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ABSTRACT

Motivation: Biological processes in cells are properly performed
by gene regulations, signal transductions and interactions between
proteins. To understand such molecular networks, we propose a
statistical method to estimate gene regulatory networks and protein—
protein interaction networks simultaneously from DNA microarray
data, protein—protein interaction data and other genome-wide data.
Results: We unify Bayesian networks and Markov networks for estim-
ating gene regulatory networks and protein—protein interaction net-
works according to the reliability of each biological information source.
Through the simultaneous construction of gene regulatory networks
and protein—protein interaction networks of Saccharomyces cerevisiae
cell cycle, we predict the role of several genes whose functions are
currently unknown. By using our probabilistic model, we can detect
false positives of high-throughput data, such as yeast two-hybrid
data. In a genome-wide experiment, we find possible gene regulatory
relationships and protein—protein interactions between large protein
complexes that underlie complex regulatory mechanisms of biological
processes.

Contact: nariai@ims.u-tokyo.ac.jp

1 INTRODUCTION

such as localization data (Hartemiakal., 2002), DNA sequences
of promoter elements (Pilpet al., 2001; Tamadat al., 2003) and
transcriptional bindings of regulators (Bernard and Hartemink, 2005;
De Hoonet al., 2004; Imotcet al., 2004; Segadt al., 2003a,c).

However, protein—protein interaction networks are mainly con-
structed based on protein—protein interaction data observed, such as
yeast two-hybrid assays or tandem-affinity purification (TAP) experi-
ments (Gavirgtal., 2002; Heetal., 2002; Itoet al., 2001; Jeongt al.,

2001; Uetzet al., 2000). However, protein—protein interaction data
often contain some errors, and it is not easy to construct compre-
hensive protein—protein interaction networks from these interaction
data alone. Therefore, using other genomic data, such as mRNA
expression, functional databases and essentiality phenotypes, is con-
sidered to be effective for more accurate prediction of protein—protein
interactions (Jansest al., 2003).

In this paper, we propose a statistical method for estimating gene
regulatory networks and protein—protein interaction networks sim-
ultaneously based on microarray data, protein—protein interactions,
protein localizations, essentiality phenotypes and functional categor-
ies. Figure 1 shows a conceptual view of the proposed method. The
model consists of three components: a gene regulatory network model
(directed graph) based on Bayesian networks, a protein—protein
interaction network model (undirected graph) represented by binary

Many biological processes are carried out by inter.actions betweegyrkov networks and a structural connection between gene regu-
proteins, RNA and DNA in living cells. Recently, high-throughput latory networks and protein—protein interaction networks. The last

analyses enabled us to obtain genome-wide information, such a5, teizes the connection between gene regulatory networks and
mRNA expression, protem—prqtem interactions, protein local'za'protein—protein interaction networks, giving a penalty to coexist-
tions and so on. A lot of attention has been focused on developace of 4 directed edge and an undirected edge between genes. Since
ing computational methods for e>§tract|ng valuable |nf_ormat|0n Ofphysicallyinteracting proteins are often coexpressed{@e 2002),
molecular netwolrk.s from such various .type‘s of genomic data. previous approaches often estimate the coexpressed relationship as a
CIL(‘”?”“V' statistical methods for_elstlmatmg gene regulatory netyene requlation instead of a protein—protein interaction. To overcome
works from genomic data are mainly based on DNA microarayp;q drawback, we combine these three components as one statistical

data (Al,(UtS'H a., 1999; Cheret al., 1999; Frie.dm:,;uet al., 20005 model under a Bayes statistics in order to distinguish gene regulations
Harteminket al., 2002; Imotoet al., 2002, 2003; Pe'egt al., 2001, 5 protein—protein interactions clearly in the estimated network.

Shmulevichet al., 2002). However, since information contained in Previously, Segatt al. (2003b) proposed a clustering method
microarrays is limited by their quality, noise and experimental errorsg,, grouping genes that could be on the same pathway based
using only microarray data s not enough for estimating gene regulats, microarray data and protein—protein interaction data. In using
ory networks accurately. Therefore, the use of additional bi°|°9icabrotein—protein interaction information, they used binary inform-

data is considered as a kgy to mlcroarray. dat,a anglyses. There Afon whether the protein—protein interaction is observed or not.
several works combining microarray data with biological kn°W|edge'However, the quality of each protein—protein interaction should be

guantified according to its reliability. In our proposed method, we
compute the reliability of protein—protein interactions and use this

*To whom correspondence should be addressed.
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Estimating gene regulatory networks

data which indicate protein—protein interactions between genes. Our
goal is to construct a gene regulatory netwark (directed graph)

and a protein—protein interaction netwa@rk (undirected graph) that
maximize the joint posterior probabili®y(G,, G ,| X, Y). By remov-

ing the normalizing constant, we can decompose the joint posterior

' probability as
P(G,,GplX,Y) x P(G,,Gp, X, Y)

Gene expressions

Sructural information of

Gp e generegulatory networks (5, g = P(X|G)P(Y|G,)P(G,,Gp), (1)
o (]
o —© where P(X|G,,G,) = P(X|G,) andP(Y|G,,G,) = P(Y|G,)
o hold in our model. HereP(X|G,) and P(Y|G ) show the likeli-
. J hoods of gene-expression datand protein—protein interaction data
® ® P ® Y under givenG, andG ,, respectively, and(G,, G,) shows the
joint prior probability of G, andG . That is, the proposed method
® - ] L contains three component®,(X|G,), P(Y|G,) and P(G,,G)),
- P-Pinteraction =/ Sructural information of . Generegulatory~  and we elucidate how to construct them in the following sections.
networks P-P interaction networks networks

2.1 Generegulatory network model

Fig. 1. Conceptual view of the proposed method. Gene regulatory networks>UPPOSe that we havesets of microarray datf = {x3, ..., x,} of

and protein—protein interaction networks are learned simultaneously fronp genes. A Bayesian network gives a solution to compUu|G,)

biological data. by using the structure of the directed acyclic gra@h, and assum-
ing the Markov relationship between nodes. By using a Bayesian

information to construct a protein—protein interaction network. Innetwork, we have the decomposition of the joint probability based

addition, our aim is different from theirs in that we estimate geneon the graphG,: f(x;10,G,) = Hj.’:l fi(xijlpi;,0), wherex;; is

regulatory networks and protein—protein interaction networks of &he expression value of gepef i-th microarray,p;; is the vector

cell, whereas they tried to find co-functioning genes on the samef expression values of the direct parents of geoki-th micro-

pathway. On the other hand, Narétial. (2004) proposed a method array andd = (67, ... ,0;)/ is the parameter vector. The likelihood

for estimating regulatory relationships between genes represented afgene-expression data can be computed as

directed edges based on microarray data and protein—protein interac- .

tion data. However, whether the estimated causal relationships show P(X|G,) = / l—[ f(xi10,G)7(B|G,,1)db, )

gene regulations or protein—protein interactions are difficult to under- i1

stand. In our model, we clearly discern gene regulatory relationships . . T .
y g g v P herer (6|G,, 1) is the prior distribution on the parameteanda is

(directed edges) and protein—protein interactions (undirected edges), ) .
the hyperparameter vector. In this paper, we use the non-parametric

and the information of protein—protein interaction networks helps to - . .
refine gene regulatory networks and vice versa. regression model withB-splines (Imotoet al., 2002, 2003) for

For evaluating our method, we conduct two real applications: First‘constructmg Bayesian networks.

we construct both gene regulatory networks and protein—proteitp 2 Protein—protein inter action network model
interaction networks ofaccharomyces cerevisiae cell cycle from
mutant expression data (Hughetsal., 2000), protein—protein inter-
action data (Gaviret al., 2002; Hoet al., 2002; Itoet al., 2001;

As a measure of reliability for each protein—protein interaction,
Janseret al. (2003) proposed to compute a likelihood ratio for each
S . protein pair. Lety;; (k) be an element of that shows a genomic fea-
Uetzet al., 2000), essentiality phenotypes (Giaeseal., 2002) and ture of protein pair, geneand geng. For example, suppose that an

the MIPS functional category database (Mewesl., 2002). Our experiment corresponding ko= 1 is a yeast two-hybrid assay. Then
result_s show that the estimated gene.regul_atory networks _successi-j(l) — 1 (or 0) means that the protein pair of geaed geneinter-
fully f.'nd more k_nown r_egulatory relatlon_sh|ps, a”‘_" the estimate acted (or did notinteract). The reliability of the protein—protein inter-
protein—protein interaction networks are |mp_roved in terms of t_’Othaction between genand gengis then given by the likelihood ratio
the accuracy and coverage of known protein—protein interaction

compared with the previous method applied separately. We als\%here ‘pos’ and ‘neg’ are respectively the positive and negative sets

suggest possible biological roles of functionally unknown genes ¢ protein pairs constructed in advance, avds the number of

basteq on thte !nf.ortmatl(i.n of esttlmalzed gene regulagory net.workts aNfenomic features we considered. We explain how to construct the
profeln—pro enm ere_lc(i: lon nle v_vorvi. st_a s;acon experllmt(_en + Whositive and negative sets in Section 4. If each genomic feature is con-
periorm a genome-wide analysis. e estimate gene reguiations a ionally independent (for example, protein—protein interaction data

!oroteln—!oroteln interactions of 5335 genes and predict comprehepg—nd functional category database can be considered as independent
ive functional networks among large protein complexes. The deta"?nformation sourcesy, (i, j) can be rewritten as

of the real data analyses are described in Section 4.
LG, j) = PGijMlpos P Gij(N)|pos

= X .
2 PROBABILISTIC MODEL P(yij(DIneg P(yij(N)Ineg

Let X be gene-expression data akidbe protein—protein interac- Under a given undirected gragh,, the likelihood of protein—protein
tion data that include physical interaction data and other biologicainteraction informationY can be computed by a binary Markov

®)
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network model (Segadt al., 2003b) and protein—protein interaction networks from Equations (2), (4)
and (7) as:
1 e
PXIGy) = Z- {~l:[a L@, 7" ) GPNQG,,G,) = — 2l0g P(X|G,) P(Y|G ,) P(G,,G )
7 oell,jieGy

= —2Iog/ f(X10,G,)m(8]G,, 1) d6
whereef{i, j} is the undirected edge between geaad geng, Z,
is the normalizing constant andis the reliability degree parameter +2 Z Lo
(¢ = 0). Thea controls the balance between microarray data and Y

e(i,j)eG,
protein—protein interaction information. e
—2 Y AalogL(,j) =t} +2, (8)
2.3 Connection between generegulatory networks eli.jleG,

and protein—protein interaction networks

We decompose the joint probabili®(G,,G,) as P(G,,Gp) =
P(G,|G,)P(Gp), whereP(G,|G,) is the prior probability ofG,
conditional onG,, and P (G ) is the prior probability oiG ,. From
structural information of an undirected gragh, we define a value
for the directed edge from gente gene byc;; = 1fore{i, j} ¢ G,
and 2 fore{i, j} € G,. By usingc;;, we define the prior probability
of G, under a giverG, as Step 1. EstimateG , based on

where f(X|0,G,) = []; f(x;10,G,), andZ is the constant. The
optimal G, andG, are chosen as the minimizers of Equation (8).
Based on the joint probabilistic model and the criterion described
above, we use a greedy hill-climbing algorithm for estimating the
gene regulatory network;, and the protein—protein interaction
networkG , under given parametess ¢1, {2 and¢, as follows:

P(G,|Y PY|G,P(G,).
P(Gr|Gp)0<eXp<— )3 ;) ©) (G,lY) x P(Y|G,)P(G,)
e(i,j)eG, sep 2

Sep 2-1. For geng, perform one of four procedures: ‘add a
parent’, ‘remove a parent’, ‘reverse the parent—child rela-
tionship’ or ‘none’, which gives the lowest score. Update

wheree(i, j) is the directed edge from gene geng, ¢1 andg, are
parameters (& ¢1 < ¢2). Thatis,; tunes the complexity off, and
{2 adds a penalty to the structure@f according to the information

of G,. By using the prior probability (5), we put the lower prior G, andG,.
probability toe(i, ) if e{i, j} is included inG ,. Sep 2-2. If the score becomes unchanged, the learning is fin-
We construct the prior probability @ , as ished. Otherwise, go to Step 2 and continue the algorithm.
Itis natural to consider that estimated causal relationships within
P(G,) x exp[ - ¢ Z I(eli, j} € G,,)], (6) protein complexes are protein—protein interactions. Therefore, after
i learning is finished, directed edges in protein complexes are changed

to undirected edges. For example, if the directed edge from; gene
where¢, is a complexity parametet{ > 0) that controls the com-  t0 geng exists inG, but these two genes are connectedip we
plexity of G ,, andi(efi, j} € G,) = 1fore{i, j} € G, and O for change the directed edge from getegene to the undirected edge.
efi, j} ¢ G,.Hence, from Equations (5) and (6), the joint prior prob-
ability of gene regulatory networks and protein—protein interactionr4d COMPUTATIONAL EXPERIMENT
networks is defined by 4.1 Data preparation and parameter selection

For constructing protein—protein interaction networks, we collec-
ted protein—protein interaction data from four different experiments
o Gavin et al., 2002; Hoet al., 2002; Itoet al., 2001; Uetzet al.,
exp{_ Z {CU—{/,ZI(E{I,]}EG[;)}, (7) (

P(G,,G)p)

2000), essentiality phenotypes (Giaeeeal., 2002) and the MIPS
functional category database (Mewatsl., 2002). We extract 9928
binary protein—protein interactions from the MIPS complex cata-
logue (Mewest al., 2002) for constructing the positive interaction
pairs, and extract 14 224 045 different localizing pairs from the MIPS
localization data (Mewest al., 2002) for constructing negatives.
3 CRITERION AND ALGORITHM FOR Within 9928 positive protein pairs, 428 protein pairs also belong
ESTIMATING NETWORKS to the negatives. However, as the fraction of 4% is small and some
We choose the graph structures of gene regulatory networks armfoteins localize differently in different biological processes, we con-
protein—protein interaction networks by maximizing the joint pos- sider that the positives and negatives we constructed serve as a good
terior probability (1). For computing the integration in Equation (2), practical approximation.
we used the Laplace approximation for integrals (Imetoal., Table 1 shows the likelihood ratios of all 16 combinations of
2002; Konishiet al., 2004). Hence, we have a criterion, named the binary protein—protein interactions from four different experi-
GPNC (Gene regulatory networks and protein—protein interacments described above. Next, Table 2 shows the likelihood ratios of
tion networks criterion) for evaluating gene regulatory networksessential phenotypes. If two proteins are included in a biologically

prior e(i,j)€G, ij

whereZpyior is the normalizing constant.
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Estimating gene regulatory networks

Table 1. The likelihood ratio of protein—protein interactions b 38 ' with gp —
2 - no Gp ---x---
S 36| o
G H | U Number of pairs  pos neg L g 34 +
(2]
S 32t
1 1 1 1 9 7 0 Inf. ©
> 30 -
0 1 1 1 17 4 0 Inf. 2
1 1 1 0 28 19 3 90739 = 28} B
© =0.01
1 1 0o 1 15 5 1 7163.6 * o6 | |
1 0 1 0 49 27 7 5526.2 I I I I I
1 0 0o 1 33 12 4 4298.2 1 300 600 900 1200
1 0 1 1 20 6 4 21491 L
1 1 0 0 1573 364 355  1469.0
0 1 10 43 6 12 716.4 Fig. 2. The number of known regulatory relationships estimated by our
0 1 0 1 29 4 9 636.8 method. Labels on the plots show the values where the maximum number
0 0 1 1 111 14 48 4179 regulations was estimated.
1 0 0 0 16130 1323 5525 343.1
0 0 0 1 670 7 326 30.8 . .
0 1 0 O 29269 147 12669 16.6 0.5 R
0 0 1 0 4115 23 2556 12.9
0 0 0 O 20182230 7960 14202526 0.8 %L 0.4 7
~
G, H, I and U in this table show protein—protein interactions observed by Gaain g 031 ]
Hoetal., Ito et al. and Uetzet al., respectively. For example, if ggnand geng have 3 02 L i
a protein—protein interaction observed by Gaeirel. and not by othersL(i, j) = < ’
P(1323p0y _ 13239928 _ 3431
P(5528neg 552514224045 e 0.1 F -
. . . . 0 1 1 1 1
Table 2. The likelihood ratio of essential phenotypes 1 300 600 900 1200
L
Phenotypes Number of pairs pos neg L
Fig. 3. The accuracyX,/P) of the estimated protein—protein interaction
EE 606 651 1390 318925 6.2 network.
EN 5796520 2504 3841414 0.9
NN 13831170 6034 10063 706 0.9 1+ E
EE: Both genes are essential, EN: Only one gene is essential, NN: Both genes are not Ny 08 7]
essential. S
s 06 E
&
Table 3. The likelihood ratio of the functional category g 04t i
[&]
02 .
Category Number of pairs pos neg L
0 1 1 1 1 1
1 300 600 900 1200
Same 381587 9340 167483 79.9 L
Otherwise 19852754 588 14056 562 0.1

Fig. 4. The coverage®(,/T) of the estimated protein—protein interaction
network.

essential protein complex, deletion mutants of each protein are likely

to produce a lethal phenotype. Finally, Table 3 shows the likelihood© Prior information onG,, i.e. we formally set;; = 0 and

ratios of the functional category. If two proteins have the same biolo$2 = o0- Since physical protein—protein interactions should be con-

gical function, they have a tendency to form a protein complex. Wwesidered as protein—protein interaction networks instead of gene

use the MIPS functional catalogue to find pairs performing the samé&egulatory networks, we consider this assumption to be appro-

function. Note that if two proteins appear together in at least ondfiate in practice. From Equation (8% and ¢, are included in

functional category, we regard this pair as having the same functionei,jjcc, {& 109 L(i, j) — ¢,}. By transforming;,, to log L', this
Finding optimal values of four parametets, ¢1, ¢, and  term results ina_,; s 109{L(, j)/L’}. Therefore, we con-

¢p in Equation (8) is intractable even for the moderate numbersidera and L’ as parameters and set the candidate valuds as

of genes, because we need to compute the normalizing constans, 300, 600, 900, 12Q0and« = {0.01,0.1,1, 10,100 To avoid

in Equations (4) and (7). To solve this problem, we simplify local minima of the greedy algorithm, we repeated our algorithm

our model as follows: gene regulatory networks and protein—10 times for each parameter set, and then selected one network that

protein interaction networks are mutually exclusive and we assumgave the smallest score.
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Fig. 5. Three connected components of the estimated protein—protein MCMCWM@ ,

4.2 Céll-cycle network oSk
G1 cyclin

We chose 297 genes8terevisiaethat are listed as cell-cycle related mn resion
by Spellmaret al. (1998). We used 56 cell-cycle related disruptant
microarrays from 300 diverse mutations and chemical treatments Groan  (HstD)
(Hugheset al., 2000) by considering annotations of the MIPS data- ) ,"5532\”5,\ . g 7 mmmw
base (Mewest al., 2002). The number of selected genes was reduced st o () ' S iy '
to 290, considering the missing values of the microarrays. s ‘ encciic A ,omer m,mm,my

After estimating gene regulatory networks and protein—protein ns A sincing @- factora O
interaction networks for specifieff’ and«, we counted the num- y ” unctorimkoyhn
ber of known regulatory relationships estimated;in We collected ot n '-’ em‘ed
204 regulatory relationships from the location binding experiment ER "@ P (o)
by Leeet al. (2002) (p-value< 0.05) and considered them as known - (hsi7)  Somporentortre (m o
regulatory relationships. We suppose that geared gene have a 332?’”“'”” e "o Cytoskeleton

regulatory relationship if two genes are connected by a directed path

in G, whose distance is within 2. Figure 2 shows the number of

known regulatory relationships estimated by our method. We chose

the most appropriate for eachL’ so that the maximum number rig 6. Saccharomyces cerevisiae cell-cycle network estimated by the
of known regulatory relationships is estimatedGi. Compared  proposed method. Genes are located according to their localization.
with the gene regulatory network estimated from microarray data

alone, we successfully found more known regulatory relationships

by adding the information of ,.

For evaluating the estimated protein—protein interaction networksieduced false positives of yeast two-hybrid assays. However, among
we computed the accuracyf/P) and coverage(,/T) of the all 105 estimated protein—protein interactions, 95 interactions have
protein—protein interaction network, whei, is the number of at least one physical interaction in Table 1. This result indicates
known protein—protein interactions estimatedip, P is the num-  that essential phenotypes and functional category information are
ber of all undirected edges i@ ,, andT is the number of known only weak indicators of protein—protein interactions, compared with
protein—protein interactions among 290 genes. Figures 3 and 4 shaphysical interactions. However, these information act as supporting
the accuracy and coverage of the estimated protein—protein intedata, which strengthen or weaken the reliability of protein—protein
action networks, respectively. Note thaffor eachL’ is the same interactions.
as in Figure 2. We observe that both the accuracy and coverage Figure 5 shows three connected components in the estinggted
of the estimated protein—protein interaction network are improved/ithin these components, we predict several protein—protein inter-
when L’ = 600 anda = 1, compared with the method without actions that are not included in physical protein—protein interaction
using the information ofz,. From this result,L’ = 600 can be datasets (bold edges). POL1 and POL2 are catalytic subunits of DNA
considered as a kind of threshold for the likelihood ratio definedpolymerasex and DNA polymerase, respectively, and these two
in Equation (3). According to Jansehal. (2003), the prior odds DNA polymerases work together. HHT1, HTA2, HTB1, HHF1 and
defined byP (po9/ P (neg is about ¥600. Therefore, our choice of HHF2 are histone genes, and MCM3 and MCM®6 are subunits of a
L’ seems to be reasonable. Note that although there were 20 proteifdCM complex. These facts support our findings of protein—protein
protein interactions observed by yeast two-hybrid assays @telz interactions.

2000; Itoet al., 2001) among 290 cell-cycle related genes, only 9 Figure 6 shows a part of the estimated gene regulatory networks
interactions were estimated as the protein—protein interactighg.in ~ and protein—protein interaction networks ®€erevisiae cell cycle.
Among the nine interactions, four interactions were also observedVe omit undirected edges within MCM and SMC complexes. We
by other experiments (Gaviet al., 2002; Hoet al., 2002). On the  place genes on appropriate subcellular regions according to the MIPS
contrary, among the 11 interactions that were not estimat&,in  localization data. Note that some genes in Figure 6 change their
only 1 interaction was also observed by another experiment (Hdocalizations at different biological phases. For example, Clb2p (M
et al., 2002). This result suggested that our method successfullgyclin) is localized in the nucleus, cytoskeleton or mother-bud neck
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RNA polymerase |

20S proteasome
19/228S regulator >

RNA polymerase Il
RNA polymerase Il|

Pre-replication complex

SRB complex

Estimated P-P interactions in positive complexes
mmmmmm  Estimated gene regulations between complexes

Wmmmmm Estimated P-P interactions between complexes rRNA splicing

Fig. 7. Intercomplex network of 10 protein complexes estimated by the proposed method. Gray lines indicate the overlap of estimated protein—protein
interactions and positive protein complexes. Red lines and green lines indicate estimated gene regulations and protein—protein intereeticosipéxes,
respectively. Labels on the lines show the total number of each estimated edge.

at appropriate cell-cycle stages. Similarly, protein—protein interacwith estimatedG,. Gray lines indicate the estimated protein—
tions represented by undirected edges are also condition specifiprotein interactions in the positive protein complexes. Red lines and
For example, Swelp inhibits the activity of Clb2-Cdc28p by phos-green lines indicate gene regulations and protein—protein interactions
phorylation at G/S phase. However, atf1 phase, Hsllpand Hsl7p between complexes, respectively. Labels on the lines show the total
promote the Swelp degradation (McMillanal., 1999), and hence number of each estimated edge. Note that in Figure 7, we consider
the interaction between Swelp and Clb2-Cdc28p is disappearethe green lines whose label has the numbBrto be significant and
Interestingly, the estimated network in Figure 6 reflects these regusther green lines are omitted.
latory relationships quite well, despite our network model nottaking From Figure 7, we observe that there are particularly many
environmental conditions into account. protein—protein interactions between 19/22S regulators and 20S
TOF2 and VIK1 (denoted by red circles in Figure 6) are still func- proteasomes, between prereplication complex and replication com-
tionally unknown. TOF2 has a high sequence similarity to NET1plex, and among RNA polymerases |, Il and Ill. As 19S regulators
(BLAST E-value = 6.3 x 10-%7), and it was previously reported and 20S proteasomes constitute 26S proteasomes, 69 protein—
that Cdc5p influenced phosphorylation of Netlp (Shou and Deshaiegpyotein interactions between these complexes seem biologically
2002). Interestingly, in our estimated network, there is a directelausible. Similarly, many protein—protein interactions between
edge from CDC5 to TOF2. Hence, the estimated network couldorereplication complexes and replication complexes, and among
suggest that a possible biological role of TOF2 is similar to NET1RNA polymerases |, Il and Ill seem natural because these complexes
(regulator of nucleolar silencing and telophase exit). However, VIK1lhave similar functions. However, there are comparatively weak
has a high sequence similarity to CIKE{value= 1.3x 10-2%), but  protein—protein interactions, such as between 19/22S regulators and
these genes seem to have different functions. Kar3-Cik1p attends thpereplication complexes, and among RNA polymerase II, TAFIls
chromosome segregation, whereas Kar3-Viklp attends the micrand SRB complexes. Since the role of 19S regulators is to unfold
tubule depolymerizing activity that opposes the spindle pole bodythe protein substrates and inject them into the 20S proteasome for
separating force generated by Cin8p (Manreng ., 1999). tseems degradation, protein—protein interactions between 19/22S regulat-
that our estimated network captures the different roles of Ciklpors and prereplication complexes would happen when prereplication
and Viklp correctly, suggesting that the network contains othecomplexes are degraded at appropriate cell-cycle phases. From these
biologically meaningful relationships. results, we could conclude that we successfully estimated plausible
. . protein—protein interactions among these protein complexes.
4.3 Genome-wideanalysis Interestingly, several gene regulations were estimated between
We apply our method to estimate a genome-wide network ofreplication complexes and 20S proteasomes, and between rRNA
Scerevisiae. We used all 300 microarrays and selected 5335 genesplicing complexes and RNA polymerases |, Il and IIl, while
for the analysis by considering missing values of the microarraysprotein—protein interactions are not present between them except
For the setting of the parameters, we lise= 600 andx = 1 asin  one protein—protein interaction between rRNA splicing complexes
Section 4.2. Since the number of genes is large and the estimated natad RNA polymerase Il (the green line is omitted in Figure 7).
work becomes quite complicated, we evaluate the estimated netwoiRince replication complexes are degraded at appropriate cell-cycle
in the sense of intercomplex networks, i.e. we analyze gene regphases by the proteasome, and the cellular processes of RNA spli-
ulatory networks and protein—protein interactions between proteirting are strongly linked to RNA polymerization, estimated gene
complexes. regulatory relationships between these complexes would be mean-
Figure 7 shows the intercomplex network of 10 protein complexesngful in the biological sense. Note that in our gene regulatory
extracted from the estimated network by the following steps: Firstnetworks model, causal relationships between genes estimated from
we consider protein complexes in the MIPS complex catalog asnicroarray data are not necessarily transcriptional gene regulations.
positives and selected the 10 largest protein complexes overlappirfgor example, it might be a case that some of the estimated gene
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regulatory relationships between 19/22S regulators and 20S prd-riedman,Netal. (2000) Using Bayesian network to analyze expression daamput.
teasomes might be protein—protein interactions, as there are manyBiol., 7, 601-620. . o '
protein—protein interactions estimated between them. This resuﬁavm,A.C.et al. (2002) Functional organization of the yeast proteome by systematic

indi h . L . d ded f analysis of protein complexeNature, 415, 141-147.
indicates that more protein—protein interaction data are neede Qﬁe,H.et al. (2002) Correlation between transcriptome and interactome mapping data

distinguishing between physical interactions and other regulatory from Saccharomyces cerivisiae. Nat. Genet., 29, 482—486.
interactions correctly. Giaever,Get al. (2002) Functional profiling of th&accharomyces cerevisiae genome.

We can conclude that by estimating both gene regulatory networka r'\t‘atufei(4i53 2{8;1_3(%6 2) Combining location and o data for orincinled
. . . - . Hartemink,A.J. . ompIning location and expression data Tor principle
and protein—protein interaction networks, we successfully obtain discovery of genetic regulatory network modéiac. Symp. Biocomput., 7, 437-449.

comprehensive functional networks among the 10 protein compleXesio v, et al. (2002) Systematic identification of protein complexesSacharomyces
cerevisiae by mass spectrometrifature, 415, 180-183.

5 DISCUSSION Hughes, T.Retal. (2000) Functional discovery via a compendium of expression profiles.
Cell, 102, 109-126.

In this paper we proposed a probabilistic model for estimating bothdeker,T. et al. (2002) Discovering regulatory and signalling circuits in molecular

gene regulatory networks and protein—protein interaction networks interaction networksBioinformatics, 18, S233-S240.

based on microarray data, protein—protein interactions and othdoto.S.etal. (2002) Estimation of genetic networks and functional structures between

o . B genes by using Bayesian networks and nonparametric regreggon.Symp.
genome-wide data. An example Bicerevisiae cell-cycle related Biocompu,, 7, 175-186.

network showed that we successfully estimated gene regulatory néfnoro s, et al. (2003) Bayesian network and nonparametric heteroscedastic regres-
works and protein—protein interaction networks more accurately than sion for nonlinear modeling of genetic netwodk Bioinformatics Compui. Bial., 1,
the previous methods applied separately, and the estimated net-231-252.

work suggested biological roles of functionally unknown genes. [n'™°to:S-é &. (2004) Combining microarrays and biological knowledge for estim-
. . . . . ating gene networks via Bayesian networlisBioinformatics Comput. Biol., 2,
a genome-wide analysis, we predicted comprehensive functional ,;_gg’

networks of 10 protein complexes by estimating both gene regulatoryo,T. et al. (2001) A comprehensive two-hybrid analysis to explore the yeast protein
networks and protein—protein interaction networks. We consider the interactomeProc. Natl Acad. Sci. USA, 98, 4569-4574.

following topics as our future works: first, our current algorithm Jar?sen,Re:t al. (2003) A Bayesian _networks approach for predicting protein—protein
for learning gene regulatory networks and protein-protein inter-,  MEEE IR OMREIIETAA BRI e
action networks remains to be improved, as it is difficult to find  41_45.

optimal networks simply by greedy hill-climbing. Second, becausexonishi,S. et al. (2004) Bayesian information criteria and smoothing parameter
it is important to know which gene regulations or protein—protein selection in radial basis function networEometrika, 91, 27-43.

interactions are activated and under which conditions. we need tbee,T.I.et al. (2002) Transcriptional regulatory networksSaccharomyces cerevisiae.
. . . . ’ Science, 298, 799-804.
incorporate environmental conditions into our network model. IdekerManning,B.D.et al. (1999) Differential regulation of the Kar3p kinesin-related protein

etal. (2002) proposed a method for identifying active subnetworksin by two associated proteins, Cik1p and VikIpCell Biol., 144, 1219-1233.
amolecular interaction network under a particular condition. Finally,McMillan,J.N. et al. (1999) The morphogenesis checkpoint 8accharomyces

in our current gene regulatory networks model, directed edges might cerevisiae: cell cycle control of Swelp degradation by Hsl1p and HsMpl. Cell.

. . . . S Biol., 19, 6929-6939.

include SIgnal tranSdUCtl_on_s’ phOSphorylatlons‘ UquUItmatlons anﬁé/lewes,H.W.et al. (2002) MIPS: a database for genomes and protein sequences.
so on, qther than transcriptional gene regulations. For more accurate \ygeic Acids Res, 30, 31-34.

St | u S, we wou INCiu ariai,N. et al. 4) Using protein—protein interactions for refining gene networks
estimation of gene regulatory networks, we would better include thexariai al. (200 i [ in i ions for refini k
prior information, such as DNA sequences of promoter elements and estimated from microarray data by Bayesian netwoFes. Symp. Biocomput,, 9,
DNA bindings of regulators. These are currently the limitations of 336-347.

Pe'er,D. et al. (2001) Inferring subnetworks from perturbed expression profiles.
the proposed approach and would be our future works. Bioinformatics, 17, S215-5224.

We expect that an increasing number of microarray data an@ipel,y. et al. (2001) Identifying regulatory networks by combinatorial analysis of
protein—protein interaction data enable us to analyze a broad range promoter elements\at. Genet., 29, 153-159.
of biological processes, and elucidating both their gene regu|ator§egr=1I,E.et al. (2003a) Module networks: identifying regulatory modules and their

. . . . condition-specific regulators from gene expression déaa.Genet., 34, 166—176.
networks and protein—protein interaction networksis a key to ur]derSegaI,E.et al. (2003b) Discovering molecular pathways from protein interaction and

stand the complex nature of cellular functions. gene expression datBicinformatics, 19, i264—i272.
Segal,Eet al. (2003c) Genome-wide discovery of transcriptional modules from DNA
sequence and gene expressiiminformatics, 19, i273-i282.
Shmulevich,l.et al. (2002) Discovering molecular pathways from protein interaction
and gene expression daBioinformatics, 18, 261-274.
REFERENCES Shou,W. and Deshaies,R.J. (2002) Multiple telophase arrest bypassed (tab) mutants
Akutsu,T.et al. (1999) Identification of genetic networks from a small number of gene  alleviate the essential requirement for Cdc15 in exit from mitosiS. icerevisiae.

Conflict of Interest: none declared.

expression patterns under the Boolean network mdeel. Symp. Biocomput., 4, BMC Mol. Bial., 3, 4.
17-28. Spellman,Pet al. (1998) Comprehensive identification of cell cycle-regulated genes of
Bernard,A. and Hartemink,A. (2005) Informative structure priors: joint learning of  the yeasSaccharomyces cerevisiae by microarray hybridizationMol. Biol. Cell, 9,
dynamic regulatory networks from multiple types of de®ac. Symp. Biocomput., 3273-3297.
10, 459-470. Tamada,Yet al. (2003) Estimating gene networks from gene expression data by com-
Chen,Tet al. (1999) Modeling gene expression with differential equatiéas. Symp. bining Bayesian network model with promoter element detectoinformatics,
Biocomput., 4, 29-40. 19, ii227-ii236.
De Hoon,M.J.L.et al. (2004) Predicting gene regulation by sigma factor8agillus Uetz,P.et al. (2000) A comprehensive analysis of protein—protein interactions in
subtilis from genome-wide dat#ioinformatics, 20, i101—-i108. Saccharomyces cerevisiae. Nature, 403, 623—-627.

ii212



