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Experiments in many fields of science and engineering yield data in the form of time series. The Fourier
and wavelet transform-based nonparametric methods are used widely to study the spectral characteristics
of these time series data. Here, we extend the framework of nonparametric spectral methods to include the
estimation of Granger causality spectra for assessing directional influences. We illustrate the utility of the
proposed methods using synthetic data from network models consisting of interacting dynamical systems.
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Extracting information flow in networks of coupled
dynamical systems from the time series measurements of
their activity is of great interest in physical, biological, and
social sciences. Such knowledge holds the key to the
understanding of phenomena ranging from turbulent fluids
to interacting genes and proteins to networks of neural
ensembles. Granger causality [1] has emerged in recent
years as a leading statistical technique for accomplishing
this goal. The definition of Granger causality [1] is based
on the theory of linear prediction [2] and its original
estimation framework requires autoregressive (AR) mod-
eling of time series data [1,3]. Such parametric Granger
causality and associated spectral decompositions have
been applied in a wide variety of fields including con-
densed matter physics [4], neuroscience [5–8], genetics
[9], climate science [10,11], and economics [1,12].
However, the parametric modeling methods often encoun-
ter difficulties such as uncertainty in model parameters and
inability to fit data with complex spectral contents [13]. On
the other hand, the Fourier and wavelet transform-based
nonparametric spectral methods are known to be free from
such difficulties [13] and have been used extensively in the
analysis of univariate and multivariate experimental time
series [14,15]. A weakness of the current nonparametric
framework is that it lacks the ability for estimating Granger
causality. In this Letter, we overcome this weakness by
proposing a nonparametric approach to estimate Granger
causality directly from Fourier and wavelet transforms of
data, eliminating the need of explicit AR modeling. Time-
domain Granger causality can be obtained by integrating
the corresponding spectral representation over frequency
[3]. Below, we present the theory and apply it to simulated
time series.

Granger causality: The parametric estimation ap-
proach.—Granger causality [1] is a measure of causal or
directional influence from one time series to another and is
based on linear predictions of time series. Consider two si-
multaneously recorded time series: X1: x1�1�; x1�2�; . . . ;
x1�t�; . . . ; X2: x2�1�; x2�2�; . . . ; x2�t�; . . . from two station-

ary stochastic processes (X1; X2). Now, using AR repre-
sentations, we construct bivariate linear prediction models
for x1�t� and x2�t�:

 x1�t��
X1
j�1

b11;jx1�t�j��
X1
j�1

b12;jx2�t�j���1j2�t� (1)

 x2�t��
X1
j�1

b21;jx1�t�j��
X1
j�1

b22;jx2�t�j���2j1�t� (2)

along with the univariate models: x1�t� �
P
1
j�1 �jx1�t�

j� � �1�t� and x2�t� �
P
1
j�1 �jx2�t� j� � �2�t�. Here, �’s

are the prediction errors. If var��1j2�t��< var��1�t�� in
some suitable statistical sense, then X2 is said to have a
causal influence on X1. Similarly, if var��2j1�t��<
var��2�t��, then there is a causal influence from X1 to X2.
These causal influences are quantified in time domain [3]
by Fj!i � ln var��i�t��

var��ijj�t��
, where i � 1; 2 and j � 2; 1.

Experimental processes are often rich in oscillatory
content, lending themselves naturally to spectral analysis.
The spectral decomposition of Granger’s time-domain
causality was proposed by Geweke in 1982 [3]. To derive
the frequency-domain Granger causality, we start with
Eqs. (1) and (2). We rewrite these equations in a matrix
form with a lag operator L: Lx�t� � x�t� 1� as

 

b11�L� b12�L�
b21�L� b22�L�

� �
x1�t�
x2�t�

� �
�

�1j2

�2j1

� �
; (3)

where bij�L� �
P
1
k�0 bij;kL

k with bij;0 � �ij (the
Kronecker delta function). The covariance matrix of the
noise terms is

 � �
�11 �12

�21 �22

� �
;

where �11 � var��1j2�, �12 � �21 � cov��1j2; �2j1�, and
�22 � var��2j1�. Fourier transforming Eq. (3) yields
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B11�f� B12�f�
B21�f� B22�f�

� �
X1�f�
X2�f�

� �
�

E1�f�
E2�f�

� �
; (4)

where the components of the coefficient matrix [Bij�f�] are
Blm�f� � �lm �

P
1
k�1 blm;ke

�i2�fk. In terms of transfer
function matrix [H�f� � �Bij�f���1], Eq. (4) becomes

 

X1�f�
X2�f�

� �
�

H11�f� H12�f�
H21�f� H22�f�

� �
E1�f�
E2�f�

� �
: (5)

Then, the spectral density matrix S�f� is given by

 S �f� � H�f��H��f�; (6)

where * denotes matrix adjoint. To examine the causal
influence from X2 to X1 one needs to look at the autospec-
trum of x1�t� series, which is S11�f� � H11�11H

�
11 �

2�12 Re�H11H�12� �H12�22H�12. Here, because of the
cross terms in this expression for S11, the causal power
contribution is not obvious. Geweke [3] introduced a trans-
formation that eliminates the cross terms and makes an
intrinsic power term and a causal power term identifiable.
For X1 process, this transformation is achieved by left-
multiplying Eq. (4) on both sides with

 

1 0
��12=�11 1

� �
;

which yields

 

B11�f� B12�f�
~B21�f� ~B22�f�

� �
X1�f�
X2�f�

� �
�

E1�f�
~E2�f�

� �
; (7)

where ~B21�f� � B21�f� �
�12

�11
B11�f�, ~B22�f� � B22�f� �

�12

�11
B12�f�, and ~E2�f� � E2�f� �

�12

�11
E1�f�. The elements

of the new transfer function ~H�f� then become ~H11�f� �

H11�f� �
�12

�11
H12�f�, ~H12�f� � H12�f�, ~H21�f� �

H21�f� �
�12

�12
H11�f�, and ~H22�f� � H22�f�. Here,

cov�E1; ~E2� � 0 and the new variance of x2�t� is ~�22 �

�22 �
�2

12

�11
. Now, the autospectrum of x1�t� is decomposed

into two obvious parts: S11�f� � ~H11�f��11
~H�11�f� �

H12�f�~�22H�12�f�, where the first term accounts for the
intrinsic power of x1�t� and the second term for causal
power due to the influence from X2 to X1. Since Granger
causality is the natural logarithm of the ratio of total power
to intrinsic power [3], causality from X2 to X1 (or, 2 to 1) at
frequency f is

 I2!1�f� � ln
S11�f�

S11�f� � ��22 �
�2

12

�11
�jH12�f�j2

; (8)

using the expressions for S11 and ~�22 obtained after the
transformation. Next, by taking the transformation matrix
as

 

1 ��12=�22

0 1

� �

and performing the same analysis, one can get Granger
causality I1!2�f� from X1 to X2, the expression for which
can be obtained just by exchanging subscripts 1 and 2 in
Eq. (8). Geweke [3] showed that the time-domain measure
is theoretically related to the frequency-domain measure as
F2!1 	

1
2�

R
�
�� I2!1�f�df, but for all processes of practi-

cal interest the equality holds.
From the above discussion, it is clear that the estimation

of frequency-domain Granger causality requires noise co-
variance and transfer function which are obtained as part of
the AR data modeling. The mathematics behind this para-
metric approach to obtain these quantities is well estab-
lished. However, for nonparametric methods the current
estimation framework does not contain provisions for
computing these quantities. Moreover, the parametric es-
timation method from finite data can often produce erro-
neous results if the series in Eqs. (1) and (2) are not
truncated to proper model orders. There are criteria [16]
for choosing proper AR model order, but these criteria
cannot always be satisfied. In addition, the AR modeling
approach does not always capture all the spectral features
[13]. To overcome these difficulties, we propose a non-
parametric estimation approach, in which we derive, based
on Fourier and wavelet transforms of time series data,
noise covariance and transfer function to be used in
Geweke’s formulas such as Eq. (8) for Granger causality
estimates.

Granger causality: The nonparametric estimation ap-
proach.—In the nonparametric approach, spectral density
matrices are estimated by using direct Fourier and wavelet
transforms of time series data. These matrices then
undergo spectral density matrix factorization [17,18] and
Geweke’s variance decomposition [3] for the estimation of
Granger causality. To explain this approach, let us consider
a bivariate process with time series x1�t� and x2�t�, their
Fourier transforms X1�f� and X2�f�, and wavelet trans-
forms WX1

�t; f� and WX2
�t; f�. Then, the spectral matrix

S is defined as

 S �
S11 S12

S21 S22

� �
;

where, in the Fourier-based method, Slm � hXl�f�Xm�f��i,
and, in the wavelet method, Slm � hWXl�t; f�WXm�t; f�

�i.
Here, l � 1; 2, m � 1; 2 and h
i is averaging over multiple
realizations. Smoother Fourier-based spectral density with
reduced estimation bias can be obtained by using the
multitaper technique [13,19], which involves the use of
discrete spheroidal sequences (DPSS) [20]. The continu-
ous wavelet transform WXl�t; s� at time t and scale s is
computed by the convolution of time series xl with a scaled
and translated version of a prototype wavelet ���� that
satisfies zero-mean and unity square-norm conditions
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[21,22]: WXl�t; s� �
1��
s
p
R
1
�1 d������ts �xl���. Using the

relationship between s and f for a given prototype wavelet,
such as the Morlet wavelet [22,23], one can transform
WXl�t; s� into WXl�t; f�. The wavelet transform at f � 0
can be obtained by a numerical extrapolation. S�f� or
S�t; f� thus formed is a square matrix that can be defined
in the interval [� �;�] and, for all processes of practical
interest, satisfies the following properties: (i) S��� is
Hermitian, non-negative, and S���� � ST���, where � �
2�f and T denotes matrix transpose, and (ii) S��� is
integrable and has a Fourier series expansion, S��� �P
1
k��1 �ke

ik�, where the covariance sequence f�kg1�1 is
formed by �k � �1=2��

R
�
�� S���e

�ik�d�.
According to the factorization theorem [17,24], the

spectral density matrix S as defined above can be factored
[25] into a set of unique minimum-phase functions:

 S �   �; (9)

where * denotes matrix adjoint,  �ei�� �
P
1
k�0 Ake

ik� is
defined on the unit circle fjzj � 1g, and Ak � �1=2���R
�
��  �e

i��e�ik�d�. Moreover,  can be holomorphically
extended [25] to the inner disk fjzj< 1g as  �z� �P
1
k�0 Akz

k, where  �0� � A0, a real, upper triangular ma-
trix with positive diagonal elements. Similarly, S and H
can be defined as functions of z withH�0� � I. Comparing
the right-hand sides of Eqs. (6) and (9) at z � 0 we get

 � � A0AT
0 : (10)

Rewriting Eq. (9) as S �  A�1
0 A0ATA�T

0  � and compar-
ing with Eqs. (6) and (10), we arrive at the expression for
the transfer function:

 H �  A�1
0 : (11)

Now, by substituting the specific elements of the noise
covariance and transfer function from Eqs. (10) and (11)
into Eq. (8), one can estimate pairwise Granger causality
spectra. In the case of the wavelet, these calculations are
repeated along the time axis for each time point to get the
time-frequency representation of Granger causality.

Numerical examples.—We consider network models
with two autoregressive processes X1 and X2 as nodes
where X1�t��0:55X1�t�1��0:8X1�t�2��C�t�X2�t�
1����t� and X2�t��0:55X2�t�1��0:8X2�t�2��	�t�.
Here, t is a time index, ��t� and 	�t� are independent white
noise processes with zero means and unit variances, C�t� is
the coupling strength, and the sampling rate is considered
to be 200 Hz. By construction, only X2 has a causal
influence on X1. First, we fix C�t� at 0:2 8 t, generate a
data set of 5000 realizations (trials), each consisting of
5000 data points, and apply the Fourier-based nonparamet-
ric method. The power spectra of X1 and X2 [Fig. 1(a)] and
coherence spectra between X1 and X2 [Fig. 1(b)] show
40 Hz peaks. Figure 1(c) shows the Granger causality
spectra. Here, both the nonparametric (NP) and parametric
(P) approaches yield identical results, recovering correctly
the underlying directional influences. Since the proper
model order is chosen here and the data set is large, the
parametric causality estimates can be assumed to represent
the theoretical values. Next, we let the unidirectional cou-
pling of X2 to X1 change in its strength C�t� over time as
shown in Fig. 2(a), generate 5000 realizations, each with
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FIG. 1. (a) Power, (b) coherence, and (c) Granger causality
spectra from both Fourier transform-based nonparametric (NP)
and parametric (P) methods. There is an excellent agreement
between NP and P estimates.

FIG. 2 (color online). Wavelet-based Granger causality: time-
frequency representation of causality. (a) Temporal structures of
couplings constructed in the network model: the coupling of X2

with X1 stays 0.25 during time �0; 2� sec, slowly changes to 0
during �2; 2:25� sec, and stays 0 during time >2:25 sec , whereas
the coupling of X1 with X2 is 0 throughout. The slow transition in
the middle is modeled by the tangent of a hyperbolic function.
(b),(c) Time-frequency maps of Granger causality correctly
represent the temporal structures of couplings as in (a) for the
network model.
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900 time points. Then, the wavelet spectra are computed
for all the trials using the Morlet wavelet (as used in [22]).
The average wavelet spectra are obtained by averaging
over these individual spectra. The average spectra at a
time point is subsequently factored, and H and � are
obtained and used in Eq. (8) to obtain Granger causality
spectra. By repeating these calculations along time axis,
one gets the complete time-frequency maps of Granger
causality [Figs. 2(b) and 2(c)], which also recovers the
correct directional influences. Granger causality magni-
tude increases with coupling strength.

Here, the proposed Granger causality techniques are
tested on data sets with a large number of long trials.
However, these techniques can also be used reliably with
fewer trials. Increasing the number of trials leads to spec-
tral estimates with smaller variance. A single, sufficiently
long stationary time series can be broken into smaller
segments, each of which can be treated as a distinct trial.
The use of multitaper [13] and multiwavelet [26] tech-
niques can yield better estimates of Granger causality in
the case of a data set with shorter length and fewer trials.
See the supplementary material [27] for additional numeri-
cal examples and applications to brain signals.

Conclusion.—Granger causality is a key technique for
assessing causal relations and information flow among
simultaneous time series. Its traditional parametric estima-
tion framework often suffers from uncertainty in model
order selection and inability to fully account for complex
spectral features. We develop a nonparametric approach
based on the direct Fourier and wavelet transforms of data
that eliminates the need of parametric data modeling and
extends the capability of Fourier and wavelet-based suites
of nonparametric spectral tools. It is expected that the
integration of the proposed method into existing laboratory
analysis routines will provide the basis for gaining deeper
insights into the organization of dynamical networks aris-
ing in many fields of science and engineering [28].
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