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Abstract

For two-class datasets, we provide a method for estimating the gen-
eralization error of a bag using out-of-bag estimates. In bagging, each
predictor (single hypothesis) is learned from a bootstrap sample of the
training examples; the output of a bag (a set of predictors) on an ex-
ample is determined by voting. The out-of-bag estimate is based on
recording the votes of each predictor on those training examples omit-
ted from its bootstrap sample. Because no additional predictors are
generated, the out-of-bag estimate requires considerably less time than
10-fold cross-validation. We address the question of how to use the out-
of-bag estimate to estimate generalization error on two-class datasets.
Our experiments on several datasets show that the out-of-bag estimate
and 10-fold cross-validation have similar performance, but are both bi-
ased. We can eliminate most of the bias in the out-of-bag estimate and
increase accuracy by incorporating a correction based on the distribu-
tion of the out-of-bag votes.
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1 Introduction

Supervised learning involves finding a hypothesis to correctly classify examples
in a domain. If, for example, we wanted to classify mushrooms as edible or
poisonous based on relevant characteristics such as color, smell, habitat, etc.,
we could learn a hypothesis by using mushrooms whose characteristics and
classifications are known.

Much work has been done in supervised learning in developing learning
algorithms for decision trees, neural networks, Bayesian networks, and other
hypothesis spaces. As an improvement on these learning algorithms, work has
recently been done using algorithms that combine several “single hypotheses”
(called “predictors” from this point onward) into one “aggregate hypothesis.”
One such algorithm is bagging (bootstrap aggregating) [Breiman, 1996a]. Bag-
ging involves repeated sampling with replacement to form several bootstrap
training sets from the original dataset. Bagging should not be viewed as a
competitor to other aggregation algorithms (such as boosting) because bag-
ging can use these learning algorithms to generate predictors.

Over many types of predictor algorithms, bagging has been shown to im-
prove on the accuracy of a single predictor [Breiman, 1996a, Dietterich, 2000,
Freund & Schapire, 1996, Maclin & Opitz, 1997, Quinlan, 1996]. An impor-
tant issue is determining the generalization error of a bag (a bagging aggre-
gate hypothesis). Usually, generalization error is estimated by k-fold cross-
validation over the dataset [Michie et al., 1994, Weiss & Kulikowski, 1991].

There are two potential problems with the cross-validation estimate. One
is the additional computation time. If there are B predictors in the bag, then
10B additional predictors must be generated for 10-fold cross-validation. This
becomes a serious issue if significant time is needed to generate each predictor,
e.g., as in neural networks.

The other is that the cross-validation estimate does not directly evalu-
ate the aggregate hypothesis. None of the 10B predictors generated during
10-fold cross-validation become part of the bag (except by coincidence). It
is an assumption that the performance of the hypotheses learned from the
cross-validation folds will be similar to the performance of the hypothesis
learned using the whole dataset [Kearns & Ron, 1997]. In fact, previous re-
search [Kohavi, 1995] has shown that 10-fold cross-validation tends to have a
pessimistic bias, i.e., the estimated error rate tends to have a higher expected
value than the true error rate.1

110-fold cross-validation is unbiased for a training set subsample of size 9n/10, where n
is the number of examples in the training set. However, learning from the whole training
set tends to result in lower error.
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One solution is to use the predictors in the bag to estimate generaliza-
tion error. Each predictor is generated from a bootstrap sample, which typ-
ically omits about 1/e ≈ 37% of the examples. The out-of-bag estimate

[Breiman, 1996b] records the votes of each predictor over the examples omit-
ted from its corresponding bootstrap sample. The aggregation of the votes
followed by plurality voting for each example results in an estimate of gener-
alization error. Our experiments show that the out-of-bag estimate slightly
overestimates generalization error on average.

We can improve the out-of-bag estimate by incorporating a correction.
If there are B predictors in the bag, then there are B votes for each test
example compared to about 0.37B out-of-bag votes on average for each training
example. We propose a model of this process, and a correction to the out-of-
bag estimate that takes this model into account.

Our model is based on the voting patterns in the test examples, where a
voting pattern is specified by the number of votes for each class, e.g., 29 votes
for class A and 21 votes for class B. For a given test example, we can simulate
out-of-bag voting by drawing a subsample of the votes on the test examples,
i.e., each vote is selected with probability 1/e. We assume that the accuracy
of the simulation on the test examples compared to the out-of-bag estimate
on the training examples gives us a “gold standard” for the generalization
estimates.

Our correction tries to reverse this process. It uses the out-of-bag voting
patterns on the training examples to estimate the distribution of B-vote pat-
terns. Based on this estimated distribution, we compute the expected value
of the difference between the out-of-bag estimate and B-vote voting.

This method for determining a generalization estimate differs from previ-
ous research. Both Wolpert and Macready [Wolpert & Macready, 1999] and
Tibshirani [Tibshirani, 1996] compute estimates based on a bias-variance de-
composition, while we attempt to develop a more direct estimate. Wolpert
and Macready’s technique is developed for using bagging on continuous out-
puts, where the bagging output is the average of the predictors. This does
not apply to two-class datasets. Tibshirani analyzes the two-class case, but
is not so much concerned with a final estimate of generalization error, but in
estimating bias and variance in order to better understand the behavior of the
learning algorithm.

We performed experiments on 10 two-class datasets. We used ID3 [Quinlan, 1986]
and C4.5 [Quinlan, 1993] to generate predictors. Generalization error is rep-
resented by the empirical error of the bag on a separate test set. The out-
of-bag estimate slightly overestimated generalization error on average. 10-
fold cross-validation had similar behavior, which is consistent with previous
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research [Kohavi, 1995]. Our out-of-bag correction was less biased and pro-
duced more accurate estimates than both the out-of-bag estimate and 10-fold
cross-validation.

The remainder of this paper is organized as follows. First, we describe the
experimental procedure. Next, we provide the results of the experiments and
their implications. Finally, we conclude with a summary and future research
issues.

2 Experimental Procedure

We selected a number of two-class datasets from the UCI repository and the
C4.5 distribution. Several of these datasets were used extensively to develop
the generalization error estimates. The other datasets (see the Appendix) were
used for the experiments presented in this paper.

We used two learning algorithms. One algorithm was C4.5 using default
parameters [Quinlan, 1993]. We also used the ID3 decision-tree learning algo-
rithm with no pruning [Quinlan, 1986]. In our version of ID3, missing values
are handled by creating an extra branch from each internal node to represent
the case of a missing value. If there are no examples for a leaf node, it is given
a classification equal to the most common class of its parent.

For this paper, the following procedure for experimenting with the bagging
method was used:

1. The data set is randomly divided in half to create a training set S and
a test set T .

2. A bootstrap sample S∗
1

is selected from S and a predictor is created
from S∗

1
using a learning algorithm. This is repeated B times to create

B predictors, h1, . . . , hB, from the B bootstrap samples S∗
1
, . . . , S∗

B.

3. The out-of-bag estimate is determined from the training set S by allowing
each predictor hi to vote only on the examples S − S∗

i , i.e., the training
examples omitted from the ith bootstrap sample. Then the predicted
class of each example is determined by a vote with ties broken in favor
of the most common class in S. On average, about 37% of the examples
are excluded from each bootstrap sample, so on average, about 37% of
the predictors vote on each training example.

4. Test error is determined from the test set T by a vote on each example
over the B predictors. Ties are broken in favor of the most common class
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in S. Test error is considered to be an accurate estimate of generalization
error.2

5. The above steps 1–4 are repeated 1000 times for each data set, learning
algorithm, and value for B (we used B = 50 and B = 100). Averages and
standard deviations for the out-of-bag estimate, test error, and the paired
difference were computed. Any substantial difference in the averages
ought to become statistically significant after 1000 trials.

2.1 Other Generalization Error Estimates

Besides the out-of-bag estimate, we also evaluated 10-fold cross-validation and
two different corrections to the out-of-bag estimate.

2.1.1 10-Fold Cross-Validation

For B = 50, we computed a 10-fold cross-validation estimate of generalization
error. Cross validation has been widely accepted as a reliable method for calcu-
lating generalization accuracy [Michie et al., 1994, Weiss & Kulikowski, 1991],
and experiments have shown that cross validation is less biased than bootstrap
sampling [Efron & Tibshirani, 1993]. However, there is some evidence that 10-
fold cross-validation can have high variance [Dietterich, 2000].

In order to compute the cross-validation estimate, a step is inserted be-
tween steps 4 and 5 in the procedure described above. In this new step, the
training set S is partitioned into 10 cross-validation sets or folds of nearly
equal size. Then for each cross-validation fold Fi, the examples S − Fi are
used with bagging to form B predictors. The resulting bag is used to clas-
sify the examples in Fi and produce an error measure. The cross-validation
estimate is the average error over the 10 iterations.

2.1.2 Test Error Correction

Our “test error correction” is a model of out-of-bag voting, and is used as a
gold standard for other estimates to attain. It is not a true generalization
estimate because it estimates the out-of-bag estimate from the test examples.

2This assumes that the examples in the dataset are independently drawn from some
probability distribution, and that the probability mass of the training set S is near 0%.
These assumptions are not true for at least the monks datasets. In this case, the various
generalization error estimates can be treated as estimates of error on examples outside of
the training set.
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In the out-of-bag estimate, there are about 0.37B out-of-bag votes on av-
erage for each training example. The test error is determined from B votes for
each test example, so it might be expected that the out-of-bag voting would
be inaccurate.

Our approach is to model out-of-bag voting as if we were taking a subsample
of the B votes on that example. We call this “out-of-bag sampling.” We can
simulate out-of-bag sampling by choosing each vote with probability 1/e. This
simulation is expected to be a good model of the out-of-bag estimate because
test examples and training examples should be interchangeable as far as out-
of-bag voting is concerned.

We increment the test error correction if the simulated out-of-bag sample
voted for a different class from the B votes. In our experiments, the total
test error correction is compared to the out-of-bag estimate on the training
examples.

2.1.3 Out-of-Bag Correction

The test error correction estimates out-of-bag voting patterns from the B-vote
patterns of the test examples. Our “out-of-bag correction” attempts to reverse
directions by estimating B-vote patterns from the out-of-bag voting patterns
of the training examples. The difficulty with making this estimate is that the
probability of a B-vote pattern given an out-of-bag voting pattern depends on
the prior distribution of the B-vote patterns.

For a given trial with a two-class dataset, designate one class to be the
majority class, and let the other class be the minority class. The majority
class is determined using the training set. Assume that B predictors are in
the bag.

For a given example, let EB(x, y) be the event of x votes for the majority
class and y votes for the minority class, where x + y = B. Let EO(u, v) be the
event of u votes for the majority class and v votes for the minority class, where
the votes are a subsample of the B votes, where each vote is independently
selected to be in the subsample with probability 1/e. A probability distribution
is specified by assigned priors to P (EB(x, y)). We note that:

P (EO(u, v) | EB(x, y)) = b(u, x, 1/e) b(v, y, 1/e) (1)

P (EO(u, v)) =
B

∑

x=0

P (EO(u, v) | EB(x, B − x)) P (EB(x, B − x)) (2)

where b(k, n, p) is the probability of k successes in n i.i.d. Bernoulli trials, each
with probability of success p. That is, EO(u, v) means that u of the x votes
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for the majority class were chosen, and v of the y votes for the minority class
were chosen.3

The out-of-bag correction for a given training example α is based on com-
puting P (EB(xα, yα) | EO(uα, vα)), where uα and vα are the known out-of-bag
votes for training example α. The probability distribution of EB(x, y) needed
for this calculation is estimated from the out-of-bag votes of the other training
examples with the same label as α. That is, xα and yα are expected to be sim-
ilar to the x and y votes for the other training examples. Leaving out α from
the distribution estimate avoids a resubstitution bias. Leaving out the training
examples with a different label avoids a mixture of different distributions.

Suppose then that there are n other training examples with the same la-
bel as training example α. The distribution estimate is based on computing
P (EB(xi, yi) | EO(ui, vi)) for each training example i, 1 ≤ i ≤ n, assuming a
uniform distribution for EB(x, y). With no prior knowledge of how EB(x, y) is
distributed, a uniform distribution leads to a qualitatively reasonable approx-
imation, e.g., the ratio of xi to yi is expected to be similar to the ratio of ui to
vi, but the possibility of dissimilar ratios cannot be excluded. Because the cal-
culation for training example i does not take any other training examples into
account, this estimate might be expected to be less effective when there are
more training examples, but this effect was not observed in our experiments.

The out-of-bag correction for a training example α is computed as follows.
Define a uniform distribution PU(EB(x, y)) = 1/(B + 1) for x ∈ {0, 1, . . . , B}
and y = B − x. It follows that:

PU(EB(x, y) | EO(u, v)) =
PU(EO(u, v) | EB(x, y)) PU(EB(x, y))

PU(EO(u, v))
(3)

Equations (1) and (2) specify the calculations that are needed. Then, over the
n other training examples with the same label as α, we define a probability
distribution D:

PD(EB(x, y)) =

∑n
i=1

PU(EB(xi, yi) | EO(ui, vi))

n
(4)

Using this probability distribution, we estimate the B-vote predictions for
training example α by calculating PD(EB(xα, yα) | EO(uα, vα)). We can then
determine the probability that B-vote voting favors the majority class:

∑

x≥y

PD(EB(xα, yα) | EO(uα, vα)) (5)

3There is a straightforward generalization of Equations (1) and (2) to multiclass datasets,
but it leads to a combinatorial number of EB(x1, . . . , xc) and EO(u1, . . . , uc) events, where
c is the number of classes. We restricted ourselves to two-class datasets because it simplifies
the computation of our corrections and because many two-class datasets are available.
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and the minority class:
∑

x<y

PD(EB(xα, yα) | EO(uα, vα)) (6)

If α’s label is the majority/minority class, then the probability for the
minority/majority class is added to the out-of-bag correction. In our experi-
ments, the total out-of-bag correction is compared to the number of errors on
the test examples.

2.2 Statistical Tests

The following statistical tests were employed to compare the results of different
experiments over the 1000 trials.

To evaluate the bias of an estimate, we performed a paired difference t
test (paired comparison of means). For a given estimate on a given trial, we
compute the estimate minus test error. Specifically, this test evaluates the
hypothesis that the average estimate of generalization error has the same ex-
pected value as the average test error. To pass this test with a 5% significance
level, the magnitude of the t value should be no more than 1.962. t is computed

by t = X/
√

s2/n, where X and s2 are respectively the the sample average and
sample variance over n = 1000 samples.

To compare the accuracy of two estimates, we performed another paired
difference t test. We determine the “accuracy” of an estimate by computing
the absolute value of the difference between the estimate and the test error.
A more accurate estimate will have values closer to 0. We are interested in
whether our out-of-bag correction is more accurate than the other estimates.
So for a given estimate on a given trial, we compute the accuracy of the
estimate minus the accuracy of the out-of-bag correction. Specifically, this
test evaluates the hypothesis that the accuracy of an estimate has the same
expected value as the accuracy of the out-of-bag correction.

The need for both statistical tests is because an unbiased test is not neces-
sarily accurate, and vice versa. An unbiased test could have a high variance,
which would tend to make it inaccurate. A biased test with a lower variance
could be more accurate.
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Data Test vs. Test Error
Set Error OOB CV OOC TEC
BA 27.550 0.883±4.51† 0.306±4.87† 0.234±4.42 −0.059±4.25
CR 16.241 0.428±3.13† 0.266±3.08† 0.055±3.08 0.072±3.06
FL 20.518 0.073±2.73 0.146±2.75 −0.020±2.74 0.027±2.70
IO 8.177 0.456±3.14† 0.264±3.21† 0.036±3.09 0.047±3.13
M1 1.772 0.778±1.89† 1.024±2.12† 0.344±1.79† 0.044±1.89
M2 51.931 −0.899±5.26† −1.390±5.23† −0.497±5.28† −0.096±5.35
M3 0.000 0.004±0.05† 0.014±0.12† 0.004±0.04† 0.003±0.05†

PI 24.737 0.712±3.24† 0.224±3.31† 0.174±3.22 0.216±3.22†

PR 17.845 1.704±9.65† 1.012±9.62† 0.557±9.29 0.002±9.02
SO 22.811 1.054±6.44† 0.639±6.31† 0.102±6.29 0.097±6.27
Average 0.520±4.00 0.250±4.06 0.099±3.92 0.035±3.89
†Statistically significant at the 0.05 level

Table 1: Results for ID3, B = 50: Averages and Standard Deviations of Bias

3 Results

3.1 Bias

Table 1 shows some statistics for the bias of the estimates on 10 data sets
using B = 50 predictors generated by ID3. The first column gives the abbre-
viations for the datasets (see the first Appendix), and the second column gives
the test error percentage. The following columns show the averages and stan-
dard deviations of the observed bias, i.e., the difference between each of the
estimates and test error. OOB, CV, OOC, and TEC respectively stand for
out-of-bag estimate, 10-fold cross-validation, out-of-bag correction, and test
error correction.

The table shows that both the out-of-bag estimate and 10-fold cross-validation
tend to slightly overestimate test error. On average, the out-of-bag estimate
differed from test error by 0.52% on average, and 10-fold cross-validation dif-
fered by 0.25%.

The out-of-bag correction and the test error correction do much better. As
we expected, the test error correction is relatively unbiased; it differed by only
0.04% on average. As we hoped, the out-of-bag correction is also much less
biased than the out-of-bag estimate and 10-fold cross-validation; it differed
from the test error by 0.10% on average.

The standard deviations of the estimates are fairly close. The out-of-bag
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Predictor Bag Rejections by Bias Test
Algorithm Size OOB CV OOC TEC
ID3 50 9 9 3 2
ID3 100 9 2 1
C4.5 50 7 6 2 0
C4.5 100 6 1 0

Table 2: Number of Rejections by the Bias Test by Algorithm and Size of Bag

correction and the test error correction have slightly lower standard deviations.
Table 2 shows the results of the bias test using ID3 or C4.5 as the predictor

algorithm and using 50 or 100 as the size of the bag. As can be seen, the bias
test showed that the out-of-bag estimate and 10-fold cross-validation (B = 50
only) was significantly different (0.05 level) from test error more often than
the out-of-bag correction. The out-of-bag correction was comparable to the
test error correction, which was nearly unbiased.

We conclude that out-of-bag estimate and 10-fold cross-validation have a
significant, but small bias. The out-of-bag correction has a much smaller bias.
The performance of the test error correction partially validates it as a model
of out-of-bag voting.

3.2 Accuracy

Table 3 shows some statistics for the accuracy of the estimates on the 10 data
sets using B = 50 predictors generated from ID3. The first column gives the
abbreviations for the datasets (see the first Appendix). The following columns
show the averages and standard deviations of the difference between the ac-
curacy of the out-of-bag correction and the accuracy of the other estimates.

The table shows that our out-of-bag correction had better accuracy than
the out-of-bag estimate (0.12% on average) and 10-fold cross-validation (0.14%
on average). On the other hand, the out-of-bag correction appeared to have
slightly worse accuracy (−0.04% on average) than the test error correction.
The standard deviations for the out-of-bag correction vs. the out-of-bag es-
timate are much lower than the other pairs because these two estimates are
closely related.

Table 4 shows the results of the accuracy test using ID3 or C4.5 as the
predictor algorithm and using 50 or 100 as the size of the bag. Each entry
in the table list two numbers: the number of datasets that the out-of-bag
correction was respectively significantly better and significantly worse (0.05
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Data vs. Accuracy of OOC
Set OOB CV TEC
BA 0.137±0.98† 0.384±2.29† −0.136±2.89†

CR 0.065±0.55† −0.025±1.15 −0.001±0.99
FL −0.001±0.30 0.010±0.89 −0.022±0.72
IO 0.085±0.62† 0.097±1.22† 0.026±1.06
M1 0.221±0.57† 0.528±1.27† 0.003±0.84
M2 0.048±0.94 0.084±2.37 0.050±2.02
M3 0.000±0.02 0.010±0.11† 0.000±0.03
PI 0.075±0.76† 0.065±1.38 −0.016±1.23
PR 0.412±1.96† 0.221±4.20 −0.290±3.65†

SO 0.202±1.44† 0.070±2.93 0.032±2.54
Average 0.124±0.81 0.144±1.78 −0.035±1.60
†Statistically significant at the 0.05 level

Table 3: Results for ID3, B = 50: Averages and Standard Deviations of
Accuracy Difference

Predictor Bag Rejections by Accuracy Test
Algorithm Size OOC vs. OOB OOC vs. CV OOC vs. TEC
ID3 50 7-0 4-0 0-2
ID3 100 5-0 0-1
C4.5 50 7-0 3-2 0-3
C4.5 100 5-0 0-3

Table 4: Number of Rejections by the Accuracy Test by Algorithm and Size
of Bag
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level).
As can be seen, the accuracy test showed that the out-of-bag correction

was significantly more accurate than the out-of-bag estimate. The results are
mixed comparing the accuracy of the out-of-bag correction to 10-fold cross-
validation. When ID3 is the predictor algorithm, the out-of-bag correction
was significantly better than 10-fold cross-validation on 4 of the datasets, and
significantly worse on none of the datasets. When C4.5 is the predictor algo-
rithm, 3 datasets were significantly better while 2 datasets were significantly
worse, and the out-of-bag correction had a better average on 4 of the other
5 datasets. The out-of-bag correction is slightly worse than the test error
correction.

We conclude that the out-of-bag correction is more accurate than the out-
of-bag estimate. It is not as clear whether the out-of-bag correction is gen-
erally more accurate than 10-fold cross-validation, but our results give some
indication that the out-of-bag correction is better. As we would expect for
our model, the test error correction was more accurate than the other three
estimates (some data not shown).

4 Conclusion

With the use of any learning algorithm, it is important to use as many examples
as possible for training the hypothesis (or hypotheses) from a dataset. It is also
important to determine a good estimate of generalization error so that we can
have confidence that a good hypothesis has been learned. Our methodology
statistically compares an estimate of generalization error determined from a
training set to the empirical error on a separate test set.

10-fold cross-validation is one way of estimating generalization error, while
using all of the examples for training, but our experiments and previous ex-
periments have shown that it is biased. When bagging is used, the out-of-bag
estimate can be to estimate generalization error, and it also uses all examples
that are available. Unfortunately, the out-of-bag estimate is also biased.

We have developed a model, the test error correction, based on the voting
patterns on the test examples. Our model empirically provides a nearly unbi-
ased estimate and is more accurate than the out-of-bag estimate and 10-fold
cross-validation. However, our model is not practical because it cannot be
applied until the bag is evaluated on test examples.

Based on this model, we developed an out-of-bag correction based on the
voting patterns on the training examples. This correction attempts to estimate
the distribution of votes, and so, must be regarded as heuristic. The out-of-bag
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correction is relatively unbiased compared to 10-fold cross-validation and the
out-of-bag estimate, it is clearly more accurate than the out-of-bag estimate,
and it appears to be just as accurate as 10-fold cross-validation, if not more
accurate.

We conclude that 10-fold cross-validation and the uncorrected out-of-bag
estimate should be cautiously used for generalization error estimates because
they are biased. For two-class datasets, the out-of-bag correction is a better
estimate. The out-of-bag correction uses all the data, is much less biased, has
just as good or better accuracy, and avoids the additional time needed for
10-fold cross-validation. However, the out-of-bag correction does not perform
as well as our test error correction model, so there appears to be room for
improvement. Further research is needed to improve the out-of-bag correc-
tion and develop generalization error estimates for bagging on other types of
datasets.
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A Appendix: Datasets

For each dataset, we list our abbreviation, the number of examples, the number
of attributes, and a brief description. The datasets come from the Irvine
dataset [Blake & Merz, 1998] or the C4.5 distribution [Quinlan, 1993]. We did
not consider larger datasets because of the time required to perform bagging
and 10-fold cross-validation multiple times.

BA, 550, 35. The UCI cylinder bands dataset.
CR, 690, 15. The C4.5 credit card applications dataset.
FL, 1066, 10. The UCI solar flare dataset. This was changed to a two-class

dataset: any flare activity vs. no flare activity.
IO, 351, 34. The UCI ionosphere dataset.
M1, 432, 6. The C4.5 monk 1 dataset.
M2, 432, 6. The C4.5 monk 2 dataset.
M3, 432, 6. The C4.5 monk 3 dataset. The dataset in the C4.5 distribution

has no classification noise.
PI, 768, 8. The UCI Pima Indians diabetes dataset.
PR, 106, 57. The UCI promoter gene sequence dataset.
SO, 208, 60. The UCI sonar signals dataset.
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