presented.

The FST estimator for independent subpopulations converges more generally to

F̂
indep
ST �!

a:s:

m!1

FST �
~yT

1� ~yT
; ð14Þ

(the conclusion of panel “Indep. Subpop. FST Estimator” in Fig 1), where

~yT ¼
1

n� 1
nyT � FST

� �

¼
1

nðn� 1Þ

X

j 6¼k

y
T

jk

is the average of all between-subpopulation coancestry coefficients, in agreement with related

calculations regarding the WC andWeir-Hill estimators [4, 21]. Therefore, under arbitrary

structure the independent subpopulations estimator’s bias is due to the coancestry between

subpopulations. While the limit in Eq (14) appears to vary depending on the choice of T, it is

in fact a constant with respect to T (proof in S1 Text).

Since 1

n
FST � y

T � FST (S1 Text), this estimator has a downward bias in the general setting:

it is asymptotically unbiased (F̂ indep
ST �!

a:s:
m!1 FST) only when y

T ¼ 1

n
FST, while bias is maximal

when y
T ¼ FST, where F̂

indep
ST �!

a:s:
m!1 0. For example, ifmin yT

jk ¼ 0 so the MRCA population T

is fixed, but n is large and yT

jk � FST for most pairs of subpopulations, then y
T � FST as well,

and F̂
indep
ST � 0. Therefore, the magnitude of the bias of F̂ indep

ST is unknown if yT is unknown, and

small F̂ indep
ST estimates may arise even if FST is very large.

Coancestry estimation as a method of moments. Since the generalized FST is given by

coancestry coefficients yT

jj in Eq (9), a new FST estimator could be derived from estimates of yT

jj .

Here we attempt to define a method-of-moments estimator for yT

jk, and find an underdeter-

mined estimation problem, just as for FST. This is consistent with IBD parameters in general

requiring a reference population to be determined [40], whereas in this subsection this refer-

ence population is unspecified.

Given IAFs and the coancestry model of Eq (6), the first and second moments that average

across loci are

E
1

m

X

m

i¼1

pij

�

�

�

�

�

T

" #

¼ pT; ð15Þ

E
1

m

X

m

i¼1

pijpik

�

�

�

�

�

T

" #

¼ p2T þ pð1� pÞTyT

jk; ð16Þ

where pT ¼ 1

m

Pm

i¼1 p
T
i , p

2T ¼ 1

m

Pm

i¼1 ðp
T
i Þ

2
, and pð1� pÞT is as before.

Suppose first that only yT

jj are of interest. There are n estimators given by Eq (16) with j = k,

each corresponding to an unknown y
T

jj . However, all these estimators share two nuisance

parameters: pT and p2T . While pT can be estimated from Eq (15), there are no more equations
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left to estimate p2T , so this system is underdetermined. The estimation problem remains

underdetermined if all nðnþ1Þ
2

estimators in Eq (16) are considered rather than only the j = k

cases. Therefore, we cannot estimate coancestry coefficients consistently using only the first

two moments without additional assumptions.

Characterizing a kinship estimator and its relationship to FST

Given the biases we see for F̂ indep
ST under arbitrary structures in the previous section, we now

turn to the generalized definition of FST and pursue an estimate of it. Recall that our general-

ized FST in Eq (3) is defined in terms of inbreeding coefficients, which are a special case of the

kinship coefficient. Kinship coefficients also determine the bias of F̂ indep
ST in Eq (14) (since coan-

cestry and kinship coefficients are closely related: see panel “Coancestry in Terms of Kinship”

in Fig 1). Therefore, we will consider estimates of kinship and inbreeding in this section. Esti-

mating kinship is also important for GWAS approaches that control for population structure

[16, 24–35, 72, 73].

In this section, we focus on a standard kinship method-of-moments estimator and calculate

its limit for the first time (panel “Existing Kinship Estimator” in Fig 1). We study estimators

that use genotypes or IAFs, and construct FST estimators from their kinship estimates. We find

biases comparable to those of F̂ indep
ST in the previous section, and define unbiased FST estimators

that require knowing the mean kinship or coancestry, or its proportion relative to FST. The

results of this section directly motivate and help construct our new kinship and FST estimation

approach in the following section.

Characterization of the standard kinship estimator. Here we analyze a standard kinship

estimator that is frequently used [16, 27, 30–36]. We generalize this estimator to use weights in

estimating the ancestral allele frequencies, and we write it as a ratio-of-means estimator due to

the favorable theoretical properties of this format as detailed in the earlier section Assessing

the accuracy of genome-wide ratio estimators:

p̂T
i ¼

1

2

X

n

j¼1

wjxij; ð17Þ

φ̂T;std
jk ¼

X

m

i¼1

ðxij � 2p̂T
i Þðxik � 2p̂T

i Þ

4
X

m

i¼1

p̂T
i ð1� p̂T

i Þ

: ð18Þ

The estimator in Eq (18) resembles the sample covariance estimator applied to genotypes,

but centers by locus i rather than by individuals j and k, and normalizes using estimates

of 4pT
i ð1� pT

i Þ. We derive Eq (18) directly using the method of moments in S1 Text. The

weights in Eq (17) must satisfy wj> 0 and
Pn

j¼1 wj ¼ 1, so that 0 � p̂T
i � 1 and E½p̂T

i jT� ¼ pT
i .

Utilizing the kinship model for genotypes from Eq (5), we find that Eq (18) converges to

φ̂T;std
jk �!

a:s:

m!1

φT
jk � φT

j � φT
k þ φT

1� φT
; ð19Þ

where φT
j ¼

Pn

k0¼1 wk0φ
T
jk0 and φT ¼

Pn

j0¼1

Pn

k0¼1 wj0wk0φ
T
j0k0 , which agrees with related deriva-

tions [21, 62]. (This is the conclusion of panel “Existing Kinship Estimator” in Fig 1; see S1

Text for intermediate calculations that lead to Eq (19).) Therefore, the bias of φ̂T;std
jk varies per

pair of individuals j and k. Analogous distortions have been observed for sample covariances
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of genotypes [74]. The limit of φ̂T;std
jk in Eq (19) is constant with respect to T (proof in S1 Text).

Similarly, inbreeding coefficient estimates derived from Eq (18) converge to

f̂ T;stdj ¼ 2φ̂T
jj � 1�!

a:s:

m!1

f Tj � 4φT
j þ 3φT

1� φT
: ð20Þ

The difference between the bias of φ̂T;std
jk for j 6¼ k in Eq (19) and f̂ T;stdj in Eq (20) is visible in the

kinship estimates shown toward the end of the results section. The limits of the ratio-of-means

versions of two more f Tj estimators [32] are, if p̂T
i uses Eq (17),

f̂ T;stdIIj ¼ 1�

X

m

i¼1

xijð2� xijÞ

2
X

m

i¼1

p̂T
i ð1� p̂T

i Þ

�!
a:s:

m!1

f Tj � φT

1� φT
;

f̂ T;stdIIIj ¼

X

m

i¼1

x2ij � ð1þ 2p̂T
i Þxij þ 2ðp̂T

i Þ
2

2
X

m

i¼1

p̂T
i ð1� p̂T

i Þ

�!
a:s:

m!1

f Tj þ φT � 2φT
j

1� φT
:

ð21Þ

The estimators in Eqs (18) and (21) are unbiased when p̂T
i is replaced by pT

i [16, 32, 36], and

are consistent when p̂T
i is consistent [60]. Surprisingly, p̂

T
i in Eq (17) is not consistent (it does

not converge almost surely to pTi ) for arbitrary population structures, which is at the root of

the bias in Eqs (19) to (21). In particular, although p̂T
i is unbiased, its variance (S1 Text, and

some special cases shown elsewhere, e.g., [19]),

Var ðp̂T
i jTÞ ¼ pTi ð1� pT

i Þφ
T; ð22Þ

may be asymptotically non-zero as n!1, since pT
i 2 ð0; 1Þ is fixed and limn!1φ

T may take

on any value between zero and one for arbitrary population structures. Further, φT ! 0 as

n!1 if and only if φT
jk ¼ 0 for almost all pairs of individuals (j, k). These observations hold

for any weights such that wj > 0;
Pn

j¼1 wj ¼ 1. An important consequence is that the plug-in

estimate of pT
i ð1� pTi Þ is biased (S1 Text),

E½p̂T
i ð1� p̂T

i ÞjT� ¼ pT
i ð1� pT

i Þð1� φTÞ;

which is present in all estimators we have studied.

Estimation of coancestry coefficients from IAFs. Here we form a coancestry coefficient

estimator analogous to Eq (18) but using IAFs. Assuming the moments in Eq (6), this estima-

tor and its limit are

p̂T
i ¼

X

n

j¼1

wjpij; ð23Þ

ŷ
T;std
jk ¼

X

m

i¼1

ðpij � p̂T
i Þðpik � p̂T

i Þ

X

m

i¼1

p̂T
i ð1� p̂T

i Þ

�!
a:s:

m!1

y
T

jk � y
T
j � y

T
k þ y

T

1� yT
; ð24Þ

where yT
j ¼

Pn

k¼1 wky
T

jk and y
T ¼

Pn

j¼1

Pn

k¼1 wjwky
T

jk are analogous to φ
T
j and φT . Eq (23)
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generalizes Eq (11) for arbitrary weights. Thus, use of IAFs does not ameliorate the estimation

problems we have identified for genotypes. Like Eq (22), p̂T
i in Eq (23) is not consistent because

Varðp̂T
i jTÞ ¼ pTi ð1� pT

i Þy
T may not converge to zero for arbitrary population structures,

which causes the bias observed in Eq (24).

FST estimator based on the standard kinship estimator. Since the generalized FST is

defined as a mean inbreeding coefficient in Eq (3), here we study the FST estimator constructed

as F̂ std
ST ¼

Pn

j¼1 wj f̂
T;std
j where f̂ T;stdj is the inbreeding estimator derived from the standard kin-

ship estimator. Although f̂ T;stdj is biased, we nevertheless plug it into our definition of FST so

that we may study how bias manifests. Note that we do not recommend utilizing this FST esti-

mator in practice, but we find these results informative for identifying how to proceed in

deriving new estimators in the following section.

Remarkably, the three f Tj estimators in Eqs (20) and (21) give exactly the same plug-in F̂ std
ST if

the weights in FST and p̂T
i in Eq (17) match, namely

F̂ std
ST ¼

X

n

j¼1

wj f̂
T;std
j ¼

X

m

i¼1

X

n

j¼1

wjðxij � 2p̂T
i Þ

2

2
X

m

i¼1

p̂T
i ð1� p̂T

i Þ

� 1�!
a:s:

m!1

FST � φT

1� φT
; ð25Þ

where the limit assumes locally-outbred individuals so Eq (4) holds. The analogous FST estima-

tor for IAFs and its limit are

F̂ std
ST ¼

X

n

j¼1

wjŷ
T;std
jj ¼

X

m

i¼1

X

n

j¼1

wjðpij � p̂T
i Þ

2

X

m

i¼1

p̂T
i ð1� p̂T

i Þ

�!
a:s:

m!1

FST � y
T

1� yT
: ð26Þ

The estimators in Eqs (25) and (26) for individuals and their limits resemble those of classical

FST estimators for populations of the form
s2p

pð1�pÞ
[4, 5]. F̂ std

ST in Eq (26) for subpopulations j with

uniform weight and one locus is also GST for two alleles [75]. Compared to F̂ indep
ST in Eq (13),

F̂ std
ST in Eq (26) admits arbitrary weights and, by forgoing bias correction under the indepen-

dent subpopulations model, is a simpler target of study.

Like F̂ indep
ST in Eq (13), F̂ std

ST in Eqs (25) and (26) are downwardly biased since 0 � φT; yT . F̂ std
ST

in Eq (26) may converge arbitrarily close to zero since yT can be arbitrarily close to FST (S1

Text). Moreover, although φT � y
T for large n (see Eq (8) and panel “Coancestry in Terms of

Kinship” in Fig 1), in extreme cases φT can exceed FST under the coancestry model (where

y
T � φT) and also under extreme local kinship, where F̂ std

ST in Eq (25) converges to a negative

value.

Adjusted consistent oracle FST estimators and the “bias coefficient”. Here we explore

two adjustments to F̂ std
ST from IAFs in Eq (26) that rely on having minimal additional informa-

tion needed to correct its bias. These “oracle” approaches require information that is not

known in practice, but this exercise helps us understand the problem more deeply and finds

further connections between the various FST estimators.

If yT is known, the bias in Eq (26) can be reversed, yielding the consistent estimator

F̂ 0ST ¼ F̂ std
STð1� y

TÞ þ y
T�!

a:s:

m!1
FST: ð27Þ
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Consistent estimates are also possible if a scaled version of yT is known, namely

sT ¼
y
T

FST

¼

X

n

j¼1

X

n

k¼1

wjwky
T

jk

X

n

j¼1

wjy
T

jj

; ð28Þ

which we call the “bias coefficient” and which has interesting properties. The bias coefficient

quantifies the departure from the independent subpopulations model by comparing the mean

coancestry (yT

jk) to the mean inbreeding coefficient (yT

jj ), and given FST> 0 satisfies 0< sT� 1

(S1 Text). The limit in Eq (26) in terms of sT is

F̂ std
ST�!

a:s:

m!1
FST

1� sT

1� sTFST

: ð29Þ

Treating the limit as equality and solving for FST yields the following consistent estimator:

ŝ2

i ¼
1

1� sT

X

n

j¼1

wjðpij � p̂T
i Þ

2
; ð30Þ

F̂ 00ST ¼
F̂ std

ST

1� sTð1� F̂ std
STÞ
¼

X

m

i¼1

ŝ
2

i

X

m

i¼1

p̂T
i ð1� p̂T

i Þ þ sTŝ2

i

�!
a:s:

m!1
FST: ð31Þ

Note that ŝ2

i and F̂
indep
ST from Eqs (12) and (13) are the special case of Eqs (30) and (31) for uni-

form weights and sT ¼ 1

n
; hence, F̂ 00ST generalizes F̂

indep
ST .

Lastly, using either Eqs (26) or (29), the relative error of F̂ std
ST converges to

1�
F̂ std

ST

FST

�!
a:s:

m!1

y
Tð1� FSTÞ

FSTð1� yTÞ
¼ sT

1� FST

1� sTFST

; ð32Þ

which is approximated by sT if FST� 1, hence the name “bias coefficient”. Note sT varies

depending on the choice of T, which is necessary since FST (and hence the relative bias of F̂
std
ST

from FST) depends on the choice of T.

A new approach for kinship and FST estimation

Here, we propose a new estimation approach for kinship coefficients that has properties favor-

able for obtaining nearly unbiased estimates (panel “New Kinship Estimator” in Fig 1). These

new kinship estimates yield an improved FST estimator. We present the general approach and

implement a simple version of one key estimator that results in the complete proof-of-princi-

ple estimator that is evaluated in the next section and applied to human data in [59]. We also

compare our approach to a related estimator of non-IBD linearly-transformed kinship values

[20–22] that was proposed concurrently to ours [58].

General approach. In this subsection we develop our new estimator in two steps. First, we

compute a new statistic Ajk that is proportional in the limit of infinite loci to φT
jk � 1 times a

nuisance factor vT. Second, we estimate and remove vT to yield the proposed estimator φ̂T;new
jk .

Âmin—an estimator of the limit of the minimum Ajk—yields vT if the least related pair of
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individuals in the data has φT
jk ¼ 0, which sets T to the MRCA population of all the individuals

in the data. The new kinship estimator immediately results in new inbreeding (f̂ T;newj ) and FST

(F̂new
ST ) estimators. This general approach leaves the implementation of Âmin open; the simple

implementation applied in this work is described in subsection Proof-of-principle kinship

estimator using subpopulation labels, but our method can be readily improved by substitut-

ing in a better Âmin in the future.

Applying the method of moments to Eq (5), we derive the following statistic (S1 Text),

whose expectation is proportional to φT
jk � 1:

Ajk ¼
1

m

X

m

i¼1

ðxij � 1Þðxik � 1Þ � 1;

E½AjkjT� ¼ ðφ
T
jk � 1ÞvTm; where

vTm ¼
4

m

X

m

i¼1

pTi 1� pT
i

� �

:

ð33Þ

Compared to the standard kinship estimator in Eq (19), which has a complex asymptotic bias

determined by n parameters (φT
j for each j 2 {1, . . ., n}), the Ajk statistics estimate kinship with

a bias controlled by the sole unknown parameter vTm shared by all pairs of individuals. The key

to estimating vTm is to notice that if φT
jk ¼ 0 then E½AjkjT� ¼ �v

T
m. Thus, assumingminj;kφ

T
jk ¼ 0,

which sets T to the MRCA population, then the minimum Ajk yields the nuisance parameter.

However, we recommend using a more stable estimate than the minimum Ajk to unbias all Ajk,

such as the estimator presented in the next subsection.

In general, suppose Âmin is a consistent estimator of the limit of the minimum E[Ajk|T], or

equivalently,

Âmin�!
a:s:

m!1
� vT;

along with the assumption that vTm�!
m!1

vT for some vT 6¼ 0. Our new kinship estimator fol-

lows directly from replacing vTm with�Âmin and solving for φ
T
jk in Eq (33), which results in a

consistent kinship estimator (given the convergence proof of section Assessing the accuracy

of genome-wide ratio estimators):

φ̂T;new
jk ¼ 1�

Ajk

Âmin

�!
a:s:

m!1
φT
jk: ð34Þ

The resulting new inbreeding coefficient estimator is

f̂ T;newj ¼ 2φ̂T;new
jj � 1�!

a:s:

m!1
f Tj ; ð35Þ

and the new FST estimator is consistent for locally-outbred individuals (estimates Eq (4)):

F̂new
ST ¼

X

n

j¼1

wj f̂
T;new
j �!

a:s:

m!1
FST: ð36Þ

Thus, only the implementation of Âmin is left unspecified from this general estimation

approach of kinship and FST. The implementation of Âmin used in the analyses in this work is

given in the next subsection.
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Proof-of-principle kinship estimator using subpopulation labels. To showcase the

potential of the new estimators, we implement a simple proof-of-principle version of Âmin

needed for our new kinship estimator (φ̂T;new
jk in Eq (34)). This Âmin relies on an appropriate

partition of the n individuals into K subpopulations (denoted Su for u 2 {1, . . ., K}), where the

only requirement is that the kinship coefficients between pairs of individuals across the two

most unrelated subpopulations is zero, as detailed below. Note that, unlike the the independent

subpopulations model of section FST estimation based on the independent subpopulations

model, these K subpopulations need not be independent nor unstructured. The desired esti-

mator Âmin is the minimum average Ajk over all subpopulation pairs:

Âmin ¼ min
u 6¼v

1

jSujjSvj

X

j2Su

X

k2Sv

Ajk: ð37Þ

This Âmin consistently estimates the limit of the minimum Ajk if φ
T
jk ¼ 0 8j 2 Su; 8k 2 Sv for

the least related pair of subpopulations Su, Sv.

This estimator should work well for individuals truly divided into subpopulations, but may

be biased for a poor choice of subpopulations, in particular if the minimummean φT
jk between

subpopulations is far greater than zero. For this reason, inspection of the kinship estimates is

required and careful construction of appropriate subpopulations may be needed. See our anal-

ysis of human data for detailed examples [59]. Future work could focus on a more general Âmin

that circumvents the need for subpopulations of our proof-of-principle estimator.

Comparison to the Weir-Goudet kinship estimator for individuals. Here we analyze

the Weir-Goudet (WG) kinship estimator for individuals [20–22]. This has connections to our

new estimator but differs in having the goal of estimating linearly-transformed kinship values.

In our framework, the WG estimator is given by

φ̂T;WG
jk ¼ 1�

Ajk

Âavg

; where Âavg ¼
2

nðn� 1Þ

X

n

j¼2

X

j�1

k¼1

Ajk:

Therefore, this estimator differs from our proposal [58] by replacing our Âmin with Âavg. Under

the kinship model, the expectation of Âavg is

E ÂavgjT
h i

¼ ~φT � 1ð ÞvTm; where ~φT ¼
2

nðn� 1Þ

X

n

j¼2

X

j�1

k¼1

φT
jk:

Therefore, the limit of this estimator is

φ̂T;WG
jk �!

a:s:

m!1

φT
jk � ~φT

1� ~φT
; ð38Þ

which agrees with calculations in the original WG work [20–22]. Note that, assuming that kin-

ship coefficients must be non-negative, the above estimator recovers the kinship IBD probabil-

ities if and only if ~φT ¼ 0 which holds if and only if φT
jk ¼ 0 for every pair of individuals j 6¼ k.

The resulting WG inbreeding coefficient estimator is

f̂ T;WG
jk ¼ 2φ̂T;WG

jk � 1�!
a:s:

m!1

f Tj � ~φT

1� ~φT
;

which estimates linearly-transformed inbreeding values [21]. Therefore, the resulting WG FST
estimator (for individuals) also targets a linearly-transformed FST value (under locally-outbred
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individuals, where FST is given by Eq (4)), namely

F̂WG
ST ¼

1

n

X

n

j¼1

f̂ T;WG
j �!

a:s:

m!1

FST � ~φT

1� ~φT
:

TheWG authors also briefly consider a variant of their kinship estimator that is normalized

using the minimum kinship value as we did, developed concurrently with our approach [58],

but was largely dismissed as an unnecessary correction [21, 76]. See S1 Text for a detailed

proof that the general estimator framework we propose here (Eqs (33) and (34)) is algebraically

equivalent to our original formulation in [58].

Note that the original WG does not estimate FST from individuals as considered above;

instead, FST is estimated from coancestry estimates for subpopulations (which equals our Hud-

sonK for biallelic loci, S1 Text) [20–22]. For completeness, we consider both kinds of FST esti-

mates in the evaluations that follow.

Simulations evaluating FST and kinship estimators

Overview of simulations. We simulate genotypes from two models to illustrate our

results when the true population structure parameters are known. Both simulations have

clearly-defined IBD probability parameters in terms of the MRCA population. The first simu-

lation satisfies the independent subpopulations model that existing FST estimators assume. The

second simulation is from an admixture model with no independent subpopulations and per-

vasive kinship designed to induce large downward biases in existing kinship and FST estima-

tors (Fig 2). This admixture scenario resembles the population structure we estimated for

Hispanics in the 1000 Genomes Project [59]: compare the simulated kinship matrix (Fig 2B)

and admixture proportions (Fig 3C) to our estimates on the real data [59]. Both simulations

have n = 1000 individuals,m = 300, 000 loci, and K = 10 subpopulations or intermediate sub-

populations. These simulations have FST = 0.1, comparable to previous estimates between

human populations (in 1000 Genomes, the estimated FST between CEU (European-Ameri-

cans) and CHB (Chinese) is 0.106, between CEU and YRI (Yoruba from Nigeria) it is 0.139,

and between CHB and YRI it is 0.161 [23]).

Fig 2. Coancestry matrices of simulations. Both panels have n = 1000 individuals along both axes, K = 10

subpopulations (final or intermediate), and FST = 0.1. Color corresponds to yT

jk between individuals j and k (equal to φT
jk

off-diagonal, f Tj along the diagonal). (A) The independent subpopulations model has yT

jk ¼ 0 between subpopulations,

and varying yT

jj per subpopulation, resulting in a block-diagonal coancestry matrix. (B) Our admixture scenario models

a 1D geography with extensive admixture and intermediate subpopulation differentiation that increases with distance,

resulting in a smooth coancestry matrix with no independent subpopulations (no yT

jk ¼ 0 between blocks). Individuals

are ordered along each axis by geographical position.

https://doi.org/10.1371/journal.pgen.1009241.g002
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The independent subpopulations simulation satisfies the HudsonK and BayeScan estimator

assumptions: each independent subpopulation Su has a different FST value of f
T
Su
relative to the

MRCA population T (Fig 2A). Ancestral allele frequencies pT
i are drawn uniformly between

0.01 and 0.5. Allele frequencies p
Su
i for Su and locus i are drawn independently from the Bald-

ing-Nichols (BN) distribution [3] with parameters pT
i and f TSu . Every individual j in subpopula-

tion Su draws alleles randomly with probability pSu
i . Subpopulation sample sizes are drawn

randomly (Methods, section Simulations).

The admixture simulation corresponds to a “BN-PSD” model [6, 27, 34, 60, 77]: the inter-

mediate subpopulations are independent subpopulations that draw p
Su
i from the BN model,

then each individual j constructs its allele frequencies as pij ¼
PK

u¼1 p
Su
i qju, which is a weighted

average of the subpopulation allele frequencies pSu
i with the admixture proportions qju of indi-

vidual j and subpopulation u as weights (which satisfy
PK

u¼1 qju ¼ 1), as in the Pritchard-Ste-

phens-Donnelly (PSD) admixture model [63–65]. We constructed qju that model admixture

resulting from spread by random walk of the intermediate subpopulations along a one-dimen-

sional geography, as follows. Intermediate subpopulations Su are placed on a line with differen-

tiation f TSu that grows with distance, which corresponds to a serial founder effect (Fig 3A).

Upon differentiation, individuals in each Su spread by random walk, a process modeled by

Normal densities (Fig 3B). Admixed individuals derive their ancestry proportional from these

Normal densities, resulting in a genetic structure governed by geography (Figs 3C and 2B)

and departing strongly from the independent subpopulations model (Fig 3D). The amount

of spread—which sets the mean kinship across all individuals—was chosen to give a bias

Fig 3. 1D admixture scenario.Wemodel a 1D geography population that departs strongly from the independent
subpopulations model. (A) K = 10 intermediate subpopulations, evenly spaced on a line, evolved independently in the
past with FST increasing with distance, which models a sequence of increasing founder effects (from left to right) to
mimic the global human population. (B) Once differentiated, individuals in these intermediate subpopulations spread
by random walk modeled by Normal densities. (C) n = 1000 individuals, sampled evenly in the same geographical
range, are admixed proportionally to the previous Normal densities. Thus, each individual draws most of its alleles
from the closest intermediate subpopulation, and draws the fewest alleles from the most distant populations. Long-
distance random walks of intermediate subpopulation individuals results in kinship for admixed individuals that
decays smoothly with distance in Fig 2B. (D) For FST estimators that require a partition of individuals into
subpopulations, individuals are clustered by geographical position (K = 10).

https://doi.org/10.1371/journal.pgen.1009241.g003
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coefficient of sT ¼ yT

FST
¼ 0:5, which by Eq (32) results in a large downward bias for F̂ std

ST (in con-

trast, the independent subpopulations simulation has sT = 0.1). The true coancestry and FST
parameters of this simulation are given by the f TSu values of the intermediate subpopulations

and the admixture coefficients qju of the individuals via the following equations [57]:

y
T

jk ¼
X

K

u¼1

qjuqku f
T
Su
;

FST ¼
X

n

j¼1

X

K

u¼1

wjq
2

ju f
T
Su
:

ð39Þ

The first equation above connecting coancestry to admixture proportions was derived inde-

pendently in other work [62], but the FST for the admixed individuals was absent and instead

follows from our generalized FST definition given in Eq (9). See Methods, section Simulations

for additional details regarding these simulations.

Evaluation of FST estimators. Our admixture simulation illustrates the large biases that

can arise if existing FST estimators that require independent subpopulations or FST estimates

derived from existing kinship estimators are misapplied to arbitrary population structures to

estimate the generalized FST, and demonstrate the higher accuracy of our new FST estimator

(F̂new
ST given by the combination of Eqs (36) and (37)). The WC FIT (total inbreeding) estimator

was also evaluated.

First, we test these estimators in our independent subpopulations simulation. The Hud-

sonK (Methods, section Generalized HudsonK FST estimator) and BayeScan FST estimators

are consistent in this simulation, since their assumptions are satisfied (Fig 4A). The WC FST

Fig 4. Evaluation of FST estimators. TheWeir-Cockerham, Weir-Hill, Weir-Goudet (for individuals), HudsonK (equal toWeir-Goudet for subpopulations,

S1 Text), BayeScan, F̂ std
ST in Eq (25) derived from the standard kinship estimator, and our new FST estimator in Eqs (34) and (37), are evaluated on simulated

genotypes from our two models (Fig 2). TheWeir-Cockerham FIT estimator was also included to show that estimation of total inbreeding behaves similarly to

FST estimators. (A) The independent subpopulations model required by theWeir-Hill, HudsonK, and BayeScan FST estimators. All but standard kinship (F̂ std
ST )

andWeir-Goudet (for individuals) recover the target FST IBD probability in Eq (9) (red line) with small errors. (B) Our admixture scenario, which has no

independent subpopulations, was constructed so F̂ std
ST �

1

2
FST. Only our new estimates are accurate. The rest of these estimators give values smaller than the

target FST IBD probability, which result from treating kinship as zero between every subpopulations imposed by geographic clustering (or between individuals

for Standard Kinship andWeir-Goudet). The F̂ indep
ST estimator limit in Eq (14) (green dotted line) overlaps the true FST (red line) in (A) but not (B). Estimates

(blue) include 95% prediction intervals (often too narrow to see) from 39 independently-simulated genotype matrices for each model (Methods, section
Prediction intervals).

https://doi.org/10.1371/journal.pgen.1009241.g004
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estimator assumes that f TSu ¼ FST for all subpopulations Su, which does not hold; nevertheless,

WC has only a small bias (Fig 4A). The WC FIT estimator arrives at similar estimates, as it

should since there is no local inbreeding, so the true FIT also equals FST. The Weir-Hill estima-

tor permits different f TSu values per subpopulation, but assigns equal weight to individuals

rather than subpopulations (Methods, section TheWeir-Hill FST estimator), resulting in a

slightly different target FST (we verified that these estimates are unbiased for this FST). For

comparison, we show the standard kinship-based F̂ std
ST in Eq (25) (weights fromMethods, sec-

tion Simulations) and F̂WG
ST based on the Weir-Goudet kinship estimates for individuals, both

of which do not have corrections that would make them consistent under the independent

subpopulations model. Since the number of subpopulations K is large, F̂ std
ST has a small relative

bias of about sT ¼ 1

K
¼ 10% (Fig 4A); greater bias is expected for smaller K. Our new FST esti-

mator has a very small bias in this simulation resulting from estimating the minimum kinship

from the smallest kinship between subpopulations (see Eq (37)) rather than their average as

HudsonK does implicitly (Fig 4A).

Next we test these estimators in our admixture simulation. To apply the FST estimators that

require subpopulations to the admixture model, individuals are clustered into subpopulations

by their geographical position (Fig 3D). We find that estimates of all existing methods are

smaller than the true FST by nearly half, as predicted by the limit of F̂ indep
ST in Eq (14) (Fig 4B).

The WC FIT estimator obtains slightly larger estimates than the WC FST estimator, but overall

remains as biased as the other FST estimators, showing that the use of a total inbreeding estima-

tor for independent subpopulations displays the same bias as the corresponding FST estimator.

By construction, the kinship-based F̂ std
ST also has a large relative bias of about sT = 50%; remark-

ably, all existing FST estimators for subpopulations suffer from comparable biases. Thus, the

corrections for independent subpopulations present in the WC, Weir-Hill and HudsonK esti-

mators, or the Bayesian likelihood modeling of BayeScan, are insufficient for accurate estima-

tion of the target generalized FST (Eq (9)) in this admixture scenario. Only our new FST
estimator achieves accurate estimates of the generalized FST in the admixture simulation

(Fig 4B).

Evaluation of kinship estimators. Our admixture simulation illustrates the distortions of

the standard kinship estimator φ̂T;std
jk in Eq (18), the linearly-transformed kinship values given

by the Weir-Goudet estimator, and demonstrates the improved accuracy of our new kinship

estimator φ̂T;new
jk given by the combination of Eqs (34) and (37). Kinship matrix estimates and

their limits are visualized as heatmaps in Fig 5, whereas estimator accuracy is shown directly in

Fig 6. The limit of the standard estimator φ̂T;std
jk in Eq (18) would have had a uniform bias if

φT
j ¼ φT held for all individuals j. For that reason, our admixture simulation has varying dif-

ferentiation f TSu per intermediate subpopulation Su (Fig 3A), which causes large differences in

φT
j per individual j and therefore large distortions in φ̂T;std

jk . The Weir-Goudet approach esti-

mates the linearly-transformed kinship values calculated in Eq (38).

Our new kinship estimator (Fig 5B) recovers the true kinship matrix of this complex popu-

lation structure (Fig 5A), with an RMSE of 2.83% relative to the mean φT
jk (Fig 6). In contrast,

estimates using the standard estimator have a large overall downward bias (Fig 5C), resulting

in an RMSE of 115.72% from the true φT
jk relative to the mean φT

jk (Fig 6). Additionally, esti-

mates from φ̂T;std
jk are very distorted, with an abundance of φ̂T;std

jk < φT
jk cases—some of which

are negative estimates (blue in Fig 5C)—but remarkably also cases with φ̂T;std
jk > φT

jk (top left

corner of Figs 5C and 6).
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Fig 5. Evaluation of kinship estimators.Observed accuracy for two existing kinship coefficient estimators is
illustrated in our admixture simulation and contrasted to the nearly unbiased estimates of our new estimator. Plots
show n = 1000 individuals along both axes, and color corresponds to φT

jk between individuals j 6¼ k and to f Tj along the

diagonal (f Tj is in the same scale as φT
jk for j 6¼ k; plotting φT

jj , which have a minimum value of 1

2
, would result in a

discontinuity in this figure). (A) True kinship matrix. (B) Estimated kinship using our new estimator in Eqs (34) and

(37) from simulated genotypes recovers the true kinship matrix with high accuracy. (C) Theoretical limit of φ̂T;std
jk in Eq

(19) as the number of independent loci goes to infinity demonstrates the accuracy of our bias predictions under the

kinship model. (D) Standard kinship estimates φ̂T;std
jk given by Eq (18) from simulated genotypes are downwardly

biased on average and distorted by pair-specific amounts. (E) Theoretical limit of the Weir-Goudet kinship estimator
given by Eq (38). (F) Weir-Goudet kinship estimates from the same simulated genotypes agree with our calculated
limit.

https://doi.org/10.1371/journal.pgen.1009241.g005
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Now we compare the convergence of the ratio-of-means and mean-of-ratios versions of the

standard kinship estimator to their biased limit we calculated in Eq (19) (Fig 5D). The ratio-

of-means estimate φ̂T;std
jk (Fig 5C) has an RMSE of 2.14% from its limit relative to the mean φT

jk.

In contrast, the mean-of-ratios estimates that are prevalent in the literature have a greater

RMSE of 10.77% from the same limit in Eq (19). Thus, as expected from our theoretical results

in section Assessing the accuracy of genome-wide ratio estimators, the ratio-of-means esti-

mate is much closer to the desired limit than the mean-of-ratio estimate. The distortions are

similar for the estimator that uses IAFs in Eq (24), with reduced RMSEs from its limit of 0.32%

and 8.82% for the ratio-of-means and mean-of-ratios estimates, respectively.

Evaluation of oracle-adjusted FST estimators. Here we verify additional calculations for

the bias of the standard kinship-based estimator F̂ std
ST and the unbiased adjusted “oracle” FST

estimators that require the true mean kinship φT or the bias coefficient sT to be known. Note

that F̂new
ST in Eq (36) is related but not identical to these oracle estimators. We tested both IAF

(Fig 7A) and genotype (Fig 7B) versions of these estimators. The unadjusted F̂ std
ST in Eq (26) is

severely biased (blue in Fig 7) by construction, and matches the calculated limit for IAFs and

genotypes (green lines in Fig 7, which are close because φT � y
T). In contrast, the two consis-

tent adjusted estimators F̂ 0ST and F̂ 00ST in Eqs (27) and (31) estimate FST quite well (blue predic-

tions overlap the true FST red line in Fig 7). However, F̂ 0ST and F̂ 00ST are oracle methods, since

they require parameters (φT , yT , sT) that are not known in practice.

Prediction intervals were computed from estimates over 39 independently-simulated IAF

and genotype matrices (Methods, section Prediction intervals). Estimator limits are always

contained in these intervals because the number of independent loci (m = 300, 000) is suffi-

ciently large. Estimates that use genotypes have wider intervals than estimates from IAFs;

Fig 6. Accuracy of kinship estimators.Here the estimated kinship values are directly compared to their true values, in
the same admixture simulation data (n = 1000 individuals) shown in the previous figure. (A) Kinship between different
individuals (excluding inbreeding). The new estimator has practically no bias in this evaluation (falls on the 1-1 dashed
gray line). The standard estimator has a complex, non-linear bias that covers a large area of errors. (B) Inbreeding
comparison, shows the bias of the standard estimate follows a different pattern for inbreeding compared to kinship
between individuals. To better visualize and compare data across panels, a random subset of n points (out of the
original n(n − 1)/2 unique individual pairs) were plotted in (A), matching the number of individuals (number of points
in (B)).

https://doi.org/10.1371/journal.pgen.1009241.g006

PLOS GENETICS Estimating FST and kinship for arbitrary population structures

PLOSGenetics | https://doi.org/10.1371/journal.pgen.1009241 January 19, 2021 24 / 36

https://doi.org/10.1371/journal.pgen.1009241.g006
https://doi.org/10.1371/journal.pgen.1009241


however, IAFs are not known in practice, and use of estimated IAFs might increase noise.

Genetic linkage, not present in our simulation, will also increase noise in real data.

Discussion

We studied analytically the most commonly-used estimators of FST and kinship, which can be

derived using the method of moments. We determined the estimation limits of convergence of

these approaches under two models of arbitrary population structure (Fig 1). We found that

no existing approaches estimate the generalized FST (an IBD probability) accurately (but note

that some of these approaches intended to estimate a linearly-transformed FST quantity and

not the IBD probability). We also showed that the standard kinship estimator is biased on

structured populations (particularly when the average kinship is comparable to the kinship

coefficients of interest), and this bias varies for each pair of individuals. These results led us to

a new kinship estimator, which is consistent if the minimum kinship is estimated consistently

(Fig 1). We presented an implementation of this approach, which is practically unbiased in

our simulations. Our kinship and FST estimates in human data are consistent with the African

Origins model while suggesting that human differentiation is considerably greater than previ-

ously estimated [59].

Estimation of FST in the correct scale is crucial for its interpretation as an IBD probability,

for obtaining comparable estimates in different datasets and across species, as well as for DNA

forensics [3, 7, 19, 20, 78–80]. Our framework results in a new unbiased genome-wide FST esti-

mator. However, our findings may not have direct implications for single-locus FST estimate

approaches where only the relative ranking matters, such as for the identification of loci under

selection [8, 10, 81–86], assuming that the bias of the genome-wide estimator carries over uni-

formly to all single-locus estimates. Our convergence calculations in section Assessing the

accuracy of genome-wide ratio estimators require large numbers of loci, so they do not apply

to single-locus estimates. Moreover, various methods for single-locus FST estimation for

Fig 7. Evaluation of standard and adjusted FST estimators. The convergence values we calculated for the standard
kinship plug-in and adjusted FST estimators are validated using our admixture simulation. All adjusted estimators are

unbiased but are “oracle” methods, since the mean kinship (φT), mean coancestry (yT), or bias coefficient (sT ¼ y
T

FST
for

IAFs, replaced by φT

FST
for genotypes) are usually unknown. (A) Estimation from individual-specific allele frequencies

(IAFs): F̂ std
ST is the standard coancestry plug-in estimator in Eq (26); F̂ 0ST “Adj. y

T” is in Eq (27); F̂ 00ST “Adj. s” is in Eq

(31). (B) For genotypes, F̂ std
ST is given in Eq (25), and the adjusted estimators use φT rather than yT . Lines: true FST (red

line), limits of biased estimators F̂ std
ST (green lines, which differ slightly per panel). Estimates (blue) include 95%

prediction intervals (too narrow to see) from 39 independently-simulated genotype matrices for our admixture model
(Methods, section Prediction intervals).

https://doi.org/10.1371/journal.pgen.1009241.g007
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multiple alleles suffer from a strong dependence to the maximum allele frequency and hetero-

zygosity [83–85, 87–90] that suggests that a more complicated bias is present in these single-

locus FST estimators.

We have shown that the misapplication of existing FST estimators for independent subpop-

ulations may lead to downwardly-biased estimates that can approach zero even when the true

generalized FST is large. Weir-Cockerham [17], Weir-Hill [4], HudsonK (which generalizes the

Hudson pairwise FST estimator [23] to K independent populations; also equals the Weir-Gou-

det approach for subpopulations [21]; S1 Text), and BayeScan [10]FST estimates in our admix-

ture simulation are all smaller than the FST target by nearly a factor of two (Fig 4B), and differ

from our new FST estimates in humans by nearly a factor of three [59]. To be accurate, existing

FST estimators require independent subpopulations, so the observed biases arise from their

misapplication to subpopulations that are neither independent not homogeneous. Neverthe-

less, natural populations—particularly humans—often do not adhere to the independent sub-

populations model [59, 91–95].

The standard kinship coefficient estimator we investigated is often used to control for pop-

ulation structure in GWAS and to estimate genome-wide heritability [16, 27, 30–35]. While

this estimator was known to be biased [16, 35], no closed-form limit had been calculated until

very recently [21, 62]. These kinship estimates are biased downwards on average, but bias also

varies for each pair of individuals (Figs 1 and 5). Thus, the use of these distorted kinship esti-

mates may be problematic in GWAS or for estimating heritability, but the extent of the prob-

lem remains to be determined.

We developed a theoretical framework for assessing genome-wide ratio estimators of FST
and kinship. We proved that common ratio-of-means estimators converge almost surely to the

ratio of expectations for infinite independent loci (S1 Text). Our result justifies approximating

the expectation of a ratio-of-means estimator with the ratio of expectations [4, 17, 23]. How-

ever, mean-of-ratios estimators may not converge to the ratio of expectations for infinite loci.

Mean-of-ratios estimators are potentially asymptotically unbiased for infinite individuals, but

it is unclear which estimators have this behavior. We found that the ratio-of-means kinship

estimator had much smaller errors from the ratio of expectations than the more common

mean-of-ratios estimator, whose convergence value is unknown. Therefore, we recommend

ratio-of-means estimators, whose asymptotic behavior is well understood.

Our new framework enables accurate FST estimation in more complex datasets than before,

but challenges remain. One challenge is the estimation of local inbreeding coefficients, which

are required for estimating the generalized FST when not all individuals are locally outbred. To

this end, we suggest employing existing approaches that infer inbreeding from large runs of

homozygosity or related strategies [66–68], particularly when such self-IBD blocks are much

larger than observed between individuals in the same subpopulation. A streamlined approach

for jointly estimating total and local inbreeding is desirable, but will require an appropriate

evaluation featuring realistic simulation of local inbreeding in a complex population structure.

Another challenge is the estimation of the minimum kinship value without the use of subpop-

ulation labels, so that accurate FST estimates can be obtained with even less user supervision. A

more general unsupervised method could better ensure accuracy under extreme cases, such as

when there are few unrelated individual pairs. These challenges can be overcome with the esti-

mators we have presented, although supervision is needed to ensure that local inbreeding and

the minimum kinship are estimated correctly.

We have demonstrated the need for new models and methods to study complex population

structures, and have proposed a new approach for kinship and FST estimation that provides

nearly unbiased estimates in this setting. Extending our implementation to deliver consistent
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accuracy in arbitrary population structures will require further innovation, and the results pro-

vided here may be useful in leading to more robust estimators in the future.

Methods

Previous FST estimators for the independent subpopulations model

Here we summarize the previous Weir-Cockerham, Weir-Hill, and Hudson FST estimators for

independent subpopulations and derive the generalized HudsonK estimator for more than

two subpopulations (which also equals the recent Weir-Goudet FST estimator for subpopula-

tions under biallelic loci; S1 Text). We show that each of these estimators reduces, under infi-

nite subpopulation sizes, to F̂ indep
ST in Eqs (11) to (13) that was studied in the results. In this

section, let i index them loci, j index the n subpopulations, nj be the number of individuals

sampled from subpopulation j, and p̂ij be the sample reference allele frequency at locus i in

subpopulation j.

TheWeir-Cockerham FST estimator. TheWeir-Cockerham (WC) FST estimator [17]

estimates the coancestry parameter θT shared by each of the n independent subpopulation in

consideration. Let ĥ ij denote the fraction of heterozygotes in subpopulation j for locus i. The

ratio-of-means WC FST estimator and its limit for independent subpopulations (yT

jk ¼ 0 for

j 6¼ k) with equal differentiation (yT

jj ¼ y
T) is

n ¼
1

n

X

n
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ŝ

2

i �
1

4
h i

� �

X

m

i¼1

p̂T
i 1� p̂T

i

� �

1� nC2

nðn � 1Þ

� �

þ
1

n
ŝ
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Note that p̂T
i above weighs every individual equally by weighing subpopulation j proportional

to its sample size nj, so it equals the estimator in Eq (17) with uniform weights.

Now we simplify this estimator as the sample size of every subpopulation becomes infinite.

First set the sample size of every subpopulation nj equal to their mean n, which implies C2 = 0

and

p̂T
i ¼

1
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X
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:

Now we take the limit as the sample size n !1, which results in sample allele frequencies

converging to the true subpopulation allele frequencies p̂ij ! pij for every subpopulation j and
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locus i, and

p̂T
i ¼

1

n

X

n

j¼1

pij; ŝ
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which matches the F̂ indep
ST in Eqs (11) to (13) as desired. Note the number of subpopulations n

remains finite, and the sample heterozygosity hi is not needed in the limit.

TheWeir-Hill FST estimator. Weir and Hill developed new estimators for subpopula-

tion-specific FST values and considered the effects of non-independent subpopulations [4].

However, these estimators target linearly-transformed FST values, and recover the FST defined

in Eq (9) only when subpopulations are independent [4], so we group them here with other

estimators that strictly assume independent subpopulations. For simplicity, here we only con-

sider the global FST estimator; the estimators of the coancestry matrix of the subpopulations

was found to have the same overall linear transformation [4]. In the limit of infinite subpopu-

lation sizes, this estimator also converges to the asymptotic FST estimator for independent sub-

populations (F̂ indep
ST ) discussed in the main text.

The Weir-Hill (WH) FST estimator, simplified here for biallelic loci but extended to average

over loci, and its limit, are given by
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Therefore, as sample sizes per subpopulation go to infinity (nS!1, which results in p̂ ij ! pij

for every (i, j)), we again recover the desired limiting FST estimator for independent subpopu-

lations (F̂ indep
ST in Eqs (11) to (13)).
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The Hudson FST estimator. The Hudson pairwise FST estimator [23] measures the differ-

entiation of two subpopulations (j, k). The estimator and its limit for two independent subpop-

ulations (yT

jk ¼ 0) is

F̂Hudson
ST ¼

X

m
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Generalized HudsonK FST estimator. Here we derive the “HudsonK” estimator (first

made available in [58]), which generalizes the Hudson pairwise FST estimator in Eq (40) to n

independent subpopulations. This estimator also equals the recent Weir-Goudet FST estimator

for subpopulations [21] (for biallelic loci; S1 Text). Note that for independent subpopulations,

the FST of all the subpopulations equals the mean pairwise FST of every pair of subpopulations:
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For that reason, averaging numerators and denominators of the pairwise estimator in Eq (40)

before computing the ratio, we obtain the generalized estimator and a limit under independent

subpopulations of
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ŝ

2

i

�!
a:s:

m!1
FST ¼

1

n

X

n

j¼1

y
T

jj :

Note that unlike the WC andWeir-Hill estimators, p̂T
i above weighs every subpopulation

equally, so every individual is weighed inversely proportional to the sample sizes nj of their

subpopulation j.

Like WC andWeir-Hill, F̂HudsonK
ST simplifies to F̂ indep

ST in Eqs (11) to (13) in the limit of infinite

sample sizes nj!1, where p̂ij ! pij for every (i, j).

Simulations

Construction of subpopulation allele frequencies. We simulate K = 10 subpopulations

Su andm = 300, 000 independent loci. Every locus i draws pT
i � Uniformð0:01; 0:5Þ:We

set f TSu ¼
u
K
t; where τ� 1 tunes FST. For the independent subpopulations model,

FST ¼
1

K

PK

u¼1 f
T
Su
¼ tðKþ1Þ

2K
; so t ¼ 2KFST

Kþ1
gives the desired FST (τ� 0.18 for FST = 0.1). For

the admixture model, τ is found numerically (τ� 0.90 for FST = 0.1; see last subsection). Lastly,

p
Su
i values are drawn from the Balding-Nichols distribution,

p
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i jT � Beta pT
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which results in subpopulation allele frequencies that obey the coancestry model of Eq (6),

with E½pSu
i jT� ¼ pT

i and Var ðpSu
i jTÞ ¼ f TSup

T
i ð1� pTi Þ [3], as desired.

Random subpopulation sizes. We randomly generate sample sizes r = (ru) for K subpop-

ulations and
PK

u¼1 ru ¼ n ¼ 1000 individuals, as follows. First, draw x�Dirichlet (1, . . ., 1) of

length K and r = round(n x). Whileminuru <
n
3K
, draw a new r, to prevent small subpopula-

tions (they do not occur in real data). Due to rounding,
PK

u¼1 ru may not equal n as desired.

Thus, while d ¼ n�
PK

u¼1 ru 6¼ 0, a random u is updated to ru ru + sgn(δ), which brings δ
closer to zero at every iteration. Weights for individuals j in Su are wj ¼

1

Kru
so the generalized

FSTmatches FST ¼
1

K

PK

u¼1 f
T
Su
from the independent subpopulations model (see section The

generalized FST for arbitrary population structures), which HudsonK estimates.

Admixture proportions from 1D geography. We construct qju from random-walk

migrations along a one-dimensional geography. Let xu be the coordinate of intermediate sub-

population u and yj the coordinate of a modern individual j. We assume qju is proportional to

f(|xu − yj|), or

qju ¼
f ðjxu � yjjÞ

X

K

v¼1

f ðjxv � yjjÞ

:

where f is the Normal density function with μ = 0 and tunable σ. The Normal density models

random walks, where σ sets the spread of the populations (Fig 5). Our simulation uses xu = u

and yj ¼
1

2
þ j�1

n�1
K, so the intermediate subpopulations span between 1 and K and individuals

span between 1

2
and K þ 1

2
. For the FST estimators that require subpopulations, individual j is

assigned to the nearest subpopulation Su (the u that minimizes |xu − yj|; Fig 3D); these subpop-

ulations have equal sample size, so wj ¼
1

n
is appropriate.

Choosing σ and τ. Here we find values for σ (controls qjk) and τ (scales f TSu) that give

sT ¼ 1

2
and FST = 0.1 in the admixture model. In our simulation, wj ¼

1

n
and f TSu ¼

u
K
t, so apply-

ing those parameters to Eq (39) gives yT
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depends only on σ. A numerical root finder finds that σ� 1.78 gives sT ¼ 1

2
. For fixed qju,

t ¼
FST

1

K

X

K

u¼1

u
1

n

X

n
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 ! :

FST = 0.1 is achieved with τ� 0.901.

Prediction intervals

Prediction intervals with α = 95% correspond to the range of n = 39 independent FST
estimates. In the general case, n independent statistics are given in order X(1)< . . .< X(n).
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Then I = [X(j), X(n+1−j)] is a prediction interval with confidence a ¼ nþ1�2j

nþ1
[96]. In our case,

j = 1 and n = 39 gives α = 0.95, as desired. Each estimate was constructed from simulated

data with the same dimensions and structure as before (fixed f TSu and qju; fixed sample sizes

for the independent subpopulations model), but with pT
i ; p

Su
i ; pij; xij drawn separately for each

estimate.

BayeScan andWeir-Goudet implementations

Weir-Goudet (WG) kinship estimates [20–22] were calculated using the function

snpgdsIndivBeta in the R package SNPRelate 1.20.1 available on Bioconductor and

GitHub. We found identical estimates using the function beta.dosage in the R package

hierfstat 0.4.30 available on GitHub. WG (individuals) FST estimates were computed

from the kinship estimates as described in section Comparison to the Weir-Goudet kinship

estimator for individuals.

BayeScan 2.1 was downloaded from http://cmpg.unibe.ch/software/BayeScan/. To estimate

FST, first the per-subpopulation FST values were estimated across loci assuming no selection,

then the global FST was given by the mean FST across subpopulations.

Software

An R package called popkin, which implements the kinship and FST estimation methods pro-

posed here, is available on the Comprehensive R Archive Network (CRAN) at https://cran.r-

project.org/package=popkin and on GitHub at https://github.com/StoreyLab/popkin.

An R package called bnpsd, which implements the BN-PSD admixture simulation, is avail-

able on CRAN at https://cran.r-project.org/package=bnpsd and on GitHub at https://github.

com/StoreyLab/bnpsd.

An R package called popkinsuppl, which implements memory-efficient algorithms for

the Weir-Cockerham, Weir-Hill, and HudsonK FST estimators, and the standard kinship esti-

mator, is available on GitHub at https://github.com/OchoaLab/popkinsuppl.

Public code reproducing these analyses are available at https://github.com/StoreyLab/

human-differentiation-manuscript.

Supporting information

S1 Text. Supplementary information. Includes mathematical proofs and other calculations,

including proof of convergence of ratio-of-means estimators, proof that the Weir-Goudet FST
estimator for subpopulations equals HudsonK, derivation of existing method-of-moment esti-

mators, proof that FST and kinship estimator limits are constants with respect to the ancestral

population T, mean coancestry bounds, moments of estimator building blocks, the derivation

of our new kinship estimator, and proof that our estimator from our original 2016 manuscript

is algebraically equivalent to the one presented here.

(PDF)
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