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ABSTRACT

We present a statistical method for estimating gene net-
works and detecting promoter elements simultaneously.
When estimating a network from gene expression data
alone, a common problem is that the number of microar-
rays is limited compared to the number of variables in the
network model, making accurate estimation a difficult task.
Our method overcomes this problem by integrating the mi-
croarray gene expression data and the DNA sequence in-
formation into a Bayesian network model. The basic idea
of our method is that, if a parent gene is a transcription
factor, its children may share a consensus motif in their
promoter regions of the DNA sequences. Our method de-
tects consensus motifs based on the structure of the es-
timated network, then re-estimates the network using the
result of the motif detection. We continue this iteration until
the network becomes stable. To show the effectiveness of
our method, we conducted Monte Carlo simulations and
applied our method to Saccharomyces cerevisiae data as
a real application.

Contact: tamada@ims.u-tokyo.ac.jp

INTRODUCTION

microarray data using mathematical models such as
Boolean networks (Akutset al., 1999, 2000a,b, 2003;
Maki et al., 2001; Shmulevicltet al., 2002), differential
equations (Cheet al., 1999; De Hooret al., 2003), and
Bayesian networks (Friedman and Goldszmidt, 1998;
Friedmaret al., 2000; Imotoet al., 2002). Although these
methods succeed in constructing networks where genes
known to be biologically related come close together, it
is difficult to determine the correct direction of the edges,
as well as whether or not the relation of genes is direct
or indirect. This is especially true when using disruptant
microarray data (as opposed to time series microarray
experiments which contain information concerning time
dependencies) (e.g. see Fig. 5 in Imetal. (2003a)).

The drawbacks of the previous methods are mainly
caused by the limited number of microarrays. From a
statistical point of view, the number of samples (microar-
rays) is always insufficient to estimate accurate networks
as opposed to the number of variables (genes) in the
model. Theoretically, this problem can be solved by using
more microarrays, but this solution is unrealistic because
of the cost incurred in producing a sufficient number of
microarray data.

Constructing gene networks from microarray gene ex- To overcome these problems, we have developed a sta-
pression data is becoming an important challenge in th@stical method for estimating gene networks by utilizing
post-genomic era. Agene network, or gene regulatory DNA sequences and microarray data. The basic idea is as
network, is a model which represents regulations betweefp|lows: The regulation of genes is known to be realized by
genes using a directed graph. In gene networks, nodeganscription factors (TFs), which are important subsets of
indicate genes and edges represent regulations betwegpyteins that transcribe mMRNAs from DNAs. Genes that a
genes (e.g. activation or suppression). Several methodgecific TF regulates, contain a binding consensus motif
have been proposed for estimating gene networks frorg|ied the transcription factor binding site, located in the
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Gene network

METHOD
Bayesian network

A /' Bayesian network model
] * A § In this subsection, we introduce a Bayesian network
and nonparametric regression model (Imet@l., 2002)
as an advance method for estimating gene networks.
In the context of Bayesian networks, we consider a

Consensus Motif ' ' directed acyclic graph encoding the Markov assumption.
information Motif detection A gene corresponds to a random variable shown as a

genet: ... .CCTACGT....... node and gene regulations are represented by edges in

gene: .....CCTACGT........ the graph. Suppose that we havesets of microarrays

32222 ------ - {X1,...,Xn} Of p genes, wherexi = (Xi1,...,Xip)"

is a p dimensional gene expression vector obtained by
Consensus motif ith microarray, i.e.xjj is an expression value ofth

gene measured bith microarray. A Bayesian network
and nonparametric regression model (Imetal., 2002,

Fig. 1. Conceptual view of our proposed method. 2003a) captures the interaction between genes by using
nonparametric additive regression models of the form
Xij = mjl(pi({)) + -+ quj(pi(éj?) + &ij, | =

sus motif in their upstream DNA sequences. By detectind. - - -, n, where p)) is the expression value &th parent

a consensus motif from a set of genes which have beefif the jth gene measured bith microarray andeij
selected based on the structure of the network, we can coiepends independently and normally on mean 0O and
rect the network by repairing mis-directed edges and/o¥ariances. Weconstrucimj () by B-splines of the form
adding direct edges from, based on the existence of the mj'f(pi(li)) - Zmikl Vrfwjk)br(rj;lz(pi(li))' k=1....qj, where
mopf. ) {bif()(‘), el bfvjl? (")} is a prescribed set @-splines and
Figure 1 represents the conceptual explanation of our - ke

method. First, we estimate a gene network from microar¥mk are parameters. Hence, a joint density of the all genes
ray data alone using a Bayesian network model (Inebto €an be modeled by
al., 2002, 2003a). Based on the network structure, we thery (.. g
focus on several genes which are regarded as transcription D

exp[—

factor candidates in the estimated network, and define sets _ l‘[ 1
of genes that may be co-regulated by each candidate. A j=1 /27,012
motif detection method (Bannei al., 2002, 2003) is then

performed for detecting a consensus motif from each sewvherefg is a parameter vector. ffth gene has no parent

of posgibly co-regulated genes. After the motif detection_genes, we use a parametgrinstead OTZEJZI mjk(pi(li)).

we revise the structure of the network based on the motiRdvantages of our model are as follows: Our model can
information and embed this information into a Bayesiananalyze gene expression data as continuous data without
network estimation method as a prior probability of theéxra pretreatment of the data such as discretization, which
network. The network is estimated again using both mileads to information loss. Even nonlinear relationships
croarray data and the motif information this time. This it- P&fween genes can be extracted.

erative procedure, the motif detection and the network reg, otif detection

estimation, is repeated until the structure of the networ . . . ' .
b lﬁ motif detection method is used to find a consensus motif

dofos Z\CEIEZ?Q ggucrorr:z?ﬁgiblae first conducted Montefrom aset of genes whiahiay be co-regulated by the same

. . ' o transcription factor. A popular method for determining
Carlo simulations. We d_eS|gned an artificial net""orksuch a set is to first cluster the genes according to their
and generated pseudo microarray data and pseudo DN&ression patterns, and then look for common motifs in
sequences. We compared the estimated network by oWh:h of the clusters (e.g. Brazreaal. (1998)). In our
method with one estimated by only microarray data. Wemethod, however, we would like to exploit the ‘higher
also applied our method t&accharomyces cerevisae  |evel' information extracted by the estimation of the
gene expression data as a real application. We succeedrétwork, represented by tisructure of the network and
in estimating more accurate networks than the previoutikelihood scores (which depend on the network structure)
method in both cases. that a certain gene is a parent of another.

Xij — zﬁglmjkwfi))}z}

20j2
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Estimating gene networks and detecting promoter element

Data Set In this paper, we use thaibstring pattern class as the
Sequence Value motif model. A substring pattern is essentially a string of
1 |atgcagtcacactgat...  15.2 certain length containing no mismatches or ambiguities.
2 | atatatactcagctgat...  62.4 The string pattern regression problem can be optimally
3 | atattggatggggtag...  684.3 solved very efficiently for this motif model: in linear time
4 |atgagaccatttaaac...  415.3 in the total length of the input strings (Banmhal., 2003).
Although more flexible patterns (e.g. PSSM) are usually
preferred, it is known that transcription factor binding sites
i contain core short patterns which are well conserved with
low internal variation (Bussemaket al., 2001; Keleset
distance | al., 2002). Selection of an appropriate motif model for
10 . HEEE Unmatched our method is a difficult problem, and deserves further
. n [ Matched investigations.
(O]
§ 6 Criterion for choosing a network
g 4 In a Bayesian statistical framework, we can choose an
* optimal gene network based on the posterior probability
of a networkG
value 7(GIX) = (G, X)/m(X), )
Fig. 2. Concept of string pattern regression. whereX is the microarray data,

n
. . G, X)=n(G f(Xi; 6 6cIN)d6bg,
Using the structure of the currently estimated network, m( )= )_/Ill (Xi: be)7 (6| A)dOe

we choose several genes as putative TFs. We also select

sets of genes as candidates genes that may be regulated by m(X) = Z (G, X).
each TF, and therefore may contain a common motif. Each Geg

of these genes are paired with a score which represents t
likelihood that the gene is a direct child of the TF. Details
of the likelihood score and the selection process is give
in Criterion andAlgorithm.

Since the network structure and the likelihoods that eac
gene is a direct child of the TF should farly accurate,
we want to find motifs which appear in genes with
relatively higher likelihood scores, and does not appe
in relatively lower likelihood scores. This kind of motif
search is possible using a method calkdng pattern
regression proposed in (Bannagt al., 2002), which looks

IP—Feren(ﬁ?(;v\) is a prior distribution on the paramet@g
with a hyperparameter vectdrandd is the set of possible
Metworks. Since the network selection does not depend on
hhe denominator of (1), we can ug€G, X) as a model
selector.
The integral inz (G, X) is the marginal likelihood and
represents the fitness of the model to the microarray data.
he information of regulatory motifs is stored in(G),
which is the prior probability of the networ. Imoto et
al. (2003b) provided a general framework for combining

for motifs that separate the set of strings so that th microarrays and biological knowledge for estimating a

distribution of a numerical attribute paired with the string 25" < network based on Bayesian networks. We briefly

is best split. More preciselv. aiven aF:jata BerC $F % R Yintroduce their method here and show how to incorporate
St Spiit. ep Y. 9 = X' motif information into their framework.

consisting of pairs of a string and a numerical attribute

. A ' They defined a network enerdy(G) = 3 g Uij,
the m_ethod quks for a patterp which minimizes the where Uij is an energy of an edge from tﬁm gene
following score:

to the jth gene, and assume that the probability of the
MSE(D. p) network depends on the Gibbs distributionG) =
’ , , Z lexp(—¢E(G)), whereZ = > geg XA—CE(G)) s
_ Lieneop#DPp)"N™+) snep, (WD) -1 a partition function and: a hyperparameter. Under their
N DI ' framework, we can allocate the different energies accord-
ing to the information of consensus motifs. Concretely, for
3 o each¢Uij, we set a value; for relationships with motif
Dp = D — Dp, andp(D") = =G5> is the average evidence and:, otherwise. Note that & ¢1 < ¢». Hence
of the numeric attributes in any sbt € D. we obtain a prior probability of a network reflecting motif

where Dy is the subset oD whose string containg,
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Step 1.  Estimate a gene network from microarray data alone using Bayesian network model.
Step 2. For each geng, let Dg be the set of child and grand-child geneggoGenes with Dg| > 4 are considered as TFs,
and search for motifs iDg.
Step 3. For each TF, based on the result of the motif detection:
A) If a parent of the TF contains the motif, we reverse the edge and make it a direct child.
B) If a grand-child of the TF contains the motif, we add an edge and make it a direct child.

We also embed this information into Equation (2).

Step 4. Estimate a gene network again along with the motif information.
Step 5. Continue Step 2 through 4 until the network does not change.

Fig. 3. Algorithm for estimating a gene network from microarray data with promoter detection.

information of the form Then, we execute the motif detection method described
p in the previous sectiofor each seDy. Scores assigned to
7(G) =zt H l—[ exXp(—Lu(i.|))- (2) genesirDg are calculated as direct children of §FAfter
j=liel; the motif detection, we search from a set of parent genes

of the TFg, amotif found in the motif detection method.
In Step 3, based on the result of the motif detection
program, we modify the edges of the network as follows.

wherel j is an index set of parent genesitii gene and
the functiona (i, j) takes 1 ifjth gene has a motif against
ith gene or 2 otherwise. For example, if gergeneg and
geng have a consensus motif against genaut geng  A) If the motif is found in a parent of the TF, it is possible
does not have. We find(1,2) = «(1,3) = a(1,4) =1 that this parent is actually a child of the TF. Therefore,
anda(1,5) = 2. we reverse the direction of such edges.

By computing the integral in (G, X), wecan use itas B |f the motif is found in a grand-child of the TF, then

a retwork selector. We apply the Laplace approximation * it js possible that this gene is a child of the TF. We
to compute this integral and the criterion then results in  remove such edges and add direct edges.

BNRC (Bayesian network and Nonparametric Regression

Criterion) (Imotoet al., 2002) with motif information. The ~ After the modification of edges, we remove all edges

use of Laplace approximation for computing the marginafrom the network, except edges modified in the previous

likelihood has been investigated by (Davison, 1986; Imotdstep and edges that connect with genes having the motifs.
et al., 2002, 2003a; Konishét al., 2003; Tinereyet al.,  This is done because the greedy hill climbing algorithm

1986). used in the Bayesian network estimation method, depends
_ on the initial state of the network before the estimation.
Algorithm Finally, in Step 4, we estimate the network using the

The algorithm of the method is summarized in Figure 3. InBayesian network method again, this time along with
Step 1, from microarray data alone, we estimate an initiaprior knowledge about the existence of the motif. For the
gene network using a Bayesian network model (Imotgorior probability (Equation (2)), we usg for parent-child

et al., 2002) described irBayesian Network Model.  relations which are supported by the detected motif, and
In subsequent steps, we will revise this network using;2 otherwise. Note that, the modifications for the edges do
motif information. In Step 2, we select transcription factor not always remain in the next network estimation. Because
candidates. If a gene in the network has many parents arile motif detection method does not always succeed in
children, we hypothesize that these genes are transcriptiatetecting real motifs, we can not blindly trust the result
factors (TFs) that may regulate other genes by bindingf the detection. Besides, it is possible that a set of genes
to consensus motifs in their promoter region of the DNADg do not even have any consensus motif. Estimating
sequences. In our method, we select as TFs, genes whitlhe network along with a prior information of the motif
have more than 4 child or grand-child genes in theexistence can be considered to be the evaluation of the
estimated network. Note that we do not limit the number ofmotif detection using a Bayesian model and microarray
TF candidates in this step. Next, for each selected,Me  expression data.

extract a set of genes which may be co-regulated laynd After the re-estimation of the network, we also execute
therefore share consensus motifs. Since the network cahe motif detection method again. We continue this
contain errors concerning direct connections, we defin@eration until the motif detection method does not detect
this set as the child and grand-child genes of ggne any motif that can affect the result of the next network
denoted byDy. estimation.

ii230



Estimating gene networks and detecting promoter element

A) Modification for parent genes

Candidate genes //. k’/

B) Modification for grand-children
for edge correction T @ - / : ’
""" =

‘ Transcription factor candidate

Genes used in
motif detection

*rmmmmnn®®

Other genes

. Genes sharing a consensus motif
<— Estimated edges
<€ ) Modification of edges

Estimated network

Fig. 4. Brief explanation for modifications of edges. The gray node represents a transcription factor (TF). The motif detection performs to
sets of TF's child and grand-child genes (indicated by the green region). Black nodes indicates genes sharing a consensus motifs found in the
motif detection. After the motif detection, our method search the motif from parents of the TF. The candidate genes for the edge modification

are indicated by the blue region. Red edges represent new edges by the modification.

—1+e3, genet <05
gene3 = i genel +£3, —0.5 < gene1 < 0.5 genel = 1.2 genes + 0.8 gened + &7
1+e3, 0.5 < genet gene2 = 0.6 genet + &

(genet + 1)2 464 —03<gene1 <03 gene5 = COY1.4 (genet + 3.7)) + ¢35
O.dgenet +1.0+¢4, 0.3 <genet

0.4 genes8 + 1.0+ £, genes < —0.3
genel0 =

0.4genet + 1.0+ ¢4, genet <03
gened =

gene6 = 0.6 genet + £

gene7 = 0.7 genel + &7
(gome8 + D2 + 679, —0.3 < genes < 0.3
0.4genes +1.0+¢109, 0.3 < genes

0.4gene3 + 1.0+ ¢1, gene3 < —0.3
geneld =

gene8 = £g, gene9d = £Q, genel6 = €14
gene11 = 1.0/(1 4 exp(—4genes)) + £11

(gome3+ D2 + 679, —0.3 < gene3 < 0.3 gene12 = 0.8 gene16 + 0.6(Singene3) + 612

0.4gene3 + 1.0+ ¢1, 0.3 < gene3
0.2gene3 —1.04£15,  gene3 < —0.2
1.4 gene3 +¢15, —0.2 < gene3

gene13 = 1.3gene3 +£13
genels = {

Fig. 5. Designed network (left) and its relations assigned to genes (right). Small circles on the edges of the network represent that they share

aconsensus motif. We assume tgahel (node with number 1) is a transcription factgr.in the functions represents noise.

Figure 4 represents an example of the modification ofion. The computation was conducted under Sun Fire 15k
edges. The gray node represents a transcription factevith 96 CPUs, and Intel Xeon cluster system with 64
candidate. The motif detection method performs for childCPUs. The program can run parallel on these CPUs using
and grand-child genes of the TF (genes in the greeMPL.
region). Black nodes indicate that they share a consensus
motif. Solid lines are the estimated regulations by aCOMPUTATIONAL EXPERIMENTS
Bayesian network model. In this example, a motif foundM onte Carlo simulations
in TF's children are also found in a TF’s parent and in 8T evaluate the effectiveness of our method, we have
grand-child. In this case, we reverse the direction of the.; . 4,cted Monte Carlo simulations.
edge between the TF and the parent, and connect a hew
direct edge between the TF and the grand-child which haBata

the motif. Dashed red lines represent new edges after sSufle designed an artificial network whose relations of the

modifications. regulations between genes are shown in Figure 5. The
) ) network we designed has 16 genes, and we asgemel
Implementation and computational resources (the black node in Fig. 5) to be a transcription factor
Weimplemented our program using C++ fileBayesian  and their children (the blue nodes) to have a consensus
network estimation, Objective Caml for the motif detec- motif. We randomly generate pseudo DNA sequences
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Table 1. Performance of the network estimation with or without motif information

experiments correct misdirect false positive sensitivity specificity
(0] with motif info (1000) 10768 2086 4943 71.8% 54.0 %
@m without motif info (1000) 10639 2898 12,727 70.9 % 38.4%
(1 tatat detected in (1) (433) 4785 823 2118 73.7% 55.6 %
(Iv) tatat not detected in (l) (567) 5983 1263 2825 70.3% 52.8 %

ot

(a) true network (b) without motifs (c) with motifs

Fig. 6. (a) true network, (b) a network estimated without motif information, (c) a network estimated with motif information. Red dashed
edges represent mis-directed edges. Red solid edges represent false positive (wrongly estimated edges). Green edges in (c) represent correctl
revised edges from (b).

for each gene, and embed a pseudo consensus moRfesults

‘tatat’in gene2 ~ gene7 (children ofgenel) by hand.  The results of the Monte Carlo simulations are summa-
We eliminate this motif from sequences of other genesyized in Table 1. Rows (1) and (1) represent the result of
The length of the pseudo DNA sequences is 100 basge estimation with or without the motif information. Col-
pairs for all genes. We generated pseudo 100 microarraygmn ‘specificity’ is the percentage of correctly estimated
for one data set using this network, and we preparegdges out of the total number of estimated edged,'sen-
1000 sets of such data; in the functions appeared in sitivity' is the percentage of correctly estimated edges out
Figure 5 represents noise for each node. The amount @f the total number of true edges.

noise we embedded was set to a signal to noise ratio By combining microarray data with the motif infor-
of 0.3. We ignore motifs whose length is less than 4mation, the specificity increased drastically (38.4-%
since, although motifs of such lengths may represent 84.0%). Although the number of correct edges only
biologically significant motif in real organisms, they are increased slightly (10 639> 10 768), the number of false
most likely a product of chance in our simulation. positives extremely decreased (12 7274934).

For prior probabilities to this Monte Carlo simulation, The number of experiments that successfully detected
we use 10 for ¢1, 7.0 for £2. The energies we used were the embedded motiftatat’ was 433 times out of 1,000
chosen from an experimental viewpoint. When we used axperiments ((Ill) in Table 1).When comparing (lI)
smaller energy (e.g. 2.0) &s, the motif information could  with (IV), we can see that our method could increase
not contribute to the network revision. On the other handthe specificity even if the method failed to detect the
when we used a larges (e.g. 20.0), the resulting network embedded motif. We observed that for the majority of
reflected the motif information too strongly. We observed(lV), our method detected the motif from a subset of
that our energies;; = 1.0 and¢z = 7.0, are not fatalistic, gene1’s children and therefore an incorrect motif does not
but give appropriate effects for the network revision. lead to serious problems.
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1: TF : genel 14: geneld 263.637 27: Search from parents :

2: Detecting motif from ... 15: genel0 272.292 28: gene7

3: gene BNRC score 16: genell 269.644 29: tatat found in gene7

4: -----mmmmmmmmme - 17: genelb 199.679 30:

5: gene6  152.098 18: genel3 196.396 31: Modifying the network...
6: gene2  194.65 19: 32: Reverse: gene7 <--> genel
7: gene4  231.136 20: Executing the motif 33: Keep : genel -> gene2
8: geneb  124.904 21: detection method... | 34: Keep : genel -> gene3
9: gene8  227.031 22: found motif : tatat 35: Keep : genel -> gene4
10: gene9  281.758 23: matched genes 36: Keep : genel -> geneb
11: genel6 298.498 24: gene6  gene2 gene4 | 37: Keep : genel -> geneb
12: genel2 254.1 25: gene5  gened 38:

13: gene3  141.219 26: 39: estimating the next ...

Fig. 7. Execution log of the method of the example in Figure 6. Lines from 5 to 18 represent genes and BNRC scores passed to the motif
detection methodtatat in Line 22 represents the motif found from this gene set. The parent gegemef in the initial network is only

gene7 in this example. The motif was also foundgane7 (Line 29). After the motif detection, the method revised the edges based on the
existence of the motif (Line 32 37).

Figure 6 represents a typical result of the Monte Carldo two from the above three genes. The promoter region
simulations. Figure 6a is the true network we designedof their DNA sequences are retrieved from GenBank
same as in Figure 5b is an initial network estimated bydatabase.

a Bayesian network model using microarray data alone.

By extracting the motif information and using a Bayesian

network method repeatedly, we obtain a final networkResults

shown in Figure 6c. There are four misdirected edge®ur method repeated the network estimation and motif
(represented by red dashed arrows) in the network (bletection four times with this data. Sin@HA4 was

but all of them are revised correctly in (c) (representedselected as a TF for all iterations, we focus @HA4 to

in green arrows). Whereas there are 6 falsely estimateghaluate our method. Figures 8 and 9 show the partial
edges in (b), after the revision the number of false positivesetwork in the neighborhood @HA4, estimated by the
becomes 3, and represented by red edges in (c). Bayesian network model without, and with the motif

The edge fromgenel to genel2 was estimated in information, respectively. In both figures, the function
the initial network (b) as a direct regulation. This edgeof each gene is indicated by a 2 digit number, which
was rejected in the re-estimation by a Bayesian networkcorresponds to the MIPS functional category (Mewes
method, and a correct edge fragene3 to genel2 was  al., 2002). For exampl&@OP2 located on the right side of
added. The correction for the direction of the edge fromrigure 9 has the function ‘cell cycle and DNA processing’
gene7 to genel in (b) results in the correction for gnd ‘subcellular localization’.
regulation betweegene1 and its parents. This correction  |n the four iterations, our algorithm detected the motifs:
also revises the indirect relation frogenel to genel2 aaaga, aaacg (twice), andtaaac. Surprisingly, the last
via gene8. The log of the execution of our method is motif is known as a promoter element of an yeast cell
represented in Figure 7. cycle transcription factor SFF (Swi Five Factor) (Ric
al., 2000). Black nodes in Figures 8 and 9 indicate that
they have the consensus motifsaac. ACE2 is a gene
Data known to be regulated by SFF and contains SFF promoter
We applied our method tdSaccharomyces cerevisiae  elements (Picet al., 2000). Though this gene was not
microarray data obtained by disrupting 100 genes, mosielected as a gene set for the motif detection, it became
of which are transcription factors (Imof al., 2003a). achild of RIM11 in the revised network.

We focused on three transcription facto@h1A4, GAL11, CHA4, which is selected as a TF candidate, has func-
and SM6, that have many child genes in the estimatedtions of the cell cycle and metabolisnMost of the
network of Imotoet al. (2002), because these genesgenes located downstream GAL11 and CHA4 in both
probably play important roles in the gene regulations. Wenetworks have functions related to the cell cycle and
extracted 124 genes that have distance less than or equalketabolism.

Application to real data
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01: Metabolism
02: Energy ARG2:[MIPS] 01
03: Cell cycle and DNA processing amino acid biosynthesis
04: Transcription acetylglutamate synthase
06: Protein fate
08: Cellular transport and transport mechanisms
11: Cell rescue, defense and virulence
13: Regulation of / Interaction with cellular environment CHA4: [MIPS] 01:04:40
14: Cell fate ) transcriptional control
30: Control of cellular organization transcription factor
40: Subcellular localization
67: Transport facilitation
99: Unknown
RPT1
08" DUR3
03:06:40, 13:40:67
RNR3
Q1:03:40
GLT1 YRR1
01 (Q04:40
ik
’ CIT2
01:02:40
TRK2
RME1 UGA3, RER
03:04:40 01:04/40 041113
O RFA3 st
Accas A MIG1 03:40
. 01:04:40 PDR1
03:06 GAL11 DAL4 REB1 04:11:40
01:04:14:40 | 08'40:67 04:40 FAS2
O O MET17 01:06:40
OFES? OS'EX\'IIIS%AO 01:40 STE6
(OvaLozsw 01:04:40 BE:04:50: FREG 08:14:40:67
99 O
13
Fig. 8. A partial network estimated using microarray data alone.
01: Metabolism () GAL11: [MIPS] 01:04:14:40
02: Energy general transcription activities
03: Cell cycle and DNA processing DNA-directed RNA polymerase Il
04: Transcription holoenzyme and Kornberg's mediator
06: Protein fate (SRB) subcomplex subunit
08: Cellular transport and transport mechanisms
11: Cell rescue, defense and virulence CHA4: [MIPS] 01:04:40
13: Regulation of / Interaction with cellular environment transcriptional control
14: Cell fate transcription factor
40: Subcellular localization
67: Transport facilitation
HSC82
11:40 g o
CDC2 PDR1
4 ARG2 4:11:4
03:49 01| Fast IDP3 Y1140
R 01:02:40
HAL9
FAS2 0411400 DUR
01:06:40 13:40:67
gl
RPU -04:490 GAL2 01:04:14:40
03:06:40 02-40- RR1
01:08:40:67 04:40
M17 RFA3
sTEC® (DAL 01:40 TRK2 03:40
08:14:40:67 i REB1 08:40:67 Lys14
(O MIG1 04:40 SWi4 ® -
01:04:40 CRZ1 03:04:40 01:04:40
Yy 04:11:13 RIM11
:08: LEU3 CIT2 04"
O 01:04:40 O 61:02:40 03:04:40

Fig. 9. A partial network estimated using microarray data and motif information.
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Estimating gene networks and detecting promoter element

Table 2. Alignment of the detected motif with known genes. Capital lettersand  DNA sequences of regulatory regions of genes.

are consistent with the known consensus motifs From the Monte Carlo simulations, we can conclude
that our method can estimate more accurate networks
MCM1 SFF than existing methods, and can simultaneously detect the

motif CCY-WWWNN-RG RYMAAYA promoter elements. We observed that the motif informa-

tion is useful for revising some incorrect relations in the

ACE2 CtC-AAAA-CGGcaaaat-GTAAACAttgge ; ;
HOF1 £G0-TCTT-T6Ggcnngt tCTAMGAS a0a network estimated by microarray data alone. In a real data
ALK CCC-TTTT-TCCtanan—cCTAAACAaaata appllcatlon, we succeeded in estimating a gene network
SUR7 CCC-AATCG-GGaaaa-ttGTAAACAttage  WHhich contains known regulatory relations, and we could
BUD4 CCC-gATTT-GGaaaaa-gGTAAACAacaat  detect a known motif as well. We also observed in both
SWIS CCT-gTTTA-GGaaaaa-gGTAAACAataac  Monte Carlo simulations and real data experiments,
CLB2 CC-GAATCA-GGaaaa--gGTCAACAacgaa .
that the effect of small corrections made based on the
REB1 CCaaccTAA-AGtaaataaATAAACAtcatc  MoOtif information seemed tq propagate thrpugh the entire
ARG2 CCagTTccACGGeaactcacTAMACctatce  NEtwork, rather than modify a local neighborhood of
where the motif was detected.
Y=CorT,W=AoOrT,R=A0rG,M=A0rC Our method also has an advantage as a motif detection

method. Determining the set of co-regulated genes that

According to the above analysis, although there is ndnay have a consensus motif is a difficult problem,
biological evidence thaCHA4 is related to SFF, most because indirectly regulated genes may be included
black genes have functions related to the cell cycle ognd/or directly regulated genes may be exclu@t¢almes
metabolism.CHA4 is also a transcription factor that and Bruno, 2000; Bussemaket al., 2001) Using a
functions as a cell cycle regulator. We can say that ther8ayesian network model, we can roughly determine the
may be a relation betwegZHA4 and SFF. direct/indirect relation between genes. Therefore, our

The MCM1-SFF complex regulates the G2 phase ofmethod is another approach for solving this problem to
the cell cycle, andACE2 is known to have theCM1  obtain more biologically meaningful results.
promoter element, as well as the SFF element éP&., There are several works combining gene expression
2000). For all genes which contains the matifaac, we  profiles with promoter element information to investigate
looked for genes which have &aCM1 binding site near gene networks. In Segadt al. (2002), a probabilistic
the SFF binding site as iIACE2. The result is shown framework was proposed, that models the process by
in Table 2. The upper 7 rows are the binding sequenceghich transcriptional binding explains the expression of
shown in Picet al. (2000). The lower two rows show genes. In Pilpeét al. (2001), they show a strategy to find
the genes which exhibit a putativdCM1 binding site.  motif combinations which effect the gene expression.
We can see that the motifs of these two genes are venn Harteminket al. (2002), data from genomic location
similar to knownMCM1-SFF binding sites. Unfortunately, analysis is combined in the inference of the network. Our
transcription factor8/CM1 and SFF (primary component method is different from these methods, and the unique-
FKH2 (Boros et al., 2003)), and genes which they ness of our method lies in the interactive improvement of
regulate, such adOF1, are not contained in our data set. Bayesian network and promoter element detection.

The estimation of a network for all genes is unrealistic From a biological point of view, the actual machinery
from a_s_tatistical point of view, and selection of genes is gy the regulation in the organism is more complicated.
very difficult and important problem. . For example, transcription factors are often realized by

GAL11is known as a general transcription factor, and isy complex consisting of a set of proteins. Our Bayesian

:(nn(tjr\:\(/e n ggﬁg&ﬁtﬁgﬁeﬁ%%‘)i E:Jhelra?)ﬁz‘ i:f?)\;vni\;?ign network model cannot treat protein complexes. We would
GAL2 lies upstream oBAL1L, as aparent ofARG2 (data like to investigate this topic in our future research.

not shown).Interestingly,in the revised networkGAL11
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