Estimating Groundwater Recharge

Understanding groundwater recharge is essential for the successful management of water resources and modeling fluid and contaminant transport within the subsurface. This book provides a critical evaluation of the theory and assumptions that underlie methods for estimating rates of groundwater recharge. Detailed explanations of the methods are provided – allowing readers to apply many of the techniques themselves without needing to consult additional references. Numerous practical examples highlight the benefits and limitations of each method and provide guidance on the selection and application of methods under both ideal and less-than-ideal conditions. More than 800 references allow advanced practitioners to pursue additional information on any method.

For the first time, theoretical and practical considerations for selecting and applying methods for estimating groundwater recharge are covered in a single volume with uniform presentation. Hydrogeologists, water-resource specialists, civil and agricultural engineers, earth and environmental scientists, and agronomists will benefit from this informative and practical book, which is also a useful adjunct text for advanced courses in groundwater or hydrogeology.

For more than 30 years, Rick Healy has been conducting research for the US Geological Survey on groundwater recharge, water budgets of natural and human-impacted hydrologic systems, and fluid and contaminant transport through soils. He has taught numerous short courses on unsaturated zone flow and transport, and groundwater flow modeling. He first presented a short course on methods for estimating recharge in 1994, and over the intervening 15 years the course has been presented to several hundred professionals and students. The material in that course has been expanded and refined over the years and forms the basis of Estimating Groundwater Recharge. Rick has authored more than 60 scientific publications and developed the VS2DI suite of models for simulating water, solute, and heat transport through variably saturated porous media. He is a member of the Soil Science Society of America, the American Geophysical Union, and the Geological Society of America.
Estimating Groundwater Recharge

Richard W. Healy
US Geological Survey
Lakewood, Colorado

With contributions by
Bridget R. Scanlon
Bureau of Economic Geology
Jackson School of Geosciences
University of Texas, Austin
Contents

Preface page ix
Acknowledgments x

1 Groundwater recharge 1
 1.1 Introduction 1
 1.2 Terminology 3
 1.3 Overview of the text 4
 1.4 Developing a conceptual model of recharge processes 5
 1.4.1 Spatial and temporal variability in recharge 6
 1.4.2 Climate 7
 1.4.3 Soils and geology 8
 1.4.4 Surface topography 9
 1.4.5 Hydrology 9
 1.4.6 Vegetation and land use 9
 1.4.7 Integration of multiple factors 11
 1.4.8 Use of existing data 11
 1.4.9 Intersite comparison 11
 1.5 Challenges in estimating recharge 12
 1.5.1 Uncertainty in recharge estimates 12
 1.5.2 Spatial and temporal scales of recharge estimates 12
 1.6 Discussion 13

2 Water-budget methods 15
 2.1 Introduction 15
 2.2 Water budgets 16
 2.2.1 Uncertainty in water budgets 19
 2.3 Local-scale application 21
 2.3.1 Precipitation 21
 2.3.2 Evapotranspiration 23
 2.3.3 Change in storage 24
 2.3.4 Surface flow 27
 2.3.5 Subsurface flow 28
 2.4 Mesoscale application 31
 2.4.1 Precipitation 32
 2.4.2 Evapotranspiration 32
 2.4.3 Change in storage 34
 2.4.4 Surface flow 34
 2.4.5 Subsurface flow 35
 2.5 Macroscale application 38
 2.5.1 Precipitation 40
 2.5.2 Evapotranspiration 40
 2.5.3 Change in storage 41
CONTENTS

2.5.4 Indirect use of remotely sensed data .. 41
2.6 Discussion ... 42

3 | Modeling methods .. 43
3.1 Introduction ... 43
 3.1.1 Data sources .. 44
3.2 Model calibration and inverse modeling ... 45
3.3 Unsaturated zone water-budget models .. 47
 3.3.1 Soil water-budget models ... 47
 3.3.2 Models based on the Richards equation 50
3.4 Watershed models ... 52
 3.4.1 Precipitation runoff modeling system (PRMS) 54
3.5 Groundwater-flow models ... 57
3.6 Combined watershed/groundwater-flow models 63
3.7 Upscaling of recharge estimates ... 66
 3.7.1 Simple empirical models ... 66
 3.7.2 Regression techniques ... 67
 3.7.3 Geostatistical techniques ... 69
 3.7.4 Geographical information systems .. 69
3.8 Aquifer vulnerability analysis ... 70
3.9 Discussion .. 72

4 | Methods based on surface-water data ... 74
4.1 Introduction ... 74
 4.1.1 Groundwater/surface-water exchange 74
 4.1.2 Base flow .. 76
4.2 Stream water-budget methods .. 77
4.3 Streambed seepage determination .. 79
 4.3.1 Seepage meters .. 79
 4.3.2 Darcy method .. 82
 4.3.3 Analytical step-response function .. 82
4.4 Streamflow duration curves ... 82
4.5 Physical streamflow hydrograph analysis ... 85
 4.5.1 Empirical hydrograph separation methods 85
 4.5.2 Recession-curve displacement analysis 87
4.6 Chemical and isotopic streamflow hydrograph analysis 91
 4.6.1 End-member mixing analysis ... 91
 4.6.2 Tracer-injection method .. 93
4.7 Discussion ... 94

5 | Physical methods: unsaturated zone ... 97
5.1 Introduction ... 97
5.2 Measurement of unsaturated-zone physical properties 97
 5.2.1 Soil-water content .. 97
 5.2.2 Pressure head ... 99
 5.2.3 Water-retention and hydraulic conductivity curves 100
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3 Zero-fl ux plane method</td>
<td>102</td>
</tr>
<tr>
<td>5.4 Darcy methods</td>
<td>107</td>
</tr>
<tr>
<td>5.5 Lysimetry</td>
<td>110</td>
</tr>
<tr>
<td>5.6 Discussion</td>
<td>116</td>
</tr>
<tr>
<td>6 Physical methods: saturated zone</td>
<td>117</td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td>117</td>
</tr>
<tr>
<td>6.2 Water-table fluctuation method</td>
<td>118</td>
</tr>
<tr>
<td>6.3 Methods based on the Darcy equation</td>
<td>132</td>
</tr>
<tr>
<td>7 Chemical tracer methods (by Bridget R. Scanlon)</td>
<td>136</td>
</tr>
<tr>
<td>7.2 Tracers in the unsaturated zone</td>
<td>138</td>
</tr>
<tr>
<td>7.3 Groundwater tracers</td>
<td>152</td>
</tr>
<tr>
<td>8 Heat tracer methods</td>
<td>166</td>
</tr>
<tr>
<td>8.2 Subsurface heat flow</td>
<td>166</td>
</tr>
<tr>
<td>8.3 Diffuse recharge</td>
<td>169</td>
</tr>
<tr>
<td>8.4 Focused recharge</td>
<td>173</td>
</tr>
<tr>
<td>8.5 Discussion</td>
<td>178</td>
</tr>
</tbody>
</table>
CONTENTS

9 Linking estimation methods to conceptual models of groundwater recharge 180

9.1 Introduction 180

9.2 Considerations in selecting methods for estimating recharge 180

9.3 Comparison of methods 182

9.4 Recharge characteristics of groundwater regions of the United States 189

9.4.1 Western Mountain Ranges 191

9.4.2 Alluvial Basins 192

9.4.3 Columbia Lava Plateau 194

9.4.4 Colorado Plateau 195

9.4.5 High Plains 195

9.4.6 Unglaciated Central Region 197

9.4.7 Glaciated Central Region 199

9.4.8 Unglaciated Appalachians Region 200

9.4.9 Glaciated Appalachians Region 200

9.4.10 Atlantic and Gulf Coastal Plain 201

9.4.11 Recharge in urban settings 202

9.5 Final thoughts 203

References 205

Index 238
Preface

Groundwater is an integral part of natural hydrologic systems. Humans have used groundwater for thousands of years. Its use has increased greatly over time, but only in the last few decades has our appreciation of the limitations of its supply and its vulnerability to contamination grown to the point where steps are being taken to protect this valuable resource. One of the most important components in any assessment of groundwater supply or aquifer vulnerability is the rate at which water in the system is replenished – the rate of recharge.

A number of textbooks are devoted to hydrogeology, groundwater flow, and contaminant transport (e.g. Freeze and Cherry, 1979; Domenico and Schwartz, 1998; Todd and Mays, 2005). The importance of recharge is cited in all of these textbooks, but only limited information is provided on the description and analysis of techniques for estimating recharge. Similarly, undergraduate and graduate courses on hydrogeology, groundwater flow, and contaminant transport are offered at many universities, but we know of no university level courses specifically devoted to groundwater recharge. This book attempts to fill these gaps by providing a systematic and comprehensive analysis of methods for estimating recharge.

The book is aimed at practicing hydrogeologists who are actively involved in groundwater studies. The material contained in the text should also be useful to water-resource specialists, civil and agricultural engineers, geologists, geochemists, environmental scientists, soil physicists, agriculturalists, irrigators, and scientists from other fields that have an elemental understanding of hydrologic processes. The book can be used as an adjunct text or reference in an advanced undergraduate or graduate groundwater or hydrogeology course; it can also serve as a primary text in courses on groundwater recharge. Theoretical as well as practical considerations for selecting and applying techniques are discussed. Theoretical analysis of the methods allows the evaluation of assumptions inherent in each method. Practical examples of applications provide guidance for readers in applying methods in their own studies.

Over the years, hydrology has become a diverse field with the development of many new topic areas. Few hydrologists can claim expertise in all areas of hydrology; specialization in groundwater, surface water, unsaturated-zone flow and transport, geochemistry, or other subfields has become more the norm. We anticipate that most readers will have a background in groundwater hydrology. However, application of many of the methods described herein (e.g. streamflow hydrograph separation, the zero-flux plane method, and watershed modeling) requires knowledge of areas outside of groundwater hydrology. A challenge in writing this text was to bring together a number of methods that are drawn from fields outside of groundwater hydrology, fields such as surface-water hydrology, flow and transport through the unsaturated zone, geophysics, remote sensing, and water chemistry. Unsaturated-zone processes, in particular, are described in some detail. Many methods for estimating recharge require assumptions about the mechanisms by which water moves through the unsaturated zone; insight into unsaturated-zone processes provides a basis for evaluating the validity of those assumptions.
Acknowledgments

This text was largely derived from lecture notes for short courses on groundwater recharge that the authors have presented over the last 15 years. Many thanks are due to the following individuals who reviewed one or more parts of the book; unless otherwise noted, these individuals are with the US Geological Survey: Kyle Blasch, Jim Bartolino, J. K. Böhlke, Alissa Coes, John Czarnecki, Geoff Delin, Keith Halford, Randy Hanson, Bill Herkelrath, Randy Hunt, Eve Kuniansky, Steve Loheide (University of Wisconsin), Andy Manning, Dennis Risser, Don Rosenberry, Marios Sophocleous (Kansas Geological Survey), Dave Stannard, Katie Walton-Day, and Tom Winter. Special thanks are owed to Stan Leake and Ed Weeks who were kind enough to provide reviews of the entire text. Finally, we would like to express our gratitude to the US Geological Survey and the Bureau of Economic Geology, University of Texas, Austin, for allowing us to invest time in this endeavor.