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ABSTRACT
Motivation: Biological processes in cells are properly performed
by gene regulations, signal transductions and interactions between
proteins. To understand such molecular networks, we propose a
statistical method to estimate gene regulatory networks and protein–
protein interaction networks simultaneously from DNA microarray
data, protein–protein interaction data and other genome-wide data.
Results: We unify Bayesian networks and Markov networks for estim-
ating gene regulatory networks and protein–protein interaction net-
works according to the reliability of each biological information source.
Through the simultaneous construction of gene regulatory networks
and protein–protein interaction networks of Saccharomyces cerevisiae
cell cycle, we predict the role of several genes whose functions are
currently unknown. By using our probabilistic model, we can detect
false positives of high-throughput data, such as yeast two-hybrid
data. In a genome-wide experiment, we find possible gene regulatory
relationships and protein–protein interactions between large protein
complexes that underlie complex regulatory mechanisms of biological
processes.
Contact: nariai@ims.u-tokyo.ac.jp

1 INTRODUCTION
Many biological processes are carried out by interactions between
proteins, RNA and DNA in living cells. Recently, high-throughput
analyses enabled us to obtain genome-wide information, such as
mRNA expression, protein–protein interactions, protein localiza-
tions and so on. A lot of attention has been focused on develop-
ing computational methods for extracting valuable information of
molecular networks from such various types of genomic data.

Currently, statistical methods for estimating gene regulatory net-
works from genomic data are mainly based on DNA microarray
data (Akutsuet al., 1999; Chenet al., 1999; Friedmanet al., 2000;
Harteminket al., 2002; Imotoet al., 2002, 2003; Pe’eret al., 2001;
Shmulevichet al., 2002). However, since information contained in
microarrays is limited by their quality, noise and experimental errors,
using only microarray data is not enough for estimating gene regulat-
ory networks accurately. Therefore, the use of additional biological
data is considered as a key to microarray data analyses. There are
several works combining microarray data with biological knowledge,
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such as localization data (Harteminket al., 2002), DNA sequences
of promoter elements (Pilpelet al., 2001; Tamadaet al., 2003) and
transcriptional bindings of regulators (Bernard and Hartemink, 2005;
De Hoonet al., 2004; Imotoet al., 2004; Segalet al., 2003a,c).

However, protein–protein interaction networks are mainly con-
structed based on protein–protein interaction data observed, such as
yeast two-hybrid assays or tandem-affinity purification (TAP) experi-
ments (Gavinet al., 2002; Hoet al., 2002; Itoet al., 2001; Jeonget al.,
2001; Uetzet al., 2000). However, protein–protein interaction data
often contain some errors, and it is not easy to construct compre-
hensive protein–protein interaction networks from these interaction
data alone. Therefore, using other genomic data, such as mRNA
expression, functional databases and essentiality phenotypes, is con-
sidered to be effective for more accurate prediction of protein–protein
interactions (Jansenet al., 2003).

In this paper, we propose a statistical method for estimating gene
regulatory networks and protein–protein interaction networks sim-
ultaneously based on microarray data, protein–protein interactions,
protein localizations, essentiality phenotypes and functional categor-
ies. Figure 1 shows a conceptual view of the proposed method. The
modelconsistsof threecomponents: ageneregulatorynetworkmodel
(directed graph) based on Bayesian networks, a protein–protein
interaction network model (undirected graph) represented by binary
Markov networks and a structural connection between gene regu-
latory networks and protein–protein interaction networks. The last
part realizes the connection between gene regulatory networks and
protein–protein interaction networks, giving a penalty to coexist-
ence of a directed edge and an undirected edge between genes. Since
physically interactingproteinsareoftencoexpressed(Geet al., 2002),
previous approaches often estimate the coexpressed relationship as a
gene regulation instead of a protein–protein interaction. To overcome
this drawback, we combine these three components as one statistical
model under a Bayes statistics in order to distinguish gene regulations
from protein–protein interactions clearly in the estimated network.

Previously, Segalet al. (2003b) proposed a clustering method
for grouping genes that could be on the same pathway based
on microarray data and protein–protein interaction data. In using
protein–protein interaction information, they used binary inform-
ation whether the protein–protein interaction is observed or not.
However, the quality of each protein–protein interaction should be
quantified according to its reliability. In our proposed method, we
compute the reliability of protein–protein interactions and use this
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Fig. 1. Conceptual view of the proposed method. Gene regulatory networks
and protein–protein interaction networks are learned simultaneously from
biological data.

information to construct a protein–protein interaction network. In
addition, our aim is different from theirs in that we estimate gene
regulatory networks and protein–protein interaction networks of a
cell, whereas they tried to find co-functioning genes on the same
pathway. On the other hand, Nariaiet al. (2004) proposed a method
for estimating regulatory relationships between genes represented as
directed edges based on microarray data and protein–protein interac-
tion data. However, whether the estimated causal relationships show
gene regulations or protein–protein interactions are difficult to under-
stand. In our model, we clearly discern gene regulatory relationships
(directed edges) and protein–protein interactions (undirected edges),
and the information of protein–protein interaction networks helps to
refine gene regulatory networks and vice versa.

For evaluating our method, we conduct two real applications: First,
we construct both gene regulatory networks and protein–protein
interaction networks ofSaccharomyces cerevisiae cell cycle from
mutant expression data (Hugheset al., 2000), protein–protein inter-
action data (Gavinet al., 2002; Hoet al., 2002; Itoet al., 2001;
Uetzet al., 2000), essentiality phenotypes (Giaeveret al., 2002) and
the MIPS functional category database (Meweset al., 2002). Our
results show that the estimated gene regulatory networks success-
fully find more known regulatory relationships, and the estimated
protein–protein interaction networks are improved in terms of both
the accuracy and coverage of known protein–protein interactions,
compared with the previous method applied separately. We also
suggest possible biological roles of functionally unknown genes
based on the information of estimated gene regulatory networks and
protein–protein interaction networks. As a second experiment, we
perform a genome-wide analysis. We estimate gene regulations and
protein–protein interactions of 5335 genes and predict comprehens-
ive functional networks among large protein complexes. The details
of the real data analyses are described in Section 4.

2 PROBABILISTIC MODEL
Let X be gene-expression data andY be protein–protein interac-
tion data that include physical interaction data and other biological

data which indicate protein–protein interactions between genes. Our
goal is to construct a gene regulatory networkGr (directed graph)
and a protein–protein interaction networkGp (undirected graph) that
maximize the joint posterior probabilityP(Gr ,Gp|X,Y ). By remov-
ing the normalizing constant, we can decompose the joint posterior
probability as

P(Gr ,Gp|X,Y ) ∝ P(Gr ,Gp,X,Y )

= P(X|Gr)P (Y |Gp)P (Gr ,Gp), (1)

whereP(X|Gr ,Gp) = P(X|Gr) andP(Y |Gr ,Gp) = P(Y |Gp)

hold in our model. Here,P(X|Gr) andP(Y |Gp) show the likeli-
hoods of gene-expression dataX and protein–protein interaction data
Y under givenGr andGp, respectively, andP(Gr ,Gp) shows the
joint prior probability ofGr andGp. That is, the proposed method
contains three components,P(X|Gr),P(Y |Gp) and P(Gr ,Gp),
and we elucidate how to construct them in the following sections.

2.1 Gene regulatory network model
Suppose that we haven sets of microarray dataX = {x1, . . . ,xn} of
p genes. A Bayesian network gives a solution to computeP(X|Gr)

by using the structure of the directed acyclic graph,Gr , and assum-
ing the Markov relationship between nodes. By using a Bayesian
network, we have the decomposition of the joint probability based
on the graph,Gr : f (xi |θ ,Gr) = ∏p

j=1 fj (xij |pij , θ j ), wherexij is
the expression value of genej of i-th microarray,pij is the vector
of expression values of the direct parents of genej of i-th micro-
array andθ = (θ ′

1, . . . , θ ′
p)′ is the parameter vector. The likelihood

of gene-expression data can be computed as

P(X|Gr) =
∫ n∏

i=1

f (xi |θ ,Gr)π(θ |Gr ,λ)dθ , (2)

whereπ(θ |Gr ,λ) is the prior distribution on the parameterθ andλ is
the hyperparameter vector. In this paper, we use the non-parametric
regression model withB-splines (Imotoet al., 2002, 2003) for
constructing Bayesian networks.

2.2 Protein–protein interaction network model
As a measure of reliability for each protein–protein interaction,
Jansenet al. (2003) proposed to compute a likelihood ratio for each
protein pair. Letyij (k) be an element ofY that shows a genomic fea-
ture of protein pair, genei and genej . For example, suppose that an
experiment corresponding tok = 1 is a yeast two-hybrid assay. Then
yij (1) = 1 (or 0) means that the protein pair of genei and genej inter-
acted (or did not interact). The reliability of the protein–protein inter-
action between genei and genej is then given by the likelihood ratio
L(i, j) = P(yij (1), . . . , yij (N)|pos)/P (yij (1), . . . , yij (N)|neg),
where ‘pos’ and ‘neg’ are respectively the positive and negative sets
of protein pairs constructed in advance, andN is the number of
genomic features we considered. We explain how to construct the
positive and negative sets in Section 4. If each genomic feature is con-
ditionally independent (for example, protein–protein interaction data
and functional category database can be considered as independent
information sources),L(i, j) can be rewritten as

L(i, j) = P(yij (1)|pos)

P (yij (1)|neg)
× · · · × P(yij (N)|pos)

P (yij (N)|neg)
. (3)

Under a given undirected graphGp, the likelihood of protein–protein
interaction informationY can be computed by a binary Markov
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network model (Segalet al., 2003b)

P(Y |Gp) = 1

Zy

∏
e{i,j}∈Gp

L(i, j)α , (4)

wheree{i, j} is the undirected edge between genei and genej , Zy

is the normalizing constant andα is the reliability degree parameter
(α ≥ 0). Theα controls the balance between microarray data and
protein–protein interaction information.

2.3 Connection between gene regulatory networks
and protein–protein interaction networks

We decompose the joint probabilityP(Gr ,Gp) as P(Gr ,Gp) =
P(Gr |Gp)P (Gp), whereP(Gr |Gp) is the prior probability ofGr

conditional onGp, andP(Gp) is the prior probability ofGp. From
structural information of an undirected graphGp, we define a value
for the directed edge from genei to genej by cij = 1 for e{i, j} /∈ Gp

and 2 fore{i, j} ∈ Gp. By usingcij , we define the prior probability
of Gr under a givenGp as

P(Gr |Gp) ∝ exp

(
−

∑
e(i,j)∈Gr

ζcij

)
, (5)

wheree(i, j) is the directed edge from genei to genej , ζ1 andζ2 are
parameters (0≤ ζ1 ≤ ζ2). That is,ζ1 tunes the complexity ofGr and
ζ2 adds a penalty to the structure ofGr according to the information
of Gp. By using the prior probability (5), we put the lower prior
probability toe(i, j) if e{i, j} is included inGp.

We construct the prior probability ofGp as

P(Gp) ∝ exp

[
− ζp

∑
i,j

I (e{i, j} ∈ Gp)

]
, (6)

whereζp is a complexity parameter (ζp ≥ 0) that controls the com-
plexity of Gp, andI (e{i, j} ∈ Gp) = 1 for e{i, j} ∈ Gp and 0 for
e{i, j} /∈ Gp. Hence, from Equations (5) and (6), the joint prior prob-
ability of gene regulatory networks and protein–protein interaction
networks is defined by

P(Gr ,Gp)

= 1

Zprior
exp

{
−

∑
e(i,j)∈Gr

ζcij
− ζp

∑
i,j

I (e{i, j} ∈ Gp)

}
, (7)

whereZprior is the normalizing constant.

3 CRITERION AND ALGORITHM FOR
ESTIMATING NETWORKS

We choose the graph structures of gene regulatory networks and
protein–protein interaction networks by maximizing the joint pos-
terior probability (1). For computing the integration in Equation (2),
we used the Laplace approximation for integrals (Imotoet al.,
2002; Konishiet al., 2004). Hence, we have a criterion, named
GPNC (Gene regulatory networks and protein–protein interac-
tion networks criterion) for evaluating gene regulatory networks

and protein–protein interaction networks from Equations (2), (4)
and (7) as:

GPNC(Gr ,Gp) = − 2 logP(X|Gr)P (Y |Gp)P (Gr ,Gp)

= − 2 log
∫

f (X|θ ,Gr)π(θ |Gr ,λ) dθ

+ 2
∑

e(i,j)∈Gr

ζcij

− 2
∑

e{i,j}∈Gp

{α logL(i, j) − ζp} + Z, (8)

wheref (X|θ ,Gr) = ∏
i f (xi |θ ,Gr), andZ is the constant. The

optimalGr andGp are chosen as the minimizers of Equation (8).
Based on the joint probabilistic model and the criterion described

above, we use a greedy hill-climbing algorithm for estimating the
gene regulatory networkGr and the protein–protein interaction
networkGp under given parametersα, ζ1, ζ2 andζp as follows:

Step 1. EstimateG̃p based on

P(Gp|Y ) ∝ P(Y |Gp)P (Gp).

Step 2.

Step 2-1. For genei , perform one of four procedures: ‘add a
parent’, ‘remove a parent’, ‘reverse the parent–child rela-
tionship’ or ‘none’, which gives the lowest score. Update
G̃r andG̃p.

Step 2-2. If the score becomes unchanged, the learning is fin-
ished. Otherwise, go to Step 2 and continue the algorithm.

It is natural to consider that estimated causal relationships within
protein complexes are protein–protein interactions. Therefore, after
learning is finished, directed edges in protein complexes are changed
to undirected edges. For example, if the directed edge from genei

to genej exists inG̃r but these two genes are connected inG̃p, we
change the directed edge from genei to genej to the undirected edge.

4 COMPUTATIONAL EXPERIMENT

4.1 Data preparation and parameter selection
For constructing protein–protein interaction networks, we collec-
ted protein–protein interaction data from four different experiments
(Gavin et al., 2002; Hoet al., 2002; Itoet al., 2001; Uetzet al.,
2000), essentiality phenotypes (Giaeveret al., 2002) and the MIPS
functional category database (Meweset al., 2002). We extract 9928
binary protein–protein interactions from the MIPS complex cata-
logue (Meweset al., 2002) for constructing the positive interaction
pairs, and extract 14 224 045 different localizing pairs from the MIPS
localization data (Meweset al., 2002) for constructing negatives.
Within 9928 positive protein pairs, 428 protein pairs also belong
to the negatives. However, as the fraction of 4% is small and some
proteins localize differently in different biological processes, we con-
sider that the positives and negatives we constructed serve as a good
practical approximation.

Table 1 shows the likelihood ratios of all 16 combinations of
the binary protein–protein interactions from four different experi-
ments described above. Next, Table 2 shows the likelihood ratios of
essential phenotypes. If two proteins are included in a biologically
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Table 1. The likelihood ratio of protein–protein interactions

G H I U Number of pairs pos neg L

1 1 1 1 9 7 0 Inf.
0 1 1 1 17 4 0 Inf.
1 1 1 0 28 19 3 9073.9
1 1 0 1 15 5 1 7163.6
1 0 1 0 49 27 7 5526.2
1 0 0 1 33 12 4 4298.2
1 0 1 1 20 6 4 2149.1
1 1 0 0 1573 364 355 1469.0
0 1 1 0 43 6 12 716.4
0 1 0 1 29 4 9 636.8
0 0 1 1 111 14 48 417.9
1 0 0 0 16 130 1323 5525 343.1
0 0 0 1 670 7 326 30.8
0 1 0 0 29 269 147 12 669 16.6
0 0 1 0 4115 23 2556 12.9
0 0 0 0 20 182 230 7960 14 202 526 0.8

G, H, I and U in this table show protein–protein interactions observed by Gavinet al.,
Ho et al., Ito et al. and Uetzet al., respectively. For example, if genei and genej have
a protein–protein interaction observed by Gavinet al. and not by others,L(i, j) =
P(1323|pos)
P (5525|neg) = 1323/9 928

5525/14 224 045= 343.1.

Table 2. The likelihood ratio of essential phenotypes

Phenotypes Number of pairs pos neg L

EE 606 651 1390 318 925 6.2
EN 5 796 520 2504 3 841 414 0.9
NN 13 831 170 6034 10 063 706 0.9

EE: Both genes are essential, EN: Only one gene is essential, NN: Both genes are not
essential.

Table 3. The likelihood ratio of the functional category

Category Number of pairs pos neg L

Same 381 587 9340 167 483 79.9
Otherwise 19 852 754 588 14 056 562 0.1

essential protein complex, deletion mutants of each protein are likely
to produce a lethal phenotype. Finally, Table 3 shows the likelihood
ratios of the functional category. If two proteins have the same biolo-
gical function, they have a tendency to form a protein complex. We
use the MIPS functional catalogue to find pairs performing the same
function. Note that if two proteins appear together in at least one
functional category, we regard this pair as having the same function.

Finding optimal values of four parametersα, ζ1, ζ2 and
ζp in Equation (8) is intractable even for the moderate number
of genes, because we need to compute the normalizing constants
in Equations (4) and (7). To solve this problem, we simplify
our model as follows: gene regulatory networks and protein–
protein interaction networks are mutually exclusive and we assume

Fig. 2. The number of known regulatory relationships estimated by our
method. Labels on the plots show the values ofα where the maximum number
of regulations was estimated.

Fig. 3. The accuracy (Tp/P ) of the estimated protein–protein interaction
network.

Fig. 4. The coverage (Tp/T ) of the estimated protein–protein interaction
network.

no prior information onGr , i.e. we formally setζ1 = 0 and
ζ2 = ∞. Since physical protein–protein interactions should be con-
sidered as protein–protein interaction networks instead of gene
regulatory networks, we consider this assumption to be appro-
priate in practice. From Equation (8),α and ζp are included in∑

e{i,j}∈Gp
{α logL(i, j) − ζp}. By transformingζp to α logL′, this

term results inα
∑

e{i,j}∈Gp
log{L(i, j)/L′}. Therefore, we con-

siderα andL′ as parameters and set the candidate values asL′ =
{1, 300, 600, 900, 1200} and α = {0.01, 0.1, 1, 10, 100}. To avoid
local minima of the greedy algorithm, we repeated our algorithm
10 times for each parameter set, and then selected one network that
gave the smallest score.
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Fig. 5. Three connected components of the estimated protein–protein
interaction networks. Bold edges in the graph indicate newly estimated
protein–protein interactions that are not included in physical protein–protein
interaction dataset.

4.2 Cell-cycle network
We chose 297 genes ofS.cerevisiae that are listed as cell-cycle related
by Spellmanet al. (1998). We used 56 cell-cycle related disruptant
microarrays from 300 diverse mutations and chemical treatments
(Hugheset al., 2000) by considering annotations of the MIPS data-
base (Meweset al., 2002). The number of selected genes was reduced
to 290, considering the missing values of the microarrays.

After estimating gene regulatory networks and protein–protein
interaction networks for specifiedL′ andα, we counted the num-
ber of known regulatory relationships estimated inGr . We collected
204 regulatory relationships from the location binding experiment
by Leeet al. (2002) (p-value≤ 0.05) and considered them as known
regulatory relationships. We suppose that genei and genej have a
regulatory relationship if two genes are connected by a directed path
in Gr whose distance is within 2. Figure 2 shows the number of
known regulatory relationships estimated by our method. We chose
the most appropriateα for eachL′ so that the maximum number
of known regulatory relationships is estimated inGr . Compared
with the gene regulatory network estimated from microarray data
alone, we successfully found more known regulatory relationships
by adding the information ofGp.

For evaluating the estimated protein–protein interaction networks,
we computed the accuracy (Tp/P ) and coverage (Tp/T ) of the
protein–protein interaction network, whereTp is the number of
known protein–protein interactions estimated inGp, P is the num-
ber of all undirected edges inGp, andT is the number of known
protein–protein interactions among 290 genes. Figures 3 and 4 show
the accuracy and coverage of the estimated protein–protein inter-
action networks, respectively. Note thatα for eachL′ is the same
as in Figure 2. We observe that both the accuracy and coverage
of the estimated protein–protein interaction network are improved
whenL′ = 600 andα = 1, compared with the method without
using the information ofGr . From this result,L′ = 600 can be
considered as a kind of threshold for the likelihood ratio defined
in Equation (3). According to Jansenet al. (2003), the prior odds
defined byP(pos)/P (neg) is about 1/600. Therefore, our choice of
L′ seems to be reasonable. Note that although there were 20 protein–
protein interactions observed by yeast two-hybrid assays (Uetzet al.,
2000; Itoet al., 2001) among 290 cell-cycle related genes, only 9
interactions were estimated as the protein–protein interactions inGp.
Among the nine interactions, four interactions were also observed
by other experiments (Gavinet al., 2002; Hoet al., 2002). On the
contrary, among the 11 interactions that were not estimated inGp,
only 1 interaction was also observed by another experiment (Ho
et al., 2002). This result suggested that our method successfully

Fig. 6. Saccharomyces cerevisiae cell-cycle network estimated by the
proposed method. Genes are located according to their localization.

reduced false positives of yeast two-hybrid assays. However, among
all 105 estimated protein–protein interactions, 95 interactions have
at least one physical interaction in Table 1. This result indicates
that essential phenotypes and functional category information are
only weak indicators of protein–protein interactions, compared with
physical interactions. However, these information act as supporting
data, which strengthen or weaken the reliability of protein–protein
interactions.

Figure 5 shows three connected components in the estimatedGp.
Within these components, we predict several protein–protein inter-
actions that are not included in physical protein–protein interaction
datasets (bold edges). POL1 and POL2 are catalytic subunits of DNA
polymeraseα and DNA polymeraseε, respectively, and these two
DNA polymerases work together. HHT1, HTA2, HTB1, HHF1 and
HHF2 are histone genes, and MCM3 and MCM6 are subunits of a
MCM complex. These facts support our findings of protein–protein
interactions.

Figure 6 shows a part of the estimated gene regulatory networks
and protein–protein interaction networks ofS.cerevisiae cell cycle.
We omit undirected edges within MCM and SMC complexes. We
place genes on appropriate subcellular regions according to the MIPS
localization data. Note that some genes in Figure 6 change their
localizations at different biological phases. For example, Clb2p (M
cyclin) is localized in the nucleus, cytoskeleton or mother-bud neck
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Fig. 7. Intercomplex network of 10 protein complexes estimated by the proposed method. Gray lines indicate the overlap of estimated protein–protein
interactions and positive protein complexes. Red lines and green lines indicate estimated gene regulations and protein–protein interactions between complexes,
respectively. Labels on the lines show the total number of each estimated edge.

at appropriate cell-cycle stages. Similarly, protein–protein interac-
tions represented by undirected edges are also condition specific.
For example, Swe1p inhibits the activity of Clb2-Cdc28p by phos-
phorylation at G1/S phase. However, at G2/M phase, Hsl1p and Hsl7p
promote the Swe1p degradation (McMillanet al., 1999), and hence
the interaction between Swe1p and Clb2-Cdc28p is disappeared.
Interestingly, the estimated network in Figure 6 reflects these regu-
latory relationships quite well, despite our network model not taking
environmental conditions into account.

TOF2 and VIK1 (denoted by red circles in Figure 6) are still func-
tionally unknown. TOF2 has a high sequence similarity to NET1
(BLAST E-value = 6.3× 10−27), and it was previously reported
that Cdc5p influenced phosphorylation of Net1p (Shou and Deshaies,
2002). Interestingly, in our estimated network, there is a directed
edge from CDC5 to TOF2. Hence, the estimated network could
suggest that a possible biological role of TOF2 is similar to NET1
(regulator of nucleolar silencing and telophase exit). However, VIK1
has a high sequence similarity to CIK1 (E-value= 1.3×10−23), but
these genes seem to have different functions. Kar3-Cik1p attends the
chromosome segregation, whereas Kar3-Vik1p attends the micro-
tubule depolymerizing activity that opposes the spindle pole body
separating force generated by Cin8p (Manninget al., 1999). It seems
that our estimated network captures the different roles of Cik1p
and Vik1p correctly, suggesting that the network contains other
biologically meaningful relationships.

4.3 Genome-wide analysis
We apply our method to estimate a genome-wide network of
S.cerevisiae. We used all 300 microarrays and selected 5335 genes
for the analysis by considering missing values of the microarrays.
For the setting of the parameters, we useL′ = 600 andα = 1 as in
Section 4.2. Since the number of genes is large and the estimated net-
work becomes quite complicated, we evaluate the estimated network
in the sense of intercomplex networks, i.e. we analyze gene reg-
ulatory networks and protein–protein interactions between protein
complexes.

Figure 7 shows the intercomplex network of 10 protein complexes
extracted from the estimated network by the following steps: First,
we consider protein complexes in the MIPS complex catalog as
positives and selected the 10 largest protein complexes overlapping

with estimatedGp. Gray lines indicate the estimated protein–
protein interactions in the positive protein complexes. Red lines and
green lines indicate gene regulations and protein–protein interactions
between complexes, respectively. Labels on the lines show the total
number of each estimated edge. Note that in Figure 7, we consider
the green lines whose label has the number>5 to be significant and
other green lines are omitted.

From Figure 7, we observe that there are particularly many
protein–protein interactions between 19/22S regulators and 20S
proteasomes, between prereplication complex and replication com-
plex, and among RNA polymerases I, II and III. As 19S regulators
and 20S proteasomes constitute 26S proteasomes, 69 protein–
protein interactions between these complexes seem biologically
plausible. Similarly, many protein–protein interactions between
prereplication complexes and replication complexes, and among
RNA polymerases I, II and III seem natural because these complexes
have similar functions. However, there are comparatively weak
protein–protein interactions, such as between 19/22S regulators and
prereplication complexes, and among RNA polymerase II, TAFIIs
and SRB complexes. Since the role of 19S regulators is to unfold
the protein substrates and inject them into the 20S proteasome for
degradation, protein–protein interactions between 19/22S regulat-
ors and prereplication complexes would happen when prereplication
complexes are degraded at appropriate cell-cycle phases. From these
results, we could conclude that we successfully estimated plausible
protein–protein interactions among these protein complexes.

Interestingly, several gene regulations were estimated between
replication complexes and 20S proteasomes, and between rRNA
splicing complexes and RNA polymerases I, II and III, while
protein–protein interactions are not present between them except
one protein–protein interaction between rRNA splicing complexes
and RNA polymerase III (the green line is omitted in Figure 7).
Since replication complexes are degraded at appropriate cell-cycle
phases by the proteasome, and the cellular processes of RNA spli-
cing are strongly linked to RNA polymerization, estimated gene
regulatory relationships between these complexes would be mean-
ingful in the biological sense. Note that in our gene regulatory
networks model, causal relationships between genes estimated from
microarray data are not necessarily transcriptional gene regulations.
For example, it might be a case that some of the estimated gene
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regulatory relationships between 19/22S regulators and 20S pro-
teasomes might be protein–protein interactions, as there are many
protein–protein interactions estimated between them. This result
indicates that more protein–protein interaction data are needed for
distinguishing between physical interactions and other regulatory
interactions correctly.

We can conclude that by estimating both gene regulatory networks
and protein–protein interaction networks, we successfully obtain
comprehensive functional networks among the 10 protein complexes.

5 DISCUSSION
In this paper we proposed a probabilistic model for estimating both
gene regulatory networks and protein–protein interaction networks
based on microarray data, protein–protein interactions and other
genome-wide data. An example ofS.cerevisiae cell-cycle related
network showed that we successfully estimated gene regulatory net-
works and protein–protein interaction networks more accurately than
the previous methods applied separately, and the estimated net-
work suggested biological roles of functionally unknown genes. In
a genome-wide analysis, we predicted comprehensive functional
networks of 10 protein complexes by estimating both gene regulatory
networks and protein–protein interaction networks. We consider the
following topics as our future works: first, our current algorithm
for learning gene regulatory networks and protein–protein inter-
action networks remains to be improved, as it is difficult to find
optimal networks simply by greedy hill-climbing. Second, because
it is important to know which gene regulations or protein–protein
interactions are activated and under which conditions, we need to
incorporate environmental conditions into our network model. Ideker
et al. (2002) proposed a method for identifying active subnetworks in
a molecular interaction network under a particular condition. Finally,
in our current gene regulatory networks model, directed edges might
include signal transductions, phosphorylations, ubiquitinations and
so on, other than transcriptional gene regulations. For more accurate
estimation of gene regulatory networks, we would better include the
prior information, such as DNA sequences of promoter elements and
DNA bindings of regulators. These are currently the limitations of
the proposed approach and would be our future works.

We expect that an increasing number of microarray data and
protein–protein interaction data enable us to analyze a broad range
of biological processes, and elucidating both their gene regulatory
networks and protein–protein interaction networks is a key to under-
stand the complex nature of cellular functions.
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