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ABSTRACT
We present a statistical method for estimating gene net-
works and detecting promoter elements simultaneously.
When estimating a network from gene expression data
alone, a common problem is that the number of microar-
rays is limited compared to the number of variables in the
network model, making accurate estimation a difficult task.
Our method overcomes this problem by integrating the mi-
croarray gene expression data and the DNA sequence in-
formation into a Bayesian network model. The basic idea
of our method is that, if a parent gene is a transcription
factor, its children may share a consensus motif in their
promoter regions of the DNA sequences. Our method de-
tects consensus motifs based on the structure of the es-
timated network, then re-estimates the network using the
result of the motif detection. We continue this iteration until
the network becomes stable. To show the effectiveness of
our method, we conducted Monte Carlo simulations and
applied our method to Saccharomyces cerevisiae data as
a real application.
Contact: tamada@ims.u-tokyo.ac.jp

INTRODUCTION
Constructing gene networks from microarray gene ex-
pression data is becoming an important challenge in the
post-genomic era. Agene network, or gene regulatory
network, is a model which represents regulations between
genes using a directed graph. In gene networks, nodes
indicate genes and edges represent regulations between
genes (e.g. activation or suppression). Several methods
have been proposed for estimating gene networks from
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formatics Center, Institute for Chemical Research, Kyoto University.
† These authors contributed equally to this work.

microarray data using mathematical models such as
Boolean networks (Akutsuet al., 1999, 2000a,b, 2003;
Maki et al., 2001; Shmulevichet al., 2002), differential
equations (Chenet al., 1999; De Hoonet al., 2003), and
Bayesian networks (Friedman and Goldszmidt, 1998;
Friedmanet al., 2000; Imotoet al., 2002). Although these
methods succeed in constructing networks where genes
known to be biologically related come close together, it
is difficult to determine the correct direction of the edges,
as well as whether or not the relation of genes is direct
or indirect. This is especially true when using disruptant
microarray data (as opposed to time series microarray
experiments which contain information concerning time
dependencies) (e.g. see Fig. 5 in Imotoet al. (2003a)).

The drawbacks of the previous methods are mainly
caused by the limited number of microarrays. From a
statistical point of view, the number of samples (microar-
rays) is always insufficient to estimate accurate networks
as opposed to the number of variables (genes) in the
model. Theoretically, this problem can be solved by using
more microarrays, but this solution is unrealistic because
of the cost incurred in producing a sufficient number of
microarray data.

To overcome these problems, we have developed a sta-
tistical method for estimating gene networks by utilizing
DNA sequences and microarray data. The basic idea is as
follows: The regulation of genes is known to be realized by
transcription factors (TFs), which are important subsets of
proteins that transcribe mRNAs from DNAs. Genes that a
specific TF regulates, contain a binding consensus motif
called the transcription factor binding site, located in the
upstream regions of the genes. Suppose that a geneg in
the network is a transcription factor. If the children ofg
are directly regulated byg, then they may share a consen-
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Fig. 1. Conceptual view of our proposed method.

sus motif in their upstream DNA sequences. By detecting
a consensus motif from a set of genes which have been
selected based on the structure of the network, we can cor-
rect the network by repairing mis-directed edges and/or
adding direct edges fromg, based on the existence of the
motif.

Figure 1 represents the conceptual explanation of our
method. First, we estimate a gene network from microar-
ray data alone using a Bayesian network model (Imotoet
al., 2002, 2003a). Based on the network structure, we then
focus on several genes which are regarded as transcription
factor candidates in the estimated network, and define sets
of genes that may be co-regulated by each candidate. A
motif detection method (Bannaiet al., 2002, 2003) is then
performed for detecting a consensus motif from each set
of possibly co-regulated genes. After the motif detection,
we revise the structure of the network based on the motif
information and embed this information into a Bayesian
network estimation method as a prior probability of the
network. The network is estimated again using both mi-
croarray data and the motif information this time. This it-
erative procedure, the motif detection and the network re-
estimation, is repeated until the structure of the network
does not change considerably.

To evaluate our method, we first conducted Monte
Carlo simulations. We designed an artificial network
and generated pseudo microarray data and pseudo DNA
sequences. We compared the estimated network by our
method with one estimated by only microarray data. We
also applied our method toSaccharomyces cerevisiae
gene expression data as a real application. We succeeded
in estimating more accurate networks than the previous
method in both cases.

METHOD
Bayesian network model
In this subsection, we introduce a Bayesian network
and nonparametric regression model (Imotoet al., 2002)
as an advance method for estimating gene networks.
In the context of Bayesian networks, we consider a
directed acyclic graph encoding the Markov assumption.
A gene corresponds to a random variable shown as a
node and gene regulations are represented by edges in
the graph. Suppose that we haven sets of microarrays
{x1, . . . , xn} of p genes, wherexi = (xi1, . . . , xip)

T

is a p dimensional gene expression vector obtained by
i th microarray, i.e.xi j is an expression value ofj th
gene measured byi th microarray. A Bayesian network
and nonparametric regression model (Imotoet al., 2002,
2003a) captures the interaction between genes by using
nonparametric additive regression models of the form
xi j = m j1(p( j)

i1 ) + · · · + m jq j (p( j)
iq j

) + εi j , i =
1, . . . , n, wherep( j)

ik is the expression value ofkth parent
of the j th gene measured byi th microarray andεi j
depends independently and normally on mean 0 and
varianceσ 2

j . Weconstructm jk(·) by B-splines of the form

m jk(p( j)
ik ) = ∑M jk

m=1 γ
( j)
mk b( j)

mk (p( j)
ik ), k = 1, . . . , q j , where

{b( j)
1k (·), . . . , b( j)

M jk ,k
(·)} is a prescribed set ofB-splines and

γ
( j)
mk are parameters. Hence, a joint density of the all genes

can be modeled by

f (xi ; θG)

=
p∏

j=1

1√
2πσ 2

j

exp

[
−{xi j − ∑q j

k=1 m jk(p( j)
ik )}2

2σ 2
j

]
,

whereθG is a parameter vector. Ifj th gene has no parent
genes, we use a parameterµ j instead of

∑q j
k=1 m jk(p( j)

ik ).
Advantages of our model are as follows: Our model can
analyze gene expression data as continuous data without
extra pretreatment of the data such as discretization, which
leads to information loss. Even nonlinear relationships
between genes can be extracted.

Motif detection
A motif detection method is used to find a consensus motif
from a set of genes whichmay be co-regulated by the same
transcription factor. A popular method for determining
such a set is to first cluster the genes according to their
expression patterns, and then look for common motifs in
each of the clusters (e.g. Brazmaet al. (1998)). In our
method, however, we would like to exploit the ‘higher
level’ information extracted by the estimation of the
network, represented by thestructure of the network and
likelihood scores (which depend on the network structure)
that a certain gene is a parent of another.
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Fig. 2. Concept of string pattern regression.

Using the structure of the currently estimated network,
we choose several genes as putative TFs. We also select
sets of genes as candidates genes that may be regulated by
each TF, and therefore may contain a common motif. Each
of these genes are paired with a score which represents the
likelihood that the gene is a direct child of the TF. Details
of the likelihood score and the selection process is given
in Criterion andAlgorithm.

Since the network structure and the likelihoods that each
gene is a direct child of the TF should befairly accurate,
we want to find motifs which appear in genes with
relatively higher likelihood scores, and does not appear
in relatively lower likelihood scores. This kind of motif
search is possible using a method calledstring pattern
regression proposed in (Bannaiet al., 2002), which looks
for motifs that separate the set of strings so that the
distribution of a numerical attribute paired with the string
is best split. More precisely, given a data setD ⊆ �∗ × R
consisting of pairs of a string and a numerical attribute,
the method looks for a patternp which minimizes the
following score:

M SE(D, p)

=
∑

(s,r)∈Dp (µ(Dp)−r)2+∑
(s,r)∈Dp̄

(µ(Dp̄)−r)2

|D| ,

where Dp is the subset ofD whose string containsp,

Dp̄ = D − Dp, andµ(D′) =
∑

(s,r)∈D′ r
|D′| is the average

of the numeric attributes in any setD′ ⊆ D.

In this paper, we use thesubstring pattern class as the
motif model. A substring pattern is essentially a string of
certain length containing no mismatches or ambiguities.
The string pattern regression problem can be optimally
solved very efficiently for this motif model: in linear time
in the total length of the input strings (Bannaiet al., 2003).

Although more flexible patterns (e.g. PSSM) are usually
preferred, it is known that transcription factor binding sites
contain core short patterns which are well conserved with
low internal variation (Bussemakeret al., 2001; Keles¸ et
al., 2002). Selection of an appropriate motif model for
our method is a difficult problem, and deserves further
investigations.

Criterion for choosing a network
In a Bayesian statistical framework, we can choose an
optimal gene network based on the posterior probability
of a networkG

π(G|X) = π(G, X)/π(X), (1)

whereX is the microarray data,

π(G, X) = π(G)

∫ n∏
i=1

f (xi ; θG)π(θG |λ)dθG,

π(X) =
∑
G∈G

π(G, X).

Hereπ(θG |λ) is a prior distribution on the parameterθG
with a hyperparameter vectorλ andG is the set of possible
networks. Since the network selection does not depend on
the denominator of (1), we can useπ(G, X) as a model
selector.

The integral inπ(G, X) is the marginal likelihood and
represents the fitness of the model to the microarray data.
The information of regulatory motifs is stored inπ(G),
which is the prior probability of the networkG. Imoto et
al. (2003b) provided a general framework for combining
microarrays and biological knowledge for estimating a
gene network based on Bayesian networks. We briefly
introduce their method here and show how to incorporate
motif information into their framework.

They defined a network energyE(G) = ∑
(i, j)∈G Ui j ,

where Ui j is an energy of an edge from thei th gene
to the j th gene, and assume that the probability of the
network depends on the Gibbs distributionπ(G) =
Z−1 exp(−ζ E(G)), where Z = ∑

g∈G exp(−ζ E(G)) is
a partition function andζ a hyperparameter. Under their
framework, we can allocate the different energies accord-
ing to the information of consensus motifs. Concretely, for
eachζUi j , we set a valueζ1 for relationships with motif
evidence andζ2 otherwise. Note that 0< ζ1 < ζ2. Hence
we obtain a prior probability of a network reflecting motif
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Step 1. Estimate a gene network from microarray data alone using Bayesian network model.
Step 2. For each geneg, let Dg be the set of child and grand-child genes ofg. Genes with|Dg | ≥ 4 are considered as TFs,

and search for motifs inDg .
Step 3. For each TF, based on the result of the motif detection:

A) If a parent of the TF contains the motif, we reverse the edge and make it a direct child.
B) If a grand-child of the TF contains the motif, we add an edge and make it a direct child.

Wealso embed this information into Equation (2).

Step 4. Estimate a gene network again along with the motif information.
Step 5. Continue Step 2 through 4 until the network does not change.

Fig. 3. Algorithm for estimating a gene network from microarray data with promoter detection.

information of the form

π(G) = Z−1
p∏

j=1

∏
i∈L j

exp(−ζα(i, j)), (2)

whereL j is an index set of parent genes ofi th gene and
the functionα(i, j) takes 1 if j th gene has a motif against
i th gene or 2 otherwise. For example, if gene2, gene3 and
gene4 have a consensus motif against gene1, but gene5
does not have. We findα(1, 2) = α(1, 3) = α(1, 4) = 1
andα(1, 5) = 2.

By computing the integral inπ(G, X), we can use it as
a network selector. We apply the Laplace approximation
to compute this integral and the criterion then results in
BNRC (Bayesian network and Nonparametric Regression
Criterion) (Imotoet al., 2002) with motif information. The
use of Laplace approximation for computing the marginal
likelihood has been investigated by (Davison, 1986; Imoto
et al., 2002, 2003a; Konishiet al., 2003; Tinereyet al.,
1986).

Algorithm
The algorithm of the method is summarized in Figure 3. In
Step 1, from microarray data alone, we estimate an initial
gene network using a Bayesian network model (Imoto
et al., 2002) described inBayesian Network Model.
In subsequent steps, we will revise this network using
motif information. In Step 2, we select transcription factor
candidates. If a gene in the network has many parents and
children, we hypothesize that these genes are transcription
factors (TFs) that may regulate other genes by binding
to consensus motifs in their promoter region of the DNA
sequences. In our method, we select as TFs, genes which
have more than 4 child or grand-child genes in the
estimated network. Note that we do not limit the number of
TF candidates in this step. Next, for each selected TFg, we
extract a set of genes which may be co-regulated byg and
therefore share consensus motifs. Since the network can
contain errors concerning direct connections, we define
this set as the child and grand-child genes of geneg,
denoted byDg.

Then, we execute the motif detection method described
in the previous sectionfor each setDg. Scores assigned to
genes inDg are calculated as direct children of TFg. After
the motif detection, we search from a set of parent genes
of the TFg, amotif found in the motif detection method.

In Step 3, based on the result of the motif detection
program, we modify the edges of the network as follows.

A) If the motif is found in a parent of the TF, it is possible
that this parent is actually a child of the TF. Therefore,
we reverse the direction of such edges.

B) If the motif is found in a grand-child of the TF, then
it is possible that this gene is a child of the TF. We
remove such edges and add direct edges.

After the modification of edges, we remove all edges
from the network, except edges modified in the previous
step and edges that connect with genes having the motifs.
This is done because the greedy hill climbing algorithm
used in the Bayesian network estimation method, depends
on the initial state of the network before the estimation.

Finally, in Step 4, we estimate the network using the
Bayesian network method again, this time along with
prior knowledge about the existence of the motif. For the
prior probability (Equation (2)), we useζ1 for parent-child
relations which are supported by the detected motif, and
ζ2 otherwise. Note that, the modifications for the edges do
not always remain in the next network estimation. Because
the motif detection method does not always succeed in
detecting real motifs, we can not blindly trust the result
of the detection. Besides, it is possible that a set of genes
Dg do not even have any consensus motif. Estimating
the network along with a prior information of the motif
existence can be considered to be the evaluation of the
motif detection using a Bayesian model and microarray
expression data.

After the re-estimation of the network, we also execute
the motif detection method again. We continue this
iteration until the motif detection method does not detect
any motif that can affect the result of the next network
estimation.
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Fig. 4. Brief explanation for modifications of edges. The gray node represents a transcription factor (TF). The motif detection performs to
sets of TF’s child and grand-child genes (indicated by the green region). Black nodes indicates genes sharing a consensus motifs found in the
motif detection. After the motif detection, our method search the motif from parents of the TF. The candidate genes for the edge modification
are indicated by the blue region. Red edges represent new edges by the modification.
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{
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1.4 gene3 + ε15, −0.2 < gene3

gene1 = 1.2 gene8 + 0.8 gene9 + ε1
gene2 = 0.6 gene1 + ε2
gene5 = cos(1.4 (gene1 + 3.7)) + ε5
gene6 = 0.6 gene1 + ε6
gene7 = 0.7 gene1 + ε7
gene8 = ε8, gene9 = ε9, gene16 = ε16
gene11 = 1.0/(1 + exp(−4gene8)) + ε11
gene12 = 0.8 gene16 + 0.6(singene3) + ε12
gene13 = 1.3 gene3 + ε13

Fig. 5. Designed network (left) and its relations assigned to genes (right). Small circles on the edges of the network represent that they share
aconsensus motif. We assume thatgene1 (node with number 1) is a transcription factor.εi in the functions represents noise.

Figure 4 represents an example of the modification of
edges. The gray node represents a transcription factor
candidate. The motif detection method performs for child
and grand-child genes of the TF (genes in the green
region). Black nodes indicate that they share a consensus
motif. Solid lines are the estimated regulations by a
Bayesian network model. In this example, a motif found
in TF’s children are also found in a TF’s parent and in a
grand-child. In this case, we reverse the direction of the
edge between the TF and the parent, and connect a new
direct edge between the TF and the grand-child which has
the motif. Dashed red lines represent new edges after such
modifications.

Implementation and computational resources
Weimplemented our program using C++ fortheBayesian
network estimation, Objective Caml for the motif detec-

tion. The computation was conducted under Sun Fire 15k
with 96 CPUs, and Intel Xeon cluster system with 64
CPUs. The program can run parallel on these CPUs using
MPI.

COMPUTATIONAL EXPERIMENTS
Monte Carlo simulations
To evaluate the effectiveness of our method, we have
conducted Monte Carlo simulations.

Data
We designed an artificial network whose relations of the
regulations between genes are shown in Figure 5. The
network we designed has 16 genes, and we assumegene1
(the black node in Fig. 5) to be a transcription factor
and their children (the blue nodes) to have a consensus
motif. We randomly generate pseudo DNA sequences
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Table 1. Performance of the network estimation with or without motif information

experiments correct misdirect false positive sensitivity specificity

(I) with motif info (1000) 10 768 2086 4 943 71.8 % 54.0 %
(II) without motif info (1000) 10 639 2898 12,727 70.9 % 38.4 %

(III) tatat detected in (I) (433) 4 785 823 2 118 73.7 % 55.6 %
(IV) tatat not detected in (I) (567) 5 983 1263 2 825 70.3 % 52.8 %
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(a) true network (b) without motifs (c) with motifs

Fig. 6. (a) true network, (b) a network estimated without motif information, (c) a network estimated with motif information. Red dashed
edges represent mis-directed edges. Red solid edges represent false positive (wrongly estimated edges). Green edges in (c) represent correctly
revised edges from (b).

for each gene, and embed a pseudo consensus motif
‘tatat’ in gene2 ∼ gene7 (children ofgene1) by hand.
We eliminate this motif from sequences of other genes.
The length of the pseudo DNA sequences is 100 base
pairs for all genes. We generated pseudo 100 microarrays
for one data set using this network, and we prepared
1000 sets of such data.εi in the functions appeared in
Figure 5 represents noise for each node. The amount of
noise we embedded was set to a signal to noise ratio
of 0.3. We ignore motifs whose length is less than 4,
since, although motifs of such lengths may represent a
biologically significant motif in real organisms, they are
most likely a product of chance in our simulation.

For prior probabilities to this Monte Carlo simulation,
we use 1.0 for ζ1, 7.0 for ζ2. The energies we used were
chosen from an experimental viewpoint. When we used a
smaller energy (e.g. 2.0) asζ2, the motif information could
not contribute to the network revision. On the other hand,
when we used a largerζ2 (e.g. 20.0), the resulting network
reflected the motif information too strongly. We observed
that our energies,ζ1 = 1.0 andζ2 = 7.0, are not fatalistic,
but giveappropriate effects for the network revision.

Results
The results of the Monte Carlo simulations are summa-
rized in Table 1. Rows (I) and (II) represent the result of
the estimation with or without the motif information. Col-
umn ‘specificity’ is the percentage of correctly estimated
edges out of the total number of estimated edges,and ‘sen-
sitivity’ is the percentage of correctly estimated edges out
of the total number of true edges.

By combining microarray data with the motif infor-
mation, the specificity increased drastically (38.4 %→
54.0%). Although the number of correct edges only
increased slightly (10 639→ 10 768), the number of false
positives extremely decreased (12 727→ 4934).

The number of experiments that successfully detected
the embedded motif ‘tatat’ was 433 times out of 1,000
experiments ((III) in Table 1).When comparing (II)
with (IV), we can see that our method could increase
the specificity even if the method failed to detect the
embedded motif. We observed that for the majority of
(IV), our method detected the motif from a subset of
gene1’s children and therefore an incorrect motif does not
lead to serious problems.
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1: TF : gene1
2: Detecting motif from ...
3: gene BNRC score
4: --------------------
5: gene6 152.098
6: gene2 194.65
7: gene4 231.136
8: gene5 124.904
9: gene8 227.031

10: gene9 281.758
11: gene16 298.498
12: gene12 254.1
13: gene3 141.219

14: gene14 263.637
15: gene10 272.292
16: gene11 269.644
17: gene15 199.679
18: gene13 196.396
19:
20: Executing the motif
21: detection method...
22: found motif : tatat
23: matched genes
24: gene6 gene2 gene4
25: gene5 gene3
26:

27: Search from parents :
28: gene7
29: tatat found in gene7
30:
31: Modifying the network...
32: Reverse: gene7 <--> gene1
33: Keep : gene1 -> gene2
34: Keep : gene1 -> gene3
35: Keep : gene1 -> gene4
36: Keep : gene1 -> gene5
37: Keep : gene1 -> gene6
38:
39: estimating the next ...

Fig. 7. Execution log of the method of the example in Figure 6. Lines from 5 to 18 represent genes and BNRC scores passed to the motif
detection method.tatat in Line 22 represents the motif found from this gene set. The parent gene ofgene1 in the initial network is only
gene7 in this example. The motif was also found ingene7 (Line 29). After the motif detection, the method revised the edges based on the
existence of the motif (Line 32∼ 37).

Figure 6 represents a typical result of the Monte Carlo
simulations. Figure 6a is the true network we designed,
same as in Figure 5b is an initial network estimated by
a Bayesian network model using microarray data alone.
By extracting the motif information and using a Bayesian
network method repeatedly, we obtain a final network
shown in Figure 6c. There are four misdirected edges
(represented by red dashed arrows) in the network (b),
but all of them are revised correctly in (c) (represented
in green arrows). Whereas there are 6 falsely estimated
edges in (b), after the revision the number of false positives
becomes 3, and represented by red edges in (c).

The edge fromgene1 to gene12 was estimated in
the initial network (b) as a direct regulation. This edge
was rejected in the re-estimation by a Bayesian network
method, and a correct edge fromgene3 to gene12 was
added. The correction for the direction of the edge from
gene7 to gene1 in (b) results in the correction for
regulation betweengene1 and its parents. This correction
also revises the indirect relation fromgene1 to gene12
via gene8. The log of the execution of our method is
represented in Figure 7.

Application to real data
Data
We applied our method toSaccharomyces cerevisiae
microarray data obtained by disrupting 100 genes, most
of which are transcription factors (Imotoet al., 2003a).
We focused on three transcription factors,CHA4, GAL11,
and SWI6, that have many child genes in the estimated
network of Imoto et al. (2002), because these genes
probably play important roles in the gene regulations. We
extracted 124 genes that have distance less than or equal

to two from the above three genes. The promoter region
of their DNA sequences are retrieved from GenBank
database.

Results
Our method repeated the network estimation and motif
detection four times with this data. SinceCHA4 was
selected as a TF for all iterations, we focus onCHA4 to
evaluate our method. Figures 8 and 9 show the partial
network in the neighborhood ofCHA4, estimated by the
Bayesian network model without, and with the motif
information, respectively. In both figures, the function
of each gene is indicated by a 2 digit number, which
corresponds to the MIPS functional category (Meweset
al., 2002). For exampleTOP2 located on the right side of
Figure 9 has the function ‘cell cycle and DNA processing’
and ‘subcellular localization’.

In the four iterations, our algorithm detected the motifs:
aaaga, aaacg (twice), andtaaac. Surprisingly, the last
motif is known as a promoter element of an yeast cell
cycle transcription factor SFF (Swi Five Factor) (Picet
al., 2000). Black nodes in Figures 8 and 9 indicate that
they have the consensus motifstaaac. ACE2 is a gene
known to be regulated by SFF and contains SFF promoter
elements (Picet al., 2000). Though this gene was not
selected as a gene set for the motif detection, it became
achild of RIM11 in the revised network.

CHA4, which is selected as a TF candidate, has func-
tions of the cell cycle and metabolism.Most of the
genes located downstream ofGAL11 and CHA4 in both
networks have functions related to the cell cycle and
metabolism.
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Table 2. Alignment of the detected motif with known genes. Capital letters
are consistent with the known consensus motifs

MCM1 SFF
motif CCY-WWWNN-RG RYMAAYA

ACE2 CtC-AAAA-CGGcaaaat-GTAAACAttggc

HOF1 tCC-TcTT-TGGgcaagttGTAAACAataaa

ALK1 CCC-TTTT-TGGtaaaa-cGTAAACAaaata

SUR7 CCC-AATCG-GGaaaa-ttGTAAACAttagc

BUD4 CCC-gATTT-GGaaaaa-gGTAAACAacaat

SWI5 CCT-gTTTA-GGaaaaa-gGTAAACAataac

CLB2 CC-GAATCA-GGaaaa--gGTCAACAacgaa

REB1 CCaaccTAA-AGtaaataaATAAACAtcatc

ARG2 CCagTTccACGGcaactcacTAAACctatcc

Y = C or T, W = A or T, R = A or G, M = A or C

According to the above analysis, although there is no
biological evidence thatCHA4 is related to SFF, most
black genes have functions related to the cell cycle or
metabolism.CHA4 is also a transcription factor that
functions as a cell cycle regulator. We can say that there
may be a relation betweenCHA4 and SFF.

The MCM1-SFF complex regulates the G2 phase of
the cell cycle, andACE2 is known to have theMCM1
promoter element, as well as the SFF element (Picet al.,
2000). For all genes which contains the motiftaaac, we
looked for genes which have anMCM1 binding site near
the SFF binding site as inACE2. The result is shown
in Table 2. The upper 7 rows are the binding sequences
shown in Picet al. (2000). The lower two rows show
the genes which exhibit a putativeMCM1 binding site.
We can see that the motifs of these two genes are very
similar to knownMCM1-SFF binding sites. Unfortunately,
transcription factorsMCM1 and SFF (primary component
FKH2 (Boros et al., 2003)), and genes which they
regulate, such asHOF1, are not contained in our data set.
The estimation of a network for all genes is unrealistic
from a statistical point of view, and selection of genes is a
very difficult and important problem.

GAL11 is known as a general transcription factor, and is
known to regulateGAL2 (Suzukiet al., 1988). However,
in the network estimated without the motif information,
GAL2 lies upstream ofGAL11, as aparent ofARG2 (data
not shown).Interestingly,in the revised network,GAL11
moved to an upstream location of the network, compared
to that of the network without motif information, and we
can see that the relation betweenGAL11 and GAL2 is
corrected.

CONCLUSION
We proposed a statistical method for estimating gene
networks, combining microarray gene expression data

and DNA sequences of regulatory regions of genes.
From the Monte Carlo simulations, we can conclude
that our method can estimate more accurate networks
than existing methods, and can simultaneously detect the
promoter elements. We observed that the motif informa-
tion is useful for revising some incorrect relations in the
network estimated by microarray data alone. In a real data
application, we succeeded in estimating a gene network
which contains known regulatory relations, and we could
detect a known motif as well. We also observed in both
Monte Carlo simulations and real data experiments,
that the effect of small corrections made based on the
motif information seemed to propagate through the entire
network, rather than modify a local neighborhood of
where the motif was detected.

Our method also has an advantage as a motif detection
method. Determining the set of co-regulated genes that
may have a consensus motif is a difficult problem,
because indirectly regulated genes may be included
and/or directly regulated genes may be excluded(Holmes
and Bruno, 2000; Bussemakeret al., 2001). Using a
Bayesian network model, we can roughly determine the
direct/indirect relation between genes. Therefore, our
method is another approach for solving this problem to
obtain more biologically meaningful results.

There are several works combining gene expression
profiles with promoter element information to investigate
gene networks. In Segalet al. (2002), a probabilistic
framework was proposed, that models the process by
which transcriptional binding explains the expression of
genes. In Pilpelet al. (2001), they show a strategy to find
motif combinations which effect the gene expression.
In Harteminket al. (2002), data from genomic location
analysis is combined in the inference of the network. Our
method is different from these methods, and the unique-
ness of our method lies in the interactive improvement of
Bayesian network and promoter element detection.

From a biological point of view, the actual machinery
of the regulation in the organism is more complicated.
For example, transcription factors are often realized by
a complex consisting of a set of proteins. Our Bayesian
network model cannot treat protein complexes. We would
like to investigate this topic in our future research.
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