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Abstract. We determine and interpret fine particulate matter

(PM2.5) concentrations in eastern China for January to De-

cember 2013 at a horizontal resolution of 6 km from aerosol

optical depth (AOD) retrieved from the Korean geostation-

ary ocean color imager (GOCI) satellite instrument. We im-

plement a set of filters to minimize cloud contamination in

GOCI AOD. Evaluation of filtered GOCI AOD with AOD

from the Aerosol Robotic Network (AERONET) indicates

significant agreement with mean fractional bias (MFB) in

Beijing of 6.7 % and northern Taiwan of −1.2 %. We use

a global chemical transport model (GEOS-Chem) to re-

late the total column AOD to the near-surface PM2.5. The

simulated PM2.5 / AOD ratio exhibits high consistency with

ground-based measurements in Taiwan (MFB = −0.52 %)

and Beijing (MFB = −8.0 %). We evaluate the satellite-

derived PM2.5 versus the ground-level PM2.5 in 2013 mea-

sured by the China Environmental Monitoring Center. Sig-

nificant agreement is found between GOCI-derived PM2.5

and in situ observations in both annual averages (r2 = 0.66,

N = 494) and monthly averages (relative RMSE = 18.3 %),

indicating GOCI provides valuable data for air quality stud-

ies in Northeast Asia. The GEOS-Chem simulated chemical

composition of GOCI-derived PM2.5 reveals that secondary

inorganics (SO2−
4 , NO−

3 , NH+
4 ) and organic matter are the

most significant components. Biofuel emissions in northern

China for heating increase the concentration of organic mat-

ter in winter. The population-weighted GOCI-derived PM2.5

over eastern China for 2013 is 53.8 µg m−3, with 400 million

residents in regions that exceed the Interim Target-1 of the

World Health Organization.
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1 Introduction

Fine particulate matter with aerodynamic diameter less than

2.5 µm (PM2.5) is a robust indicator of mortality and other

negative health effects associated with ambient air pollution

(Goldberg, 2008; Laden et al., 2006). It is estimated that

more than 3 million people lost their lives prematurely due

to PM2.5 in 2010 (Lim et al., 2012), of which 1 million oc-

curred in East Asia (Silva et al., 2013). In China, there have

already been several episodes with PM2.5 described as “be-

yond index” levels. Thus, it is of paramount importance to

monitor PM2.5 concentration across China. Satellite remote

sensing has a high potential to monitor PM2.5.

Satellite retrievals of aerosol optical depth (AOD), which

provide a measure of the amount of light extinction through

the atmospheric column due to the presence of aerosols, have

long been recognized to relate to ground level PM2.5 (Wang

and Christopher, 2003). Many studies have developed ad-

vanced statistical relationships to estimate with high accu-

racy surface PM2.5 from satellite AOD (Liu et al., 2009;

Kloog et al., 2012; Hu et al., 2013). For example, Ma et

al. (2014) estimated PM2.5 concentrations in China from

satellite AOD by developing a national-scale geographically

weighted regression model, and found strong agreement

(r2 = 0.64) with ground measurements.

In addition to empirical statistical methods, satellite AOD

can also be geophysically related to surface PM2.5 by the

use of a chemical transport model to simulate the PM2.5 to

AOD relationship (Liu et al., 2004; van Donkelaar et al.,

2010). This approach was first demonstrated using data from

the Multiangle Imaging Spectroradiometer (MISR) aboard

NASA’s Terra satellite over the United States for 2001 (Liu

et al., 2004). Van Donkelaar et al. (2006, 2010) extended

this approach to estimate PM2.5 from AOD retrieved from

both the MODIS (Moderate Resolution Imaging Spectrora-

diometer) and the MISR satellite instruments, and developed

a long-term global estimate of PM2.5 at a spatial resolution of

approximately 10 km × 10 km. Boys et al. (2014) used AOD

retrieved from MISR and the SeaWiFS (Sea-Viewing Wide

Field-of-View Sensor) to produce a 15-year (1998–2012)

global trend of ground-level PM2.5. These previous studies

have proven to be globally effective, but more detailed re-

gional investigation is needed in densely polluted and popu-

lated regions like China.

The Geostationary Ocean Color Imager (GOCI) is the first

geostationary satellite instrument that offers multi-spectral

aerosol optical properties in Northeast Asia (Park et al.,

2014). GOCI has a high observation density of eight re-

trievals per day (hourly retrievals from 09:00 to 16:00 Ko-

rean Standard Time) over a location, which exceeds the re-

trieval density of traditional low-Earth polar-orbiting satel-

lite instruments. Thus, GOCI is promising for more detailed

investigations on aerosol properties in highly polluted and

populated regions including eastern China.

In this study, we estimate ground-level PM2.5 in east-

ern China for 2013 at a horizontal resolution of 6 km by

6 km, by using AOD retrieved from GOCI, coupled with

the relationship of PM2.5 to AOD simulated by a chemi-

cal transport model (GEOS-Chem). Section 2 describes the

approach and data. Section 3 evaluates the GOCI AOD,

the simulated PM2.5 to AOD relationship, and the GOCI-

derived PM2.5 using recently available ground-level mea-

surements from the China Environmental Monitoring Cen-

ter (http://113.108.142:20035/emcpublish/). We also inter-

pret the GOCI-derived PM2.5 by using the GEOS-Chem

model to estimate its chemical composition. Section 4 sum-

marizes the major findings and potential future improve-

ments of the current analysis.

2 Methods

2.1 Aerosol optical depth from the GOCI satellite

instrument

GOCI operates onboard the Communication, Ocean, and

Meteorology Satellite (COMS) that was launched in 2010

in Korea (Lee et al., 2010). The spatial coverage of GOCI

is 2500 km × 2500 km in Northeast Asia, including eastern

China, the Korean peninsula and Japan (Kang et al., 2006).

GOCI has eight spectral channels for aerosol retrievals, in-

cluding six visible bands at 412, 443, 490, 555, 660, 680 nm

and two near infrared bands at 745 and 865 nm (Park et al.,

2014). The Level 2 AOD products are retrieved at a spa-

tial resolution of 6 km by 6 km, using a clear-sky composite

method for surface reflectance and a lookup table approach

based on AERONET observations (Lee et al., 2010, 2012).

A challenge using GOCI to detect aerosols in the atmo-

sphere is the absence of mid-infrared (IR) channels to de-

tect clouds, which means that significant errors could be in-

duced in the estimates of AOD. The operational GOCI prod-

ucts screen clouds based on spatial variability and threshold

tests at each 6 km × 6 km pixel in combination with a meteo-

rological imager that has four IR channels (at 3.7, 6.7, 10.8,

12 µm wavelengths) at 4 km by 4 km resolution onboard the

same satellite (Cho and Youn, 2006). However, as will be

shown here, cloud contamination still occurs. Therefore, we

apply a set of spatial filters following Hyer et al. (2011) and

temporal filters to further eliminate cloud contamination in

GOCI AOD. The filters include (1) a buddy check that sets

a minimum number of 15 retrievals per 30 km × 30 km grid

cell, (2) a local variance check to eliminate grid cells where

the coefficient of variation of AOD is larger than 0.5 within

the surrounding 5 × 5 grid cells and (3) a diurnal variation

check that excludes grid cells with diurnal variation (max-

imum – minimum) of AOD larger than 0.74 which is the

90th percentile of diurnal variation of AERONET AOD in

Beijing and northern Taiwan for 2013. In this study, we use
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GOCI AOD for January–December 2013 to derive ground-

level PM2.5 in eastern China.

2.2 Aerosol optical depth from AERONET

ground-based measurements

The Aerosol Robotic Network (AERONET) is a globally

distributed network of CIMEL Sun photometers (Holben et

al., 1998) that provide multi-wavelength AOD measurements

with a low uncertainty of < 0.02 (Holben et al., 2001). Here

we use AERONET Level 1.5 cloud screened data (Smirnov

et al., 2000) for January–December 2013 from four sta-

tions within the GOCI domain: Beijing, Beijing-CAMS,

Taipei_CWB and EPA-NCU. AERONET Level 2 data for

2013 are not available for some stations discussed in this pa-

per. Thus, we use Level 1.5 for consistency. We compared

Level 2 and Level 1.5 data for 2013 for stations that do have

Level 2 available, and found Level 1.5 AOD is highly con-

sistent with Level 2 AOD with RMSE of 0.01–0.02 (rela-

tive RMSE of 2–7 %). Criteria for selecting an AERONET

station are (1) a PM2.5 ground monitor has to be located

within 10 km and (2) a complete time series of AOD data

records for the period of study has to be available. Bei-

jing and Beijing-CAMS stations are located in downtown

Beijing, with the closest available PM2.5 monitors 9.5 and

7.5 km away, respectively. However, due to interrupted time

series of PM2.5 records at both these stations, we combine the

AERONET AOD from the Beijing and Beijing-CAMS sta-

tions and PM2.5 from the corresponding two in situ ground-

based sites as a “combined Beijing” site. Taipei_CWB and

EPA-NCU stations are located in populated northern Taiwan,

with nearly collocated PM2.5 monitors (< 3 km). We sim-

ilarly combine the Taipei_CWB and EPA-NCU as “north-

ern Taiwan” site. We use these sites to evaluate GOCI AOD

and the relationship between AOD and PM2.5 simulated by a

global chemical transport model.

2.3 Simulation of the relationship between AOD and

PM2.5 by GEOS-Chem

We use the GEOS-Chem chemical transport model (version

9-01-03; http://geos-chem.org) to calculate the spatiotempo-

rally resolved relationship between ground-level PM2.5 and

satellite-retrieved column AOD.

Our nested GEOS-Chem simulation at 1/2◦ × 2/3◦ spatial

resolution with 47 vertical levels (14 levels in the lowest

2 km) is driven by assimilated meteorology from the God-

dard Earth Observing System (GEOS-5). A global simula-

tion at 2◦ × 2.5◦ spatial resolution is used to provide bound-

ary conditions for the nested domain (Wang et al., 2004). We

spin up the model for 1 month before each simulation to re-

move the effects of initial conditions on the aerosol simula-

tion.

GEOS-Chem includes a fully coupled treatment of tropo-

spheric oxidant–aerosol chemistry (Bey et al., 2001; Park et

al., 2004). The GEOS-Chem aerosol simulation includes the

sulfate-nitrate-ammonium system (Park et al., 2004; Pye et

al., 2009), primary (Park et al., 2003) and secondary (Henze

and Seinfeld, 2006; Henze et al., 2008; Liao et al., 2007;

Fu et al., 2008) organics, mineral dust (Fairlie et al., 2007),

and sea salt (Jaeglé et al., 2011). We estimate the concentra-

tion of organic matter (OM, which includes elements such

as hydrogen, oxygen and nitrogen) from the simulated pri-

mary organic carbon (OC) using spatially and seasonally

resolved values from OMI (Ozone Monitoring Instrument)

NO2 and AMS (aerosol mass spectrometer) measurements

following Philip et al. (2014). Gas-aerosol phase partition-

ing is simulated using the ISORROPIA II thermodynamic

scheme (Fountoukis and Nenes, 2007). GEOS-Chem calcu-

lates AOD using relative humidity-dependent aerosol opti-

cal properties following Martin et al. (2003). Dust optics are

from Ridley et al. (2012).

Anthropogenic emissions are based on the Multi-

resolution Emission Inventory for China (MEIC; http://www.

meicmodel.org) for 2010, and the Zhang et al. (2009) in-

ventory for surrounding East Asia regions for 2006. Both

inventories are scaled to the simulation year (2012–2013),

following Ohara et al. (2007). Non-anthropogenic emis-

sions include biomass burning emissions (GFED-3) (Mu et

al., 2011), biogenic emissions (MEGAN) (Guenther et al.,

2006), soil NOx (Yienger and Levy, 1995; Wang et al., 1998),

lightning NOx (Murray et al., 2012), aircraft NOx (Wang

et al., 1998; Stettler et al., 2011), ship SO2 from EDGAR

(Olivier and Berdowski, 2001) and volcanic SO2 emissions

(Fischer et al., 2011). HNO3 concentrations are artificially

decreased to 75 % of their values at each timestep following

Heald et al. (2012) to account for regional bias (Wang et al.,

2013). Emissions are distributed into the lower mixed layer,

with a correction to the GEOS-5 predicted nighttime mixing

depths following Heald et al. (2012) and Walker et al. (2012).

We apply GEOS-Chem to simulate daily relationships be-

tween ground level PM2.5 and column AOD, specifically

PM2.5 / AOD. PM2.5 concentrations are calculated at 35 %

relative humidity for consistency with in situ measurements.

For consistency with GOCI AOD and PM2.5 ground-based

measurements, we sample the simulated AOD only from

hours that GOCI has retrievals (00:00–07:00 UTC), and cal-

culate the simulated daily PM2.5 from 24 h averages as re-

ported for the ground-based PM2.5 measurements. The sim-

ulation period is May 2012–April 2013 as the GEOS-5 me-

teorological fields are not available afterward. The mismatch

with observations for May–December 2013 has the potential

to degrade performance, but as will be shown here no clear

loss of quality is apparent.

2.4 In situ PM2.5 measurements

We collect PM2.5 measurements from 494 monitors to eval-

uate the GOCI-derived values. In situ PM2.5 daily mea-

surements in Mainland China for 2013 are primarily from

www.atmos-chem-phys.net/15/13133/2015/ Atmos. Chem. Phys., 15, 13133–13144, 2015
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the official website of the China Environmental Monitor-

ing Center (CEMC; http://113.108.142:20035/emcpublish/).

Data are also collected from some provinces (e.g., Shan-

dong, Zhejiang) and municipalities (e.g., Beijing and Tian-

jin) with additional sites that are not included in the CEMC

website. Daily in situ PM2.5 data in northern Taiwan for

2013 are from the Taiwan Environmental Protection Admin-

istration (TEPA; http://taqm.epa.gov.tw). The in situ PM2.5

data in both Mainland China and northern Taiwan are mea-

sured by a collection of the tapered element oscillating mi-

crobalance methods (TEOMs) and beta-attenuation methods

(BAMs) with some TEOMs being heated to 30 ◦C and others

to 50 ◦C (CNAAQS, GB3095-2012, 2012; http://taqm.epa.

gov.tw). The specific instrument (BAMs or TEOMs) used

by each monitoring site is unknown. The effective relative

humidity of the resultant PM2.5 measurement likely varies

diurnally and seasonally as a function of the ambient tem-

perature. Semivolatile losses are expected from the TEOMs.

The network design appears to include compliance objec-

tives that may affect monitor placement. Despite these is-

sues, we use the monitoring data to evaluate our satellite-

derived PM2.5 since the monitoring data offer valuable in-

formation about ground-level PM2.5 concentrations. We also

collect PM2.5 measurements from a monitor in Beijing as

part of the surface particulate matter Network (SPARTAN;

www.spartan-network.org) using a three-wavelength neph-

elometer and an impaction filter sampler (Snider et al., 2015).

The SPARTAN, CEMC and TEPA PM2.5 monitoring data

combined with AERONET AOD are used to estimate the em-

pirical relationship between PM2.5 and AOD, and to further

evaluate the relationship simulated by the model.

2.5 Statistical terms

Root mean square error (RMSE), relative root mean square

error (rRMSE), mean fractional bias (MFB) and mean frac-

tional error (MFE) are defined as

RMSE =

√

1

N

∑N

i=1
(Si − Oi)

2 (1)

rRMSE =
RMSE

1
N

∑N
i=1Oi

(2)

MFB =
1

N

∑N

i=1

(Si − Oi)
(

Si+Oi

2

) × 100% (3)

MFE =
1

N

∑N

i=1

|Si − Oi |
(

Si+Oi

2

) × 100%, (4)

where Si is the satellite-derived value of the parameter in

question, Oi is the corresponding observed value, and N is

the number of observations.

Coefficient of variation (CV) is defined as

CV =
Standard deviation

Mean
(5)

3 Results and discussion

3.1 Evaluation of satellite AOD and the simulated

relationship between PM2.5 and AOD

Figure 1 shows the effects of our cloud-screening filters on

GOCI AOD. The left panel shows GOCI true color images

from 5 July 2013 at 10:30 (top) and 11:30 (bottom) Korean

Standard Time. The boxes identify challenging regions with

thick white cloud, dark cloud-free oceans and gray shading

that appears to be thin cloud. The operational GOCI AOD

retrievals, shown in the middle panel, correctly exclude thick

clouds, but report high AOD for the potentially thin clouds.

Although these gray regions could contain aerosol, we err on

the side of caution. Application of our additional temporal

and spatial cloud filters removes the suspicious pixels from

the original GOCI data, as shown in the right panel. Our fil-

ters reject 10.3 % of all the operational GOCI AOD data in-

vestigated in this study. We evaluate the cloud filters further

below.

Figure 2 (top) shows monthly averages of coincident

filtered hourly GOCI and AERONET AOD for January–

December 2013 at combined Beijing and northern Taiwan

stations. GOCI AOD is highly consistent with AERONET

observations with MFB of 6.7 % in Beijing and −1.2 % in

Taiwan. GOCI AOD and AERONET AOD are positively

skewed at both stations, and the skewness is reduced in GOCI

AOD at both stations due to more records for extremely

small AOD (< 0.04) in GOCI products. The relatively larger

rRMSE between GOCI and AERONET AOD in northern

Taiwan may reflect the fewer observations there.

We investigate the filtered diurnal variation of GOCI AOD

at the above AERONET stations and find the level of AOD

is uniform within a day (e.g., the coefficient of variation in

Beijing is 0.1), similar to AERONET observations.

The effect of excluding our cloud-screening filters is neg-

ligible for coincident comparisons with AERONET since

AERONET is already cloud-screened. The exclusion of

our cloud filters for a non-coincident comparison that in-

cludes all GOCI data would introduce significant error versus

AERONET observations, increasing rRMSE by a factor of

1.7–3.3 in Beijing and northern Taiwan. Changing the buddy

check threshold in our cloud filters from 15 to 10 would

significantly underestimate AOD especially in northern Tai-

wan where the MFB would increase from −1.2 to −15.0 %.

Decreasing the threshold of local variance check to 0.4 has

little influence (< 0.1 %) for rRMSE, MFB and MFE, but

would have larger influence on GOCI-derived PM2.5 as will

be shown later. Limiting the diurnal variation of GOCI AOD

to the 80th percentile of diurnal variations in observations

would introduce bias (rRMSE would increase by 4 % in Bei-

jing) to GOCI AOD. As will be shown here, GOCI-derived

PM2.5 offers an additional test of cloud screening filters. Fig-

ure 2 (bottom) shows the relationship between the ground

level PM2.5 and the columnar AOD as simulated by GEOS-
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Figure 1. The GOCI granules from 5 July 2013, 10:30 (top) and 11:30 (bottom) Korean Standard Time. From left to right on each panel are

the GOCI true color images, the operational AOD retrievals and the AOD retrievals after applying temporal and textual filters to reduce cloud

contamination. The boxes highlight examples of challenging cloud fields, and are enlarged within the lower right subplot of each panel.

Chem and from ground-based measurements. The measured

ratio in Beijing has pronounced seasonal variation with val-

ues high in winter and low in spring. The measured ratio in

northern Taiwan exhibits little seasonal variation. The annual

mean GEOS-Chem PM2.5 / AOD ratio well reproduces the

ground-based measurements despite the temporal inconsis-

tency of the two metrics for May–December. The simula-

tion captures the pronounced seasonal variation in Beijing

and the comparably aseasonal behavior in northern Taiwan.

The simulated seasonal variation of PM2.5 / AOD in Beijing

arises from the seasonal variation of mixed-layer depth (fac-

tor of 2 higher in summer than winter) combined with the

near-constant columnar AOD throughout the year as shown

in Fig. 2 (top).

Snider et al. (2015) interpreted coincident measurements

of AOD, PM2.5, and nephelometer measurements of aerosol

scattering and found that the temporal variation of the

PM2.5 / AOD ratio in Beijing was primarily driven by the

vertical profile in aerosol scattering. We examine the sea-

sonal variation in the simulated PM2.5 / AOD and similarly

find that the ratio of ground-level aerosol scatter to columnar

AOD contributes most (89 %) of the monthly variability in

the PM2.5 / AOD ratio in Beijing.

3.2 Evaluation of ground-level PM2.5 derived from

GOCI AOD

Figure 3 shows the seasonal and annual distribution of PM2.5

over East Asia at a spatial resolution of 6 km by 6 km for

2013. In both GOCI-derived and measured PM2.5, winter

concentrations in eastern China exceed 100 µg m−3 over vast

regions, with lower values in summer. Both GOCI-derived

and in situ measurements reveal that PM2.5 in northern China

is higher than in southern China, especially for the Beijing,

Hebei and Shandong provinces where the annual PM2.5 is

almost 100 µg m−3 or more. Prior work has attributed this re-

gional enhancement to high emission rates (Zhao et al., 2013;

Zhang et al., 2013) that in part arises from emissions when

producing goods for exports (Jiang et al., 2015).

Figure 4 compares annual and seasonal averages of daily

ground-measured PM2.5 from 494 sites with coincident daily

GOCI-derived PM2.5 from pixels that contain the ground-

based sites. A significant correlation (r2 = 0.66, N = 494)

with a slope near unity (1.01) is found in the annual scat-

ter plot. The slope remains near unity (0.95–1.01) in sea-

sonal scatter plots. The weaker correlation for all four

seasons implies random representativeness differences be-

tween point in situ measurements and area-averaged satel-

lite values when data density diminishes. Semivolatile losses

from some in situ instruments (TEOMs) might contribute

to scatter in winter when nitrate constitutes a larger frac-

tion of PM2.5. We focus on more meaningful aggregated

measurements. Using the same technique, we also esti-

mated PM2.5 from MODIS Collection 6 AOD for 2013,

and found GOCI-derived PM2.5 achieves greater consistency

than MODIS-derived PM2.5 when compared with ground-

based measurements (slope = 1.1, r2 = 0.61). GOCI-derived

PM2.5 also corrects the significant underestimation of PM2.5

from GEOS-Chem (slope = 0.68, r2 = 0.85) when compared

with ground measurements.

www.atmos-chem-phys.net/15/13133/2015/ Atmos. Chem. Phys., 15, 13133–13144, 2015
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Figure 2. Top: monthly time series of AOD from AERONET and

GOCI for January–December 2013. Numbers above the x axis de-

note the number of coincident hourly observations in each month.

Bottom: monthly averages of PM2.5 / AOD from ground measure-

ments and the GEOS-Chem simulation at AERONET sites. The

ground-based ratio is sampled from daily ground PM2.5 coincident

with AERONET AOD for January–December 2013. The GEOS-

Chem simulation is for May 2012–April 2013, noncoincident with

the ground-based ratio for May–December 2013. Numbers above

the x axis denote the number of daily ground-based observations

in each month. Error bars represent standard errors. Statistics are

root mean square error (RMSE), relative root mean square error

(rRMSE), mean fractional bias (MFB) and mean fractional error

(MFE).

Figure 5 shows monthly averages of GOCI-derived PM2.5

and in situ measurements at four regions outlined in Fig. 3.

Regions are selected based on the level of PM2.5 concentra-

tion and the population of residents. A high degree of con-

sistency is found in all regions. Both data sets show more

seasonal variation in northern regions like Beijing and Shan-

dong than southern regions like Shanghai and northern Tai-

wan. Both indicate that PM2.5 concentrations in northern re-

gions are generally higher than in southern regions. The ex-

clusion of our cloud screening filters from the GOCI AOD

would introduce significant bias in GOCI-derived PM2.5 ver-

sus ground-based measurements especially in summer, in-

creasing rRMSE by a factor of 1.7–5.3 in all four regions.

Changing the threshold of local variance check in our cloud

filters to 0.4 would introduce bias by restricting the varia-

tion of PM2.5 concentrations. For example, GOCI-derived

PM2.5 would be generally underestimated in Beijing areas

(rRMSE = 16.6 % and MFB = −6.8 %) and Shandong areas

(rRMSE = 16.6 % and MFB = −3.42 %).

Figure 3. Seasonal and annual distribution of PM2.5 concentrations

at 6 km by 6 km resolution over East Asia for 2013. The background

color indicates averages of GOCI-derived daily surface PM2.5 con-

centrations. Filled circles represent averages of daily ground-based

measurements of PM2.5. Gray denotes missing values. Boxes in the

annual map denote regions used for monthly comparisons in Fig. 5

from top to bottom: Beijing and surrounding areas, Shandong and

surrounding regions, Shanghai and surrounding areas and northern

Taiwan.

3.3 Seasonal variation of PM2.5

Figure 6 shows the monthly averages of coincident daily

GOCI-derived and in situ PM2.5 concentrations for the do-

main of eastern China. Both the GOCI-derived PM2.5 and

ground-based observations exhibit similar seasonal variation

with values high in winter and low in summer. Exclusion of

our temporal and spatial cloud-screening filters from GOCI-

derived PM2.5 would increase rRMSE by a factor of 3.4.

Figure 6 also shows the chemical composition of GOCI-

derived PM2.5, as calculated by applying the GEOS-Chem

simulated mass fraction of PM2.5 chemical components to

GOCI-derived PM2.5 mass concentration. Aerosol water is

attached to each component according to its hygroscopic-

ity. Secondary inorganic aerosols (SIA; SO2−
4 , NO−

3 , NH+
4 )

are the most abundant components throughout the year, ac-

counting for 65 % of PM2.5 concentrations, followed by OM

(18 %). The NO−
3 and OM concentrations increase by a fac-

tor of 2 in winter, together comprising most of PM2.5 (31 %

for NO−
3 and 26 % for OM). Summer is predominately con-

trolled by SIA (74 %). Dust plays an important role in spring

(15 %) and fall (15 %). Our seasonal variation of chemical
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Figure 4. Scatterplots of the annual mean (left) and seasonal mean (right) GOCI-derived PM2.5 for 2013 against PM2.5 from 494 ground

monitors over the GOCI domain in eastern China.

Figure 5. Monthly averages of daily PM2.5 from in situ measure-

ments and daily PM2.5 estimated from GOCI AOD for 2013. Re-

gions are defined in Fig. 3. Error bars represent standard errors.

Statistics are root mean square error (RMSE), relative root mean

square error (rRMSE), mean fractional bias (MFB) and mean frac-

tional error (MFE).

composition is generally consistent with ground-based mea-

surements in previous works across eastern China. A num-

ber of studies in Beijing, the Yangtze River delta and Pearl

River delta regions all reported that OM and SIA are the most

important components of PM2.5 through the year (He et al.,

2001; Ye et al., 2003; Tao et al., 2012; Zhang et al., 2013).

Zhang et al. (2008) showed consistent seasonal patterns in

OM at 18 stations in China, with a winter maximum, and a

summer minimum, similar to the seasonality of OM in this

Figure 6. Monthly variation of GOCI-derived PM2.5 and in situ

PM2.5 for 2013 over eastern China, with chemical composition for

GOCI-derived PM2.5. The in situ PM2.5 is determined from the av-

erages of all ground stations in eastern China for 2013 and GOCI-

derived PM2.5 is calculated from the average of all grid boxes that

contain PM2.5 ground monitors. The chemical composition is cal-

culated by applying the GEOS-Chem simulated mass fraction of

PM2.5 chemical components to GOCI-derived PM2.5 mass concen-

tration. Aerosol water is associated with each PM2.5 component ac-

cording to its hygroscopicity. Error bars represent standard errors.

work. Zhang et al. (2013) studied the chemical composition

of PM2.5 in Beijing and found the percentage of SIA in PM2.5

is largest in summer, consistent with our result.

The seasonal variation of PM2.5 in Fig. 6 is driven by

a combination of meteorological conditions, emissions, and

nitrate formation. All three processes have greater seasonal

www.atmos-chem-phys.net/15/13133/2015/ Atmos. Chem. Phys., 15, 13133–13144, 2015
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Table 1. Annual PM2.5 concentrations, area-weighted concentrations of chemical composition and affected population of PM2.5 in regions

outlined in Fig. 3 and in overall eastern China (excluding northern Taiwan) for 2013. Aerosol water is not associated with each PM2.5

component for consistency with measurement protocols. PM2.5 concentration is at 35 % relative humidity. IT1 refers to the WHO air quality

interim target-1 of 35 µg m−3.

Region Beijing Shandong Shanghai Eastern Northern

China Taiwan

Population-weighted GOCI-derived 90.8 89.1 56.9 53.8 18.9

PM2.5 (µg m−3)

Area-weighted GOCI-derived 86.5 89.1 51.0 44.3 23.6

PM2.5 (µg m−3)

SO2−
4

(µg m−3) 12.8 14.0 9.2 13.1 5.1

NO−
3

(µg m−3) 14.5 16.1 8.5 4.2 2.1

NH+
4

(µg m−3) 8.9 9.8 5.7 3.3 2.2

OC (µg m−3) 10.3 9.6 4.3 2.9 1.6

BC (µg m−3) 6.3 5.2 2.6 1.6 0.8

Dust (µg m−3) 9.1 8.3 4.9 4.4 2.9

Sea Salt (µg m−3) 0.2 0.4 0.9 1.9 2.2

OM (µg m−3) 17.1 15.7 7.4 5.4 3.0

Population (million people) exposed 37.8 88.8 98.3 432.8 1.5

to PM2.5 exceeding IT-1 level

variation in the north than south. The mixing height over

northeastern China has strong seasonal variation with sum-

mer having an average mixing height from GEOS-5 that is

1.9 times higher than in winter. The GEOS-Chem simula-

tion reveals that the increase of OM in winter is primar-

ily driven by biofuel emissions from burning wood, animal

waste and agricultural waste (Bond et al., 2004) for heating

in eastern China. The spatial distribution of biofuel emission

is primarily north of the Yangze River, especially from the

North China Plain. The significant contribution from biofuel

emissions to the OM concentration in our work is consis-

tent with Bond et al. (2004) who found residential biofuel

emissions were responsible for ∼ 70 % of OC emissions in

China. The increase of NO−
3 in winter in Fig. 6 is consistent

with prior attribution of the increase of NO−
3 in winter to the

favorable formation of NH4NO3 at low temperatures (Wang

et al., 2013). Figure S1 in the Supplement shows the spatial

distribution of PM2.5 chemical components.

Table 1 shows the annual chemical composition of GOCI-

derived PM2.5 in regions outlined in Fig. 3 and in overall

eastern China. SIA and OM are the most abundant species.

Among the SIA components, SO2−
4 and NO−

3 concentra-

tions are similar in the Beijing, Shandong and Shanghai re-

gions, whereas in eastern China and northern Taiwan SO2−
4

is the dominant component. OM concentrations in the Bei-

jing and Shandong regions are considerably higher than in

the other regions, similar to or even exceeding the concen-

trations of SO2−
4 and NO−

3 . Our estimation of PM2.5 com-

position is generally consistent with in situ measurements in

prior studies. In Beijing, the concentrations of SIA in this

work are similar to Zhang et al. (2013) who measured con-

centrations for 2009–2010 of 13.6 ± 12.4 µg m−3 for SO2−
4 ,

11.3 ± 10.8 µg m−3 for NO−
3 and 6.9 ± 7.1 µg m−3 for NH+

4 .

Our SIA concentrations in Beijing are also comparable with

Yang et al. (2011) who measured concentrations for 2005–

2006 of 15.8 ± 10.3 µg m−3 for SO2−
4 , 10.1 ± 6.09 µg m−3

for NO−
3 and 7.3 ± 4.2 µg m−3 for NH+

4 . The OC concen-

tration in Beijing in this work is smaller than Zhang et

al. (2013) of 16.9 ± 10.0 µg m−3 and Yang et al. (2011) of

24.5 ± 12.0 µg m−3. In Shandong and surrounding regions,

our concentrations are smaller than in Cheng et al. (2011)

by a factor of about 2, perhaps related to unresolved sources.

Our results in Shanghai cluster are comparable with Yang

et al. (2011) for 1999–2000, except the OC concentration

(4.3 µg m−3) in this work is considerably lower than that

of 16.8 µg m−3 in Yang et al. (2011). In northern Taiwan,

our NO−
3 is similar to Fang et al. (2002) for 2001–2003,

yet our estimations of SO2−
4 and NH+

4 are higher than Fang

et al. (2002) by a factor of two, which could be driven by

changes in emissions over the last decade. In summary, the

chemical composition broadly represents in situ measure-

ments with some location-dependent discrepancies.

3.4 Population exposure to ambient PM2.5 in eastern

China

We estimate the population exposure to ambient PM2.5 in

eastern China for 2013 at a spatial resolution of 6 km by 6 km

using our GOCI-derived PM2.5 and the Gridded Population

of the World (GPW; Tobler et al., 1997) data for 2010 from

the Socioeconomic Data and Applications Center (GPW ver-

sion 3; http://sedac.ciesin.columbia.edu/). Table 1 also pro-

vides the population-weighted GOCI-derived PM2.5 for re-
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gions outlined in Fig. 3 and for overall eastern China. The

population-weighted PM2.5 exceeds the area-weighted for all

regions except northern Taiwan and Shandong and surround-

ing regions. The overall population-weighted PM2.5 concen-

tration for eastern China for 2013 is 53.8 µg m−3. The level

of PM2.5 for Beijing and Shandong regions in this study is

similar to Ma et al. (2014) who suggested that the PM2.5

concentration over the North China Plain for 2013 is 85–

95 µg m−3. The PM2.5 concentration in eastern China in this

study is also comparable with previous works. Van Donke-

laar et al. (2015) estimated that the PM2.5 concentration over

eastern Asia for 2001–2010 is 50.3 ± 24.3 µg m−3. Geng et

al. (2015) estimated that the PM2.5 concentration in China

for 2006–2012 is 71 µg m−3, higher than our work. Accord-

ing to the World Health Organization (WHO) Air Quality

Interim Target-1, an annual mean PM2.5 concentration of

35 µg m−3 or higher is associated with about 15 % increased

risk of premature mortality. As shown in Table 1, population-

weighted PM2.5 for eastern China considerably exceeds the

Interim Target-1 level of PM2.5 concentration, especially in

Beijing and Shandong regions where the PM2.5 concentra-

tion is almost triple the Interim Target-1 level. These elevated

concentrations threaten the health of 433 million inhabitants

(Table 1) in eastern China who live in regions that exceed

this target.

4 Conclusions

We estimated the ground-level concentration of PM2.5 in

eastern China for 2013 using AOD retrieved from the GOCI

satellite instrument, coupled with the relationship of AOD

to PM2.5 simulated by a global chemical transport model

(GEOS-Chem). GOCI-derived PM2.5 was compared with in

situ measurements throughout eastern China.

We applied a set of filters to GOCI AOD to remove cloud

contamination. The filtered GOCI AOD showed significant

agreement with AERONET AOD at Beijing and northern

Taiwan (MFB of 6.7 to −1.2 %). We also evaluated the sim-

ulated relationship of PM2.5 and AOD from GEOS-Chem by

using an empirical relationship calculated from nearly col-

located ground-based PM2.5 monitors and AERONET AOD

stations. A high degree of consistency was observed be-

tween the GEOS-Chem simulation and ground-based mea-

surements with MFB of −0.52 to 8.0 %.

The GOCI-derived PM2.5 were highly consistent with in

situ measurements, capturing the similar seasonal and spa-

tial distribution throughout eastern China. The highest PM2.5

concentrations were found in winter over northern regions.

The annual averages of GOCI-derived PM2.5 were strongly

correlated (r2 = 0.66) with surface measurements with a

slope near unity (1.01). Monthly comparison of GOCI-

derived PM2.5 with ground-based measurements across the

entire region of eastern China was also in good agreement

with rRMSE = 18.9 %. The exclusion of our cloud-screening

filters in GOCI retrievals would introduce significant bias in

GOCI-derived PM2.5, especially in summer and would in-

crease the rRMSE by a factor of 1.7–5.3.

The chemical composition of GOCI-derived PM2.5 re-

vealed that secondary inorganic aerosols (SIA; SO2−
4 , NO−

3 ,

NH+
4 ) and organic matter (OM) dominated throughout the

year. NO−
3 had a winter maximum due to aerosol thermody-

namics. OM increased by a factor of 2 in winter, which was

primarily driven by biofuel emission for heating in northern

China. Dust played an important role in spring and fall.

The population-weighted GOCI-derived PM2.5 for 2013 at

6 km by 6 km resolution in eastern China was 53.8 µg m−3,

suggesting ∼ 400 million people in China live in regions with

PM2.5 concentrations exceeding the suggested 35 µg m−3

by the World Health Organization (WHO) Air Quality In-

terim Target-1, of which ∼ 130 million people in Beijing and

Shandong regions are seriously threatened by even higher

PM2.5 concentrations. Population-weighted PM2.5 of pix-

els containing ground-based monitors is much higher at

82.4 µg m−3, suggesting the value of the newly established

PM2.5 network to monitor these seriously polluted regions.

The satellite measurements of AOD from the GOCI instru-

ment coupled with the relationship between AOD and PM2.5

simulated by a chemical transport model have the potential to

provide a unique synopsis of ground-level PM2.5 concentra-

tions at fine spatial resolution in the most polluted and pop-

ulated part of China. Further development of this capability

will depend on both the quality of GOCI aerosol products and

the aerosol simulation. Assimilating satellite observations of

trace gases from the forthcoming GEMS (Geostationary En-

vironment Spectrometer) geostationary platform would pro-

vide additional constraints on PM2.5 composition.

The Supplement related to this article is available online

at doi:10.5194/acp-15-13133-2015-supplement.
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