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Abstract

Background

Infection by the simian malaria parasite, Plasmodium knowlesi, can lead to severe and fatal

disease in humans, and is the most common cause of malaria in parts of Malaysia. Despite

being a serious public health concern, the geographical distribution of P. knowlesimalaria

risk is poorly understood because the parasite is often misidentified as one of the human

malarias. Human cases have been confirmed in at least nine Southeast Asian countries,

many of which are making progress towards eliminating the human malarias. Understand-

ing the geographical distribution of P. knowlesi is important for identifying areas where

malaria transmission will continue after the human malarias have been eliminated.

Methodology/Principal Findings

A total of 439 records of P. knowlesi infections in humans, macaque reservoir and vector

species were collated. To predict spatial variation in disease risk, a model was fitted using

records from countries where the infection data coverage is high. Predictions were then

made throughout Southeast Asia, including regions where infection data are sparse. The

resulting map predicts areas of high risk for P. knowlesi infection in a number of countries

that are forecast to be malaria-free by 2025 (Malaysia, Cambodia, Thailand and Vietnam)
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as well as countries projected to be eliminating malaria (Myanmar, Laos, Indonesia and the

Philippines).

Conclusions/Significance

We have produced the first map of P. knowlesimalaria risk, at a fine-scale resolution, to

identify priority areas for surveillance based on regions with sparse data and high estimated

risk. Our map provides an initial evidence base to better understand the spatial distribution

of this disease and its potential wider contribution to malaria incidence. Considering malaria

elimination goals, areas for prioritised surveillance are identified.

Author Summary

Plasmodium knowlesi is a malaria parasite found in wild monkey populations and trans-

mitted from this animal reservoir to humans via infected mosquitoes. It causes severe and

fatal disease in humans, and is the most common cause of malaria in parts of Malaysia.

The geographical distribution of this disease is largely unknown because it is often misdi-

agnosed as one of the human malarias. Human malaria parasites are primarily transmitted

between humans viamosquitoes and are not frequently transmitted from other animals to

humans. Many countries in Southeast Asia, where P. knowlesi infections have been

reported, are making progress towards eliminating the human malarias. Understanding

the geographical distribution of P. knowlesi is important for identifying areas where

malaria transmission will continue after the human malarias have been eliminated. In

locations that have high volumes of P. knowlesi infection data, we modelled patterns of

variation in the data linked to environmental predictors, and used this to estimate P. know-

lesi infection risk in locations where data is lacking. The resulting map represents an initial

evidence-base for identifying areas of human disease risk that should be prioritized for sur-

veillance, particularly in the context of malaria elimination in the region.

Introduction

Malaria cases caused by the simian parasite, Plasmodium knowlesi, have been identified in at least

nine Southeast Asian countries. In many parts of Malaysia, this parasite is the most common cause

of malaria [1] and can lead to severe and fatal disease [2–4]. Despite the potential severity of infec-

tion [1, 4–8], diagnostics that identify P. knowlesi are not routinely used. Unless blood samples are

tested using expensive nested PCR-based diagnostics, cases of P. knowlesi are often misdiagnosed

by microscopy as one of the humanmalarias, principally P.malariae or P. falciparum [9–11].

Plasmodium knowlesi infection is routinely considered as a potential causal pathogen of

malaria cases in three countries: Malaysia, Brunei and Singapore (hereafter a region referred to

as MBS), the latter two having already eliminated the human malarias. Plasmodium knowlesi

malaria cases have also been reported in Cambodia, Indonesia, Myanmar, the Philippines,

Thailand and Vietnam [8, 12, 13], but sampling has been limited and the full geographical

extent of disease risk across most of the region, including within these countries, is unknown.

Understanding the geographical distribution of P. knowlesi is important to identify areas

where residual malaria transmission could remain once the human malarias, namely P. falcipa-

rum, P. vivax, P.malariae and P. ovale, have been eliminated [14]. Human malaria parasites

are primarily transmitted between humans viamosquitoes and are not frequently transmitted
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from other animals to humans. Many countries in Southeast Asia, including Malaysia, the Phil-

ippines, Thailand and Vietnam, are currently in the process of eliminating the human malarias

[15]. Current control measures that reduce these malarias include mass anti-malarial drug

administration, the provision of insecticide-impregnated bed nets (ITNs) and indoor residual

spraying of houses (IRS). These control measures do not, however, target transmission of the

parasite within populations of the reservoir host species so P. knowlesi populations will not be

eliminated. Further, ITNs and IRS are unlikely to offer the same degree of personal protection

to humans, or community protection through reductions in mosquito longevity, since the vec-

tors for P. knowlesi bite and rest outdoors [16]. If the presence of P. knowlesi is not considered

when elimination strategies are developed, the impact of elimination measures and reduction

in overall malaria cases in these areas will not match projections.

In this study, we produced the first map of the geographical distribution of P. knowlesi

malaria, using a niche modelling approach previously applied to the mapping of other vector-

borne and zoonotic diseases, including dengue [17], the Leishmaniases [18], Ebola virus disease

[19], Lassa fever [20], Marburg virus disease [21], Crimean-Congo hemorrhagic fever [22], and

Zika virus [23]. Niche models are able to combine information on locations where diseases

have been recorded with geographic data on environmental and socioeconomic factors hypoth-

esized to affect disease transmission [24]. Once the model has been fitted, the potential pres-

ence of the disease can be predicted in regions where it has yet to be reported.

To identify regions at risk from a disease with reservoirs in multiple host species, transmit-

ted by multiple vector species, this modelling approach needs to be further refined. The spatial

distribution of such diseases is restricted to locations where all species required for transmis-

sion coincide, so it is important to consider the distributions of these species [25]. The work

presented here builds on previous work that assessed the evidence for the limits of transmission

[12]. Here we refine those spatial limits and investigate the variation in risk within them. We

recently defined the fine-scale species distributions of the known and putative reservoirs and

vectors of P. knowlesi [26], including the main macaque species identified as natural hosts of P.

knowlesi,Macaca fascicularis andM. nemestrina [27–31], and several anopheline mosquito

species, all from the Leucosphyrus Group, implicated as vectors of P. knowlesi [16, 32–35]. Our

maps of these species are useful for defining the limits of zoonotic transmission, but an index

of disease risk cannot be extrapolated directly from reservoir/vector maps. While co-occur-

rence of reservoir and vector species involved in a zoonotic disease system is necessary for

transmission, it is not always sufficient, as many other factors contribute. We have developed a

model that incorporates the relationships between P. knowlesi infection and the distributions

of the reservoir and vector species, along with a range of other potential risk factors, to produce

fine-scale evidence-based predictions of relative zoonotic P. knowlesi transmission risk.

The final output provides an initial map that aims to identify locations where disease sur-

veillance and epidemiological investigations would be most informative to improve our under-

standing of disease risk.

Methods

Overview

A schematic of the process we followed is given in Fig 1. We collated and geo-positioned rec-

ords of P. knowlesi infections in humans, and reservoir and vector species, from a variety of

sources. The study area was a rectangle encompassing the locations of confirmed or putative P.

knowlesi infections plus a minimum buffer zone of 300 km, giving an area from northeast Ban-

gladesh to southwest Papua New Guinea. A map predicting the human risk of P. knowlesi

malaria at every square (pixel) in a 5 km × 5 km grid was generated using an ensemble of
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boosted regression tree (BRT) models to carry out a niche modelling analysis. The model used

the database of geo-positioned occurrence points for P. knowlesi infections combined with 19

gridded datasets of environmental and socio-economic explanatory covariates as well as proba-

bilistic species distributions forM. nemestrina,M. fascicularis and the Leucosphyrus Group.

Datasets comprising ad-hoc reports of disease occurrence (as opposed to data from planned

region-wide surveys) are subject to spatial bias in reporting rates, which if unaccounted for

may result in elevated risk predictions in the areas most likely to report [36]. Reporting bias is

likely to be more pronounced for P. knowlesimalaria since significant resources are required to

accurately diagnose infection and P. knowlesi infection is not routinely considered a possible

cause of malaria in the region, with the exception of MBS.

A model was therefore fitted using data only fromMBS (the model training region), where

we could account for reporting bias through our selection of background data. This model was

then used to predict the human risk of P. knowlesi infection across Southeast Asia. To assess

the model’s predictive capacity outside its training region, we tested its performance on a set of

disease presence and absence records from locations outside MBS. We also generated a

Fig 1. Schematic overview of the methods. Blue boxes describe input data, green boxes denote analyses, and yellow
boxes represent final outputs. MBS = Malaysia, Brunei and Singapore.

doi:10.1371/journal.pntd.0004915.g001
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multivariate environmental similarity surface to identify regions where the model was required

to extrapolate to environments not found within MBS, and therefore evaluate the appropriate-

ness of inferring risk in those regions.

Occurrence dataset

Records of P. knowlesi presence or absence for Southeast Asia were obtained from reports in the

published literature from 2004 to 2015, which were validated through personal communications

with the authors to confirm details. Each presence record contains the coordinates of a point loca-

tion or an area greater than 25 km2 (polygons) where a human, macaque or mosquito infection

was confirmed using specific diagnostics that are able to distinguish P. knowlesi from the other

Plasmodium spp. Presence points were excluded if P. knowlesi presence in the surrounding area

(within 300 km radius) was not verified by a second, independent laboratory. Each absence record

contains the coordinates for a site where an appropriate diagnostic for P. knowlesi was used, but

no infections were found in a sample size of at least 500 individuals, or where no malaria cases

were reported across an administrative division in 2012 [37]. Further details regarding data assem-

blage are included in the Supporting Information along with the complete data (S1 and S2 Files).

Explanatory covariates

Nineteen 5 km × 5 km gridded data surfaces of a range of environmental and socio-economic

factors, along with predicted reservoir and vector species distributions, were used as explana-

tory covariates (Table 1). No prior assumptions were made about the nature of any relation-

ships between these covariates and disease risk. Further details regarding the construction of

each covariate data surface is provided in the Supporting Information along with plots of each

surface (S1 File, and S1 and S2 Figs).

Model fitting

To carry out the niche mapping analysis, we fitted an ensemble of boosted regression tree

(BRT) models using the gbm R package [47]. This BRT approach has the ability to fit complex

Table 1. Explanatory covariates included in the analysis and their data source.

Covariate Data source

Open shrublands, woody savannas, savannas, grasslands,
wetlands, croplands, and cropland mosaics land cover classes
(proportional)

MODIS land cover product [38]

Intact forest cover (proportional) MODIS land cover product [38] Intact
Forest Landscape [39]

Disturbed forest cover (proportional) MODIS land cover product [38] Intact
Forest Landscape [39]

Elevation Shuttle Radar Topography Mission [40]

Temperature suitability index for Plasmodium falciparum

transmission
Gething et al. 2011 [41]

Tasseled cap wetness, a measure of surface moisture (mean and
standard deviation)

Gap-filled MODIS satellite data [42, 43]

Tasseled cap brightness, a measure of moisture on bare surfaces
(standard deviation)

Gap-filled MODIS satellite data [42, 43]

Human population density WorldPop [44] and Gridded Population
of the World [45]

Urban accessibility European Commission Joint Research
Centre [46]

Species distributions forMacaca fascicularis,M. nemestrina and
the Leucosphyrus Group

Moyes et al. 2016 [26]

doi:10.1371/journal.pntd.0004915.t001
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nonlinear responses including high-dimensional interactions between explanatory variables

[48], has been shown to have high predictive accuracy [24] and has been previously applied to

disease distribution mapping [17–23].

Boosted regression trees combine two algorithms: regression trees (which repeatedly split

the data into two groups using a randomly selected predictor variable for each split) and boost-

ing (which additively fits trees to the data, gradually prioritizing poorly modelled data to pro-

duce a set of trees that maximally reduce the loss function), to examine and quantify the

relationship between explanatory variables and the response data [48]. The core setup used has

been described previously [17, 19, 48]. The changes made to the method for the work presented

here addressed sampling bias in the infection reports within MBS, incorporated host and vector

data, allowed temporal changes in land cover to be incorporated, and improved handling of

polygon data.

Rather than exclusively using synoptic (averaged across time) covariate values for each of

the occurrence locations irrespective of the occurrence date, we incorporated annual data sur-

faces describing land cover and reservoir and vector distributions from 2001 to 2012. This was

necessary to account for the substantial changes in land cover that have occurred in the region

over the study period due to deforestation [49], which is hypothesized to have impacted the

distribution of the reservoir and vector species of P. knowlesi [50]. Using the annual land cover

data surfaces, disease occurrence data collected between 2001 and 2012 were matched with

covariate values for the relevant year; most data points (76%) fell within this time period.

Covariate values for 2001 were used for occurrence data prior to this date and covariate values

for 2012 were used for post-2012 data. Final predictions were made to the most contemporary

covariate values available to represent the current distribution of disease risk.

We used a binomial likelihood function for the BRT model in order to incorporate both

presence and absence records. Whilst records of disease absence are highly informative, they

are rare because they require significantly greater sampling effort to ensure their reliability

compared to presence data [51], especially for diseases like P. knowlesimalaria where the

appropriate diagnostics are rarely used. We therefore supplemented the dataset with a large

number of background records to represent areas where the disease has not been reported

within MBS. Six thousand background points were generated in total [51] with the same pro-

portion of human, macaque and mosquito background points as the presence dataset. It has

been demonstrated that predictive accuracy of presence-background niche models can be

improved by selecting background data with similar spatial bias to the occurrence records [36].

Human infection background points were generated by randomly sampling across MBS, biased

towards human population density, since more populous areas have a greater probability of

reporting at least one case. This method was also used to generate background points for the

mosquito infection data since all studies that looked for P. knowlesi infections in vector species,

selected study locations based on the presence of human P. knowlesi cases in the immediate vicin-

ity. Background points for the macaque infection data were randomly sampled from a macaque

occurrence and mammal survey dataset that reflected the bias in locations chosen for macaque

studies [26]. Covariate values for the specific times and locations of the background data were

then extracted. Prior to covariate extraction, human and vector background points were assigned

a year randomly sampled from the temporal distribution of presence points for each species.

Since the occurrence dataset included data from humans, macaques and mosquitoes, a joint

model was fitted for human, macaque and mosquito hosts that enabled all available infection

data to be leveraged, whilst not constraining the model to assume that the distribution of infec-

tion risk would be identical for all three host organisms. As BRTs can fit high-dimensional

interactions, the joint model is able to fit different environmental responses for each host

organism, or if there is no difference in the signal, to fit the same response for all of them.

Estimating the Risk of Zoonotic Plasmodium knowlesi Infection in Countries Eliminating Malaria
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To increase the robustness of model predictions and quantify model uncertainty, we fitted

an ensemble of 500 BRT models (sub-models), each trained to a separate bootstrap dataset ran-

domly sampled with replacement from the complete presence/background dataset. To incor-

porate uncertainty in the precise location of infection for polygon occurrence records, each

bootstrap randomly selected a 5 km × 5 km pixel within each polygon. Further information on

model fitting can be found in the Supporting Information (S1 File) and the R code used to

carry out the analysis is freely available at (https://github.com/fshearer/pk_parasite).

Model prediction and evaluation

To generate the final prediction map, a mean predicted value of suitability for infection was cal-

culated across the 500 sub-models (each fitted using occurrence and covariate data from within

MBS) for each 5 km × 5 km pixel within and outside MBS.

The model’s predictive performance was evaluated using the area under the receiver opera-

tor curve (AUC) statistic, i.e. the area under a plot of the true positive rate versus false positive

rate, reflecting the ability to discriminate between presence and background records [52]. The

overall statistic was calculated as the mean of the AUCs for each of the 500 sub-models, calcu-

lated under 10-fold cross validation.

While each sub-model in the BRT ensemble was fitted using occurrence and background

data fromMBS (the model training region), the goal of our analysis was to predict to a much

broader study area from northeast Bangladesh to southwest Papua New Guinea. To assess the

model’s predictive performance outside its training region, a separate AUC value was calcu-

lated for each sub-model using a validation dataset made up of presence and absence records

from locations outside MBS. This AUC was calculated for each sub-model and then averaged

across all 500 sub-models in the ensemble. Further information regarding the calculation of the

AUC statistics is provided in the Supporting Information (S1 File).

Multivariate environmental similarity surface

The geographic regions outside MBS encompasses environments beyond the ranges of covari-

ate values sampled within the training dataset. Model predictions to such environments are

inherently less reliable than interpolations made to areas with environments within the range

of covariate values in the training dataset. Thus it is important to assess the environmental sim-

ilarities and differences between model training and prediction regions [53].

To investigate whether predictions to new geographic regions required extrapolation to covari-

ate values beyond the range of the model training data, we computed and plotted a multivariate

environmental similarity surface (MESS) [54] using R packages “dismo” [55] and “raster” [56].

This surface represents the similarity of the environment at each location to the covariate values

at the presence and background locations inMBS (the reference data). The MESS calculation pro-

duces negative values for novel environments, locations where at least one covariate has a value

that is outside the range of reference values (hereafter extrapolation), and positive values for loca-

tions within this range (hereafter interpolation). We converted the rawMESS output into a binary

map indicating areas in which model predictions used interpolation versus extrapolation.

Mask

The model output was restricted to areas within the range of species known and hypothesized

to be required for zoonotic transmission (i.e. the overlap in range maps of at least one reservoir

and vector species), using previously reported species range maps [26].

A high resolution map for the zone of zoonotic transmission was also generated (S3 Fig)

using existing species distribution maps and occurrence datasets [26]. Threshold
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environmental suitability values for each of the species distribution maps forM. fascicularis,

M. nemestrina,M. leonina, and the Leucosphyrus Group were determined to incorporate 90%

of presence points in each species’ respective occurrence database. We used these thresholds to

classify each continuous species map as either present or absent for every 5 km × 5 km pixel in

the study region. These maps were combined to produce a final binary output showing areas of

spatial co-occurrence of all species required for zoonotic, vector-borne transmission to humans

i.e. presence of at least one macaque species plus at least one member of the Leucosphyrus

Group.

Results

A total of 439 P. knowlesi occurrence records were identified, consisting of 301 presence and

138 absence records. The evaluation dataset (records falling outside MBS) totaled 131 records,

comprising 29 point locations and 102 polygons (Fig 2A). The occurrence dataset used for

model fitting (records falling within MBS) totaled 198 records, corresponding to 62 unique

point locations and 136 polygons (Fig 2B). The model fitting dataset consisted of human (166),

monkey (23) and mosquito (9) occurrence records.

The model predictions for the geographical variation in P. knowlesi infection risk in humans

are displayed in Fig 3A. Overall, 10-fold cross validation statistics for the model ensemble (calcu-

lated using model training data) indicated high predictive performance with an AUC of 0.833

(SE ± 0.002). A map of model uncertainty is displayed in the Supporting Information (S4 Fig).

The model output was restricted to areas within the geographic range of the species required

for zoonotic transmission. An unmasked version of the mean output, showing relative suitabil-

ity for zoonotic P. knowlesi transmission, is provided in the Supporting Information (S5 Fig).

The predicted map is presented alongside a projection of malaria eliminating countries in

the year 2025 (Fig 3B) and together the two maps show countries where P. knowlesi transmis-

sion may persist after the human malarias are eliminated. The elimination projections, gener-

ated by the University of California San Francisco Global Health Group’s Malaria Elimination

Initiative, are based on current national and regional goals as well as recent epidemiological

trends for the human malarias, principally P. falciparum and P. vivax [57].

Within MBS, our model predicted considerable spatial variation in risk of P. knowlesi infec-

tion, with areas ranging from relatively low risk to high risk predicted within Peninsular Malay-

sia, and both Sabah and Sarawak States of Malaysian Borneo (Fig 3A).

The model also predicts areas of high risk for P. knowlesi infection in a number of countries

that are forecast to be malaria-free by 2025 (Malaysia, Cambodia, Thailand and Vietnam) as

well as countries projected to be eliminating malaria (Myanmar, Laos, Indonesia and the Phil-

ippines) (Fig 3B). Large areas of high risk were predicted in Myanmar, Laos, Cambodia and

Indonesia, with smaller areas predicted in Vietnam and Thailand. Human cases of P. knowlesi

infection have been reported across this broad area (Fig 2A).

Regions for which we have no field data include areas of high predicted-risk, for example,

eastern and western parts of Indonesia, and far eastern parts of India, although the predictions

for the latter depend on whetherM. leonina, included in the range of zoonotic transmission, is

indeed a reservoir species (Fig 3A).

Our predictions outside MBS are a result of both interpolation within the environmental

space and extrapolation. The binary MESS map (Fig 3C) shows that model extrapolation to

novel environments occurred in large regions in Cambodia, Vietnam, Thailand, Myanmar,

India, and the Andaman and Nicobar Islands, indicating that predictions in these areas should

be interpreted with caution. The model did, however, demonstrate high predictive perfor-

mance at sites outside the model-training region, with an AUC statistic of 0.796 (SE ± 0.003)
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calculated using 131 presence/absence locations from the evaluation dataset (Fig 2A). The pre-

dicted values for the evaluation data are presented in the Supporting Information (S6 Fig).

The main predictors for P. knowlesi infection risk were urban accessibility, human popula-

tion density, elevation, proportional cover of land with croplands and environmental suitability

forM. nemestrina. Marginal effect plots for each of these covariates are displayed in the Sup-

porting Information (S7 Fig).

Discussion

Using a niche model informed by a spatial database of P. knowlesi infections, a range of envi-

ronmental and socio-economic data, and reservoir and vector species distributions, we have

produced the first map of the predicted geographical distribution for P. knowlesimalaria.

Empirical data on P. knowlesi presence or absence is lacking for most of Southeast Asia and

this map provides an initial evidence base to prioritize areas for disease surveillance and future

epidemiological investigations.

The predictive performance of the model was high and it also had a high capacity to predict

suitability for infection in regions outside MBS. The latter result should, however, be treated

with caution as data for model evaluation was only available from a limited number of loca-

tions outside MBS, and the selection of locations for which P. knowlesi has been tested is likely

to be biased.

Another important caveat is the large area to which model predictions were made, relative

to the model training region, since this required the model to extrapolate to some novel envi-

ronments (see Fig 3C). Extrapolated predictions are inherently less reliable than those made in

areas of interpolation and include large parts of continental Asia. Sampling for P. knowlesi

infections in areas of extrapolation is likely to have the biggest impact on improving the disease

risk predictions.

The final map therefore shows the risk of zoonotic P. knowlesi transmission from known

reservoirs (specificallyM. nemestrina andM. fascicularis) and vectors of the Anopheles leuco-

sphyrus Group. If human-to-human transmission were occurring, this form of the disease is

likely to have a different niche to the zoonotic disease, i.e. a different relationship with environ-

mental, socioeconomic and biological factors. Thus our model is not appropriate to predict

human-to-human transmission risk.

It is also important to note that the limits of zoonotic transmission, within which we have

predicted infection risk, were defined using the reservoir and vector ranges generated by our

earlier work and these ranges reflect the fact that species distributions are not fixed. Specifically,

these ranges included introduced populations of the two macaque species, for example, petM.

fascicularis andM. nemestrinamacaques are commonly found on Sulawesi where the environ-

ment is predicted to be suitable for the establishment of feral populations [26]. The predictions

for infection risk that we present here therefore include locations on this island.

Human P. knowlesi infections have been identified beyond the ranges of bothM. nemestrina

andM. fascicularis.Macaca leonina, whose range extends farther north into Myanmar where

these human cases were reported [58], has thus been implicated as a putative host species. We

allowed predictions within the range ofM. leonina but since this species is not found in MBS, it

was not used as an explanatory covariate for model fitting. This may have impacted model pre-

dictions in the most northern parts of our study area where the environmental suitability for

Fig 2. Occurrence data used for model fitting and evaluation. A. Location of presence and absence points/polygons outside Malaysia, Brunei and
Singapore used for model evaluation. B. Location of presence and absence points/polygons as well as background points fromMalaysia, Brunei and
Singapore used for model fitting.

doi:10.1371/journal.pntd.0004915.g002

Estimating the Risk of Zoonotic Plasmodium knowlesi Infection in Countries Eliminating Malaria

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004915 August 5, 2016 10 / 17



Fig 3. Maps of Plasmodium knowlesimalaria risk, humanmalaria elimination status, andmodel extrapolation versus interpolation. A. Predicted risk
of P. knowlesimalaria ranging from low to high risk. B. Countries projected to be malaria-free, eliminating malaria, or controlling malaria by 2025 (Map
sourced from the University of California San Francisco Global Health Group’s Malaria Elimination Initiative) C. Comparison of environments in Malaysia,
Brunei and Singapore (the model training region) with those across the rest of Southeast Asia, using all covariates and the multivariate environmental
similarity surface (MESS) methods. The map distinguishes between areas of model interpolation and areas where the model was required to extrapolate to
novel environments.

doi:10.1371/journal.pntd.0004915.g003

Estimating the Risk of Zoonotic Plasmodium knowlesi Infection in Countries Eliminating Malaria

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004915 August 5, 2016 11 / 17



M. nemestrina andM. fascicularis is low, but high forM. leonina. Again, sampling in these

areas, particularly northern Myanmar, would improve the predictions.

Furthermore, two distinct P. knowlesi parasite populations, linked toM. nemestrina andM.

fascicularis respectively, have been identified in human patients from Malaysia [59]. It is rea-

sonable to assume that only the strain associated withM. fascicularis is circulating and infect-

ing humans in areas of continental Asia, whereM. nemestrina is absent, and it may have a

distinct relationship with environmental and socioeconomic variables compared to the mixture

of parasite infections in patients fromMalaysia. The presence of Leucosphyrus Complex vec-

tors in Malaysia and Dirus Complex vectors in continental Asia [26] further adds to the possi-

bility of different relationships between disease risk and the environment in these two regions.

Comparing our predicted P. knowlesi risk map (Fig 3A) with the map of current sampling

efforts (Fig 2), and the map of malaria eliminating countries (Fig 3B), allows us to identify rela-

tive surveillance priorities for P. knowlesi. These include a number of regions in Thailand (Phi-

sanulok, Phetchuban, Chaiyaphum, Prachan Buri, and southern Nakhon Ratchasima) and

Vietnam (Lam Dong, Phu Yen, Gia Lai, and Kon Tum). We also propose that further surveil-

lance in previously sampled areas of Thailand, Vietnam and Cambodia is required to fully

understand the distribution of P. knowlesi in countries close to eliminating the human

malarias.

Among the countries next expected to eliminate the human malarias, our results highlight a

need for surveillance in un-sampled, high-risk areas in Myanmar, Laos, and Sumatra and Kali-

mantan in Indonesia. Initial studies have reported cases in Aceh on Sumatra [13], and South

and Central Kalimantan [60, 61] but no published reports are available from the other parts of

these regions. Further surveillance is also needed in previously sampled areas, including Pala-

wan in the Philippines.

Importantly, our map predicts the environmental suitability for infection, not the preva-

lence of infection or incidence of cases in these places. The higher numbers of reported cases in

Malaysia is not proof that the disease risk is higher here because most locations outside Malay-

sia simply have not been surveyed and P. knowlesi could be misdiagnosed as one of the human

malarias. Studies that have investigated numbers of cases or infections have sampled a wide

array of communities including malaria patients [4], patients diagnosed as P.malariae by

microscopy [62], and whole communities [63], meaning the disease prevalence indicators gen-

erated are not directly comparable. Until more locations are surveyed using a consistent mea-

surement (ideally infections in a cross section of the community) and diagnostics that

distinguish all human malarias, we cannot draw any firm conclusions about relative disease

prevalence [64]. Studies of other diseases have, however, found a relationship between the envi-

ronmental suitability for infection and infection prevalence or case incidence [17, 65] and this

is a potential use of future iterations of this map. It will be important to update the predictions

presented here when new data become available, and systems are available to generate updated

predictive maps [66]. Importantly the map presented here provides key information about the

locations where new surveys for P. knowlesi infections would be most informative.

As the volume and quality of geographical data on P. knowlesi infections increases across

Southeast Asia, these maps will iteratively improve. For now, the work presented here provides

the best evidence-base currently available for prioritizing P. knowlesi surveillance to better

understand its spatial distribution and its wider contribution to malaria cases.
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S2 File. Database of Plasmodium knowlesi infections recorded in humans, macaque reser-

voirs and vectors.

(XLSX)

S1 Fig. Covariates used in predicting the distribution of risk of Plasmodium knowlesi

malaria. A. Displays human population density. B-D. Show the relative environmental suit-

ability for vector (the Leucosphyrus Group) and reservoir species (Macaca fascicularis andM.

nemestrina) of P. knowlesi, respectively. E. Shows an index of temperature suitability for P. fal-

ciparum transmission. F and G. Display values for tasselled cap wetness, which is measure of

surface moisture (mean and standard deviation, respectively).H. Displays standard deviation

values for tasselled cap brightness, which is a measure of moisture on bare surfaces. I. Gives the

time required to travel from each geographic location to a large city via land or water-based

transport networks. J. Displays elevation. For details of how each of these covariates layers was

derived see S1 File.

(TIF)

S2 Fig. Land cover covariates used in predicting the distribution of risk of Plasmodium

knowlesimalaria. A-I.Displays proportional cover for 2012 of lands with croplands, croplands

natural vegetation mosaics, open shrublands, permanent wetlands, grasslands, intact forest,

disturbed forest, woody savannas and savannas, respectively. For details of how each of these

covariates layers was derived see S1 File.

(TIF)

S3 Fig. Fine-scale map of presumed limits of zoonotic Plasmodium knowlesi transmission.

Areas of spatial co-occurrence of known or putative reservoir (at least one ofM. fascicularis,

M. nemestrina orM. leonina) and vector species (members of the Leucosphyrus Group) are

indicated, as well as areas where either reservoir or vector species are absent.

(TIF)

S4 Fig. Map of model uncertainty. Standard deviation values for each pixel were calculated

across the model ensemble. Areas from lower to higher standard deviation values are shown.

(TIF)

S5 Fig. Unmasked mean model output. Suitability for zoonotic Plasmodium knowlesi trans-

mission from known reservoir and vector species from relative low to high suitability.

(TIF)

S6 Fig. Predicted disease risk values at locations with confirmed/unconfirmed presence and

absence from outside Malaysia, Brunei and Singapore. The black dots represent the pre-

dicted values of confirmed/unconfirmed P. knowlesi presence and absence points and violin

plots showing the density of points at each predicted value are shown in grey. Reports of P.

knowlesi that were not supported by results from a second independent group working in the

same region were classified as unconfirmed.

(TIF)

S7 Fig. Marginal effect plots for the most influential covariates. The black line represents the

mean marginal effect and grey envelopes the associated 95% quantiles. The mean relative con-

tribution is displayed in the top left corner of each plot.

(TIF)
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