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SUMMARY
Estimating haplotype frequencies becomes increasingly important in the mapping of complex disease

genes, as millions of single nucleotide polymorphisms (SNPs) are being identified and genotyped. When
genotypes at multiple SNP loci are gathered from unrelated individuals, haplotype frequencies can be
accurately estimated using expectation-maximization (EM) algorithms (Excoffier and Slatkin, 1995;
Hawley and Kidd, 1995; Longet al., 1995), with standard errors estimated using bootstraps. However,
because the number of possible haplotypes increases exponentially with the number of SNPs, handling
data with a large number of SNPs poses a computational challenge for the EM methods and for other
haplotype inference methods. To solve this problem, Niu and colleagues, in their Bayesian haplotype
inference paper (Niuet al., 2002), introduced a computational algorithm called progressive ligation (PL).
But their Bayesian method has a limitation on the number of subjects (no more than 100 subjects in the
current implementation of the method). In this paper, we propose a new method in which we use the same
likelihood formulation as in Excoffier and Slatkin’s EM algorithm and apply the estimating equation
idea and the PL computational algorithm with some modifications. Our proposed method can handle
data sets with large number of SNPs as well as large numbers of subjects. Simultaneously, our method
estimates standard errors efficiently, using the sandwich-estimate from the estimating equation, rather
than the bootstrap method. Additionally, our method admits missing data and produces valid estimates
of parameters and their standard errors under the assumption that the missing genotypes aremissing at
random in the sense defined by Rubin (1976).

Keywords: Estimating equation; Haplotype; Hardy–Weinberg equilibrium; Single nucleotide polymorphism (SNP).

1. INTRODUCTION

Genetic variation in human individuals can mostly be attributed to alterations in genomic DNA
sequences (Wanget al., 1998; Cargillet al., 1999; Halushkaet al., 1999). Alterations that involve a single
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base pair and are observed in at least 5% of the population are called single nucleotide polymorphisms
(SNPs). It is expected that the human genome contains millions of SNPs (Kruglyak and Nickerson,
2001). The challenge for statisticians is how to use the high-dimension SNP data efficiently to study
human evolutionary history and human complex diseases such as diabetes, hypertension and cancer.
Recent empirical evidence shows that these SNPs are divided into several blocks, with each block highly
structured into a small number of haplotypes (Reichet al., 2001; Dalyet al., 2001; Goldstein, 2001; Patil
et al., 2001). (A haplotype is defined as a sequence of alleles from the same chromosome. Each individual
has two haplotypes because each individual has two copies of each chromosome inherited from his/her
parents.) Constructing haplotypes from genotypes at multiple loci thus serves as a natural data reduction
tool.

However, directly constructing haplotypes can be very difficult. Several experimental approaches,
such as dissecting a single chromosome or inserting an entire chromosome into a yeast artificial
chromosome (Greenet al., 1998) or using rodent–human hybrid techniques to physically separate two
chromosomes (Patilet al., 2001), have attempted to read alleles from each separated chromosome, but
the techniques remain extremely expensive for wide scale use. SNP data are typically obtained in the
form of genotypes at separate loci, without knowing the parental origins of alleles (see an example
in Table 1). In order to gain some information about the parental origins of alleles in the genotypes,
one method is to obtain the parental genotypes as well (Wijsman, 1987). However, collecting parental
biological samples for genotyping not only increases the cost but may sometimes be impossible. As
an alternative, statistical methods have been used to make inferences of individuals’ haplotypes from
their genotypes without requiring information about parental genotypes. Popular methods include the
maximum likelihood approach using expectation-maximization (EM) algorithms (Excoffier and Slatkin,
1995; Hawley and Kidd, 1995; Longet al., 1995). Correct inference for individuals’ haplotypes relies
entirely on a correct estimation of haplotype frequencies in the population. Only accurate estimation of
the haplotype frequencies assures an accurate inference for individuals’ haplotypes from their genotypes.
Thus, the haplotype inference methods are evaluated by the error measure on the estimates of haplotype
frequencies. Fallin and Schork (2000) have shown that the EM algorithm (Excoffier and Slatkin, 1995)
produces accurate estimates of haplotype frequencies for a wide range of parameter settings. More
recently, two new methods using a Bayesian approach (Stephenset al., 2001; Niu et al., 2002) were
proposed based on the likelihood formulation used in Excoffier and Slatkin (1995). Stephenset al.
(2001) further assumed that the distribution of haplotypes satisfies coalescence theory. Simulation studies
(Stephenset al., 2001; Niuet al., 2002) showed that the performances of the EM algorithm and Niuet
al.’s Bayesian method on the prediction of individuals’ haplotypes are similar to each other and are both
generally better than the performance of Stephenset al.’s Bayesian method except when the data satisfy
the additional assumptions required by the Bayesian method.

Handling data with a large number of SNPs poses a computational challenge for any haplotype
inference method, because the number of possible haplotypes increases exponentially in the number of
SNPs. The computational algorithm (progressive ligation (PL)) introduced in Niuet al. (2002) helps to
solve part of the problem. But handling data with a large number of subjects appears to be an additional
challenge for the Bayesian method. To overcome these challenges, we propose a new approach based on
the same likelihood formulation used in Excoffier and Slatkin (1995) but adopting the estimating equation
idea along with a modified PL computational algorithm. We consider our approach an improvement on
the EM algorithm in three aspects: (1) our method is able to handle much larger data sets, both in terms
of the number of SNPs and the number of subjects; (2) our algorithm is computationally efficient since
we calculate the standard errors analytically without requiring a computationally intensive method such
as bootstrap and (3) we are able to incorporate missing genotypes. The paper is organized as follows.
In Section 2, we introduce the methodology. In Section 3, we describe simulation studies conducted to
assess the statistical properties of the estimates and the computational efficiency of the proposed method.
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Estimating of haplotype frequencies and standard errors 515

Table 1. Part of genotype data for 44 unrelated individuals with
18 SNPs within gene ARHGDIB on chromosome 12 (Reich et al.,
2001). Genotype 0: homozygous reference genotype; 1: heterozygous
genotype; 2: homozygous variant genotype; 3: missing data. The first

allele is used as reference in this example

SNP’s ID Alleles Individual’s genotypes
G4923a44 T/C 00111112022121011100101101210010000001210012
G4923a46 C/T 00111112022121011100101101210010000001210012
G4923a35 C/T 00110012022121011100101101210011000001210012
G4923a37 A/G 10110121000100101002000010121103200001211110
G4923a38 A/G 10000000022001001013102301131020000001000000

In Section 4, we illustrate our proposed method using the data shown in Table 1 and compare our estimates
with estimates using Arlequin (a software implementing the Excoffier and Slatkin’s EM algorithm), and
compare the computational efficiency of our method with other haplotype inference methods.

2. METHODS

Suppose we have a sample ofn unrelated individuals from a population. From each individual,
we observeq SNP-genotypes on a specific region in the genome, e.g. on a candidate gene. Let
g
˜ i = (gi1, gi2, . . . , giq) denote theq SNP-genotypes for thei th individual wheregi j = 0, 1, 2 denotes
homozygous reference, heterozygous and homozygous variant genotype, respectively. Whengi j is
homozygous (0 or 2), the phase of genotypegi j is unambiguous; whengi j is heterozygous (1), the phase
of genotypegi j becomes ambiguous with two possible resolutions. Letpi j denote the phase ofgi j and
p
˜ i = (pi1, pi2, . . . , piq) denote the phase ofg

˜ i . Because we do not try to identify the parental origin
of each haplotype,p

˜ i of g
˜ i with m heterozygous genotypes have 2m−1 possible resolutions that give

rise to 2m−1 possible pairs of haplotypes. Given each resolution ofp
˜ i , then g

˜ i is formed by a pair of
haplotypes denoted byH

˜
1
i andH

˜
2
i . For example, in the genotype data given in Table 1, the first individual

has genotypeg
˜ 1 = (00011) with two heterozygous loci, therefore there are two possible resolutions for

phasep
˜ 1. HaplotypesH1

1 = (00000) andH2
1 = (00011), where allele 0 represents a reference allele and

1 represents a variant allele, result from one of resolutions ofp
˜ 1.

For q SNP loci there areT = 2q possible haplotypes. Letθ
˜

= (θ1, . . . , θT ) denote the unknown
haplotype frequencies with

∑T
i=1 θi = 1. The distribution of haplotypes is assumed to be multinomial

with parameterθ
˜
. Under the assumption of the Hardy–Weinberg Equilibrium (HWE), the conditional

distribution ofg
˜ i given p

˜ i is a product of the frequencies of two associated haplotypes and the likelihood

function ofθ
˜

can be expressed as

L(θ
˜
) =

n∏

i=1

f ( g
˜ i ; θ

˜
) =

n∏

i=1

∑

p
˜ i

f ( g
˜ i | p

˜ i ; θ
˜
) f (p

˜ i ) =
n∏

i=1

2−ci
∑

p
˜ i :g˜ i | p

˜ i =(H
˜

1
i ,H

˜
2
i )

θH
˜

1
i
θH

˜
2
i
, (2.1)

where f (p
˜ i ) = 2−ci andci is the number of heterozygous loci minus one. After algebraic manipulations,
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the estimating equations derived from the likelihood function are expressed as

U
˜
(θ
˜
) =

n∑

i=1

Ui (θ˜
) =

n∑

i=1

E p
˜ i (F

˜ i | g
˜ i ; θ

˜
) =

n∑

i=1

∑

p
˜ i

F
˜ i f (p

˜ i | g
˜ i ; θ

˜
) = 0

˜
, (2.2)

where F
˜ i = (Fi1, Fi2, . . . , FiT )′ in which Fi j = I (H

˜
1
i = h

˜ j ) + I (H
˜

2
i = h

˜ j ) − 2θ j is the difference
between the observed and the expected frequencies of thej th haplotypes from thei th individual, I (·)
is an indicator function and

f (p
˜ i | g

˜ i ; θ
˜
) =

f (g
˜ i | p

˜ i ; θ
˜
) f (p

˜ i )

∑

p
˜ i

f (g
˜ i | p

˜ i ; θ
˜
) f (p

˜ i )
=

θH
˜

1
i
θH

˜
2
i

∑

p
˜ i :g˜ i | p

˜ i =(H
˜

1
i ,H

˜
2
i )

θH
˜

1
i
θH

˜
2
i

(2.3)

is the posterior distribution of the phasep
˜ i given genotypeg

˜ i (details of the derivations of the likelihood
and the estimating equations are given in the technical report in our websitehttp://qge.fhcrc.org/
hplus/).

Despite advances in genotyping technologies, a small fraction of genotypes (usually less than 1%)
cannot be determined due to technical reasons, and are treated as missing values. There are three
possibilities for missing genotypes: missing both alleles (gi j = 3) and missing one allele while the other
observed allele is the reference allele (gi j = 4) or the variant allele (gi j = 5). Let g

˜ i = (g
˜

O
i , g

˜
M
i ) where

superscriptsO and M represent observed and missing genotypes, respectively, for thei th individual.
Then, the estimating equations (2.2) can be modified as follows:

U
˜
(θ
˜
) =

n∑

i=1

∑

g
˜
M
i

∑

p
˜ i | g

˜ i

F
˜ i f (p

˜ i | g
˜ i ; θ

˜
) f (g

˜
M
i | g

˜
O
i ; θ

˜
) = 0

˜
(2.4)

where the conditional distribution of missing genotypes given observed genotypes,f (g
˜

M
i | g

˜
O
i ; θ

˜
), is

specified based on the missing mechanism. Without prior knowledge of the missing mechanism, we
assume that the missing genotypes aremissing at random (MAR) in the sense defined by Rubin (1976) and
that the distribution of the missing genotypes depends upon the observed genotypes and the distribution
of haplotypes, i.e.

f (g
˜

M
i | g

˜
O
i ; θ

˜
) =

∑

p
˜ i | g

˜ i

f (p
˜ i | g

˜ i = (g
˜

O
i , g

˜
M
i ); θ

˜
)

∑

g
˜
M
i

∑

p
˜ i | g

˜ i

f (p
˜ i | g

˜ i = (g
˜

O
i , g

˜
M
i ); θ

˜
)
.

We can find the estimate ofθ
˜

by iteratively evaluatingθ
˜

using (2.2) if there are no missing genotypes in
the data or from (2.4) if there are some missing genotypes, wheref (p

˜ i | gi ; θ
˜
) is evaluated using (2.3)

for the solution ofθ
˜

in the previous iteration, until convergence is reached. In the first iteration, we set
f (p

˜ i | g
˜ i ; θ

˜
) = f (p

˜ i ) = 2−ci assuming that all phases have an equal probability.

Consequently, any haplotypes not observed in the first iteration must have the final estimates of their
frequencies equal to zero. This estimation strategy usually works for data sets with a small number of
SNPs because the number of possible resolutions of phase increases exponentially with the number
of heterozygous loci. For a large data set, we use an algorithm modified from the progressive ligation
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computational algorithm (Niuet al., 2002). Briefly, the entire set of SNPs is divided into several small
blocks withK SNPs (e.g.K = 10). The estimation is first performed separately for the first two blocks
and then performed for the joined block. This estimation process is repeated for the joined block and
the next single block until the last block has been joined. The estimation for each single block is done
exactly as described above. The estimation for each joined block is done similarly except that estimation
results from the previous steps are used as initial values. After each of estimation, haplotypes with
estimated frequencies aboveδ are retained in the following estimation process.δ is chosen to be small
enough to ensure that no final haplotypes with nonzero frequencies will be discarded in an intermediate
step (e.g.δ = 10−5). This is different from Niuet al. (2002) whereB most probable haplotypes are
retained.

The estimates of haplotype frequencies in the final step correspond to the estimates for the entire data.
Suppose that there arem haplotypes whose estimated frequencies are nonzero in the final estimation step.
The covariance of the firstm − 1 nonzero elements in̂θ

˜
is estimated by

�(θ̂
˜
) = (∂U (θ̂

˜
)/∂θ̂

˜
)−1var[U (θ̂

˜
)](∂U (θ̂

˜
)/∂θ̂

˜
)−1 (2.5)

with
∂U (θ̂

˜
)

∂θ̂
˜

= − ∑
i [2I − var(F

˜ i | g
˜ i ; θ̂

˜
)V −1], where V is the covariance matrix of a multinomial

distribution with diagonal elements equal toθ̂i (1 − θ̂i ) and off-diagonal elements equal to−θ̂i θ̂ j , and
var[U (θ̂

˜
)] = ∑

i E p
˜ i (F

˜ i | g
˜ i ; θ̂

˜
)E p

˜ i (F
˜

′
i | g

˜ i ; θ̂
˜
). The standard error of̂θ

˜
is estimated by the square root of

diagonals of�(θ̂
˜
). The standard error of̂θm , the estimated frequency of the least frequency haplotype, is

estimated based the condition
∑m

i=1 θ̂i = 1 and�(θ̂
˜
). However, if θ̂

˜
includes some rare haplotypes, the

calculation of covariance in (2.5) may not be stable. One solution is to collapse all rare haplotypes into
one composite haplotype and to estimate the standard error of the estimated frequency of the composite
haplotype. A haplotype is considered to be rare here if its estimated haplotype frequency satisfies the
conditions 2nθ̂ j < 5 andθ̂ j < 0.01.

According to estimating equation theory Zeger and Liang (1986); Zhaoet al. (1998), the asymptotic
distribution of θ̂

˜
is normal with meanθ

˜
and covariance�(θ

˜
) provided that the conditional probability

f (p
˜ i | g

˜
; θ

˜
) is correctly specified. Thus, the confidence interval of estimate ofθ̂ j is estimated by(θ̂ j −

Z(1−α)σ̂θ̂ j
, θ̂ j + Z(1−α)σ̂θ̂ j

).

3. SIMULATION STUDY

It has been shown that under the assumption of HWE, the estimates of haplotype frequencies and
their SE derived from estimating equations (2.2) and (2.5), theoretically approach to their ‘true’ values
as the sample size goes to infinity (Liang and Zeger, 1986). For finite sample sizes, using simulations,
we assess these statistical properties of the estimates both under the model assumption and when the
model assumption is violated. We also assess the scalability of our proposed method to large numbers
of SNPs. Each simulation is done in three steps: (1) generating a distribution of population haplotypes
using a coalescence-based program (Hudson, 2002) to simulate the population evolutionary process;
(2) generating each individual’s genotype by sampling a pair of haplotypes from the distribution of
population haplotypes and (3) estimating haplotype frequencies and standard errors (SE). For each
generated distribution in the first step, we repeat steps 2 and 3 for 500 times. We then repeat the entire
process 20 times.
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To assess the accuracy of the estimated haplotype frequencies, we compare them to the actual
haplotype frequencies, either in the population or in the observed sample. We use two similarity indices,
IG = 1 − 0.5

∑
j |θ̂ j − θ j | and IS = 1 − 0.5

∑
j |θ̂ j − θ̃ j |, whereθ j , θ̂ j , and θ̃ j denote the actual

and estimated haplotype frequencies in the population and actual haplotype frequencies in the observed
sample, respectively, and

∑
j is the summation over all haplotypes. The similarity indexIG (or IS) varies

between zero and one. The two indices assess different aspects of the estimation. The indexIG assesses
the overall validity of the final estimates of haplotype frequencies with respect to the true population
values. The indexIS assesses the accuracy of the estimation method. To assess the accuracy of the
estimated standard errorsθ̂

˜
denoted by the vector̂σ

˜
, over all common haplotypes, we compare them to the

sample standard deviations of the estimates, denoted by the vectorσ̃
˜
, using the average mean square error,

avg(MSE) = 1
c

∑c
j=1 (σ̂ j − σ̃ j )

2, over all haplotypes with 2nθ̂ j � 5 or θ̂ j � 0.01 and the composite
haplotype of the remaining (rare) haplotypes.

In the first set of simulations, we assess the accuracy of the estimates of haplotype frequencies
and standard errors under the assumption of HWE and when HWE is violated, called Hardy–Weinberg
disequilibrium (HWD). Under HWE, individuals’ genotypes are generated by randomly sampling a pair
of haplotypes from the population. Under HWD, two scenarios are considered: (1) one locus carries a
lethal mutant allele such that individuals with a heterozygous genotype (0/1) at that locus have a 50%
chance for survival and individuals with a homozygous variant genotype (1/1) have no chance for survival
and (2) one haplotype is associated with a disease such that individuals with one copy of that haplotype
have a 75% chance for survival and individuals with two copies have a 50% chance for survival. In
each scenario, individuals’ genotypes are generated accordingly. The data are generated for sample sizes
of 30, 50, 100, 150, 200, 500 and 1000, with 10 SNPs and a recombination rateR = 4 (a parameter
used in the coalescence-based program to describe evolutionary processes in the population, different
from the recombination fraction, a measure of distance between two genetic markers). The simulation
results are shown in Figure 1. The upper panel presents the two similarity indicesIG (dashed line) andIS

(solid line), under the assumption of HWE, HWD(1), and HWD(2), respectively. The indexIG is always
smaller than the indexIS because of sampling error. The indexIS is above 0.9 even for a sample size of
30 and approaches one for larger sample sizes. This result indicates that our proposed method works very
well even for the smallest sample size of 30. However,IG falls below 0.9 when the sample size is less
than 50 but increases rapidly as the sample size increases, and approaches the indexIS . Neither index is
significantly affected by departures from the HWE. The lower panel in Figure 1 shows the average MSE
of the estimated SÊσ j , compared to the sample SD of the estimatesσ̃ j . The average MSE is small, (below
2.5 × 10−4), even for the lowest sample size of 30 and drops sharply as sample sizes increase from 30 to
100. But, beyond a sample size of 100, there is a much more gradual decrease in the average MSE. The
average MSE is affected by the departures from the HWE only when sample size is small. In this set of
simulations, the average number of haplotypes was 11. The average number of haplotypes with 2nθ̂ j � 5
or θ̂ j � 0.01 ranged from 5 to 9.

In the second set of simulations, we assess accuracy of estimates of haplotype frequencies and their
SE for a finite sample size and large numbers of SNPs. The data are generated under the assumption of
HWE with a sample size of 100 and the number of SNPs to be 20, 40, 60, 80 and 100 for two different
recombination rates,R = 0, 4, and 40. The simulation results are shown in Figure 2. For a sample size
of 100, IG is above 0.9 when the number of SNPs is less than 80 and there is no recombination (R = 0)
or a small rate of recombination. Moreover, the average MSE of the estimated SE of the estimates is
consistently small for all selected numbers of SNPs and recombination rates. The average numbers of
observed population haplotypes ranged from 17 to 59 forR = 0, from 21 to 65 forR = 4, and 42 to 135
for R = 40. The average number of haplotypes that satisfied either 2nθ̂ j � 5 or θ̂ j � 0.01, ranged from
6 to 12.

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/4/4/513/246726 by guest on 16 August 2022



Estimating of haplotype frequencies and standard errors 519

30 50 100 150 200 500 1k

0.0

0.2

0.4

0.6

0.8

1.0

S
im

ila
ri
ty

 (
E

S
T

)

Under HWE

(a)

30 50 100 150 200 500 1k

0.0

0.2

0.4

0.6

0.8

1.0

Under HWD(1)

(c)

30 50 100 150 200 500 1k

0.0

0.2

0.4

0.6

0.8

1.0

Under HWD(2)

(e)

30 50 100 150 200 500 1k

0.0

5.0e-5

1.0e-4

1.5e-4

2.0e-4

2.5e-4

M
S

E
 (

S
E

)

(b)
Sample Size

30 50 100 150 200 500 1k

0.0

5.0e-5

1.0e-4

1.5e-4

2.0e-4

2.5e-4

(d)
Sample Size

30 50 100 150 200 500 1k

0.0

5.0e-5

1.0e-4

1.5e-4

2.0e-4

2.5e-4

(f)
Sample Size

Fig. 1. The upper panel shows the similarity indexIG between the estimates using our proposed method and the actual
haplotype frequencies in the population (dashed line) and the similarity indexIS between the estimates and the actual
haplotype frequencies in the observed sample (solid line), under HWE, HWD(1) and HWD(2), respectively. The
lower panel shows the average mean square error of the estimated standard errors compared to the sample standard
deviations of the estimates, over all common haplotypes, under HWE, HWD(1) and HWD(2), respectively. The
number of SNPs is 10.

The running time was, on average, 0.04–2 s for each data set in our simulation studies. All simulations
were run on a three-machine MOSIX cluster, each with a dual Pentium III 800 MHZ with 2GB RAM,
running under Linux 2.2.18-mosix.

4. AN EXAMPLE AND DISCUSSION

To illustrate our proposed method, we used an actual SNP-genotype data set introduced in Section 1.
The data include 18 SNPs found on gene ARHGDIB and genotyped for 44 unrelated individuals (Reich
et al., 2001). Among these, only 8 SNPs had complete genotype data on all 44 individuals. The remaining
10 SNPs had missing genotypes on one or more individuals. We first estimated haplotype frequencies for
the entire data set. We found 20 haplotypes (results not shown). We then estimated haplotype frequencies
for the subset of data with the 8 SNPs with no missing genotypes. To compare our results with Excoffier
and Slatkin’s EM algorithm, we also analyzed the data using the Arlequin software (Schneideret al.,
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Fig. 2. The upper panel shows the similarity indexIG between the estimate and the actual haplotype frequencies in
the population (dashed line) and the similarity indexIS between the estimates using our proposed method and the
actual haplotype frequencies in the observed sample (solid line), forR = 0, 4, and 40, respectively. The lower panel
shows the average mean square error of the estimated standard errors compared to the sample standard deviations of
the estimates, over all common haplotypes. The sample size is 100.

2000). The estimation results are shown in Table 2. The estimation results show that haplotype frequencies
obtained from both methods are identical since both are based on the same equations. The estimates of
SEs from (2.5) are similar to the estimates obtained from Arlequin based on 1000 bootstraps. Since the
estimation of haplotype frequencies is not part of reporting results in PHASE (implementation for Stephen
et al.’s Bayesian method) and HAPLOTYPER (implementation for Niuet al.’s Bayesian method), we
cannot comment on their performance, but the results should be close to the results reported in Table 2
since all four methods try to maximize the same likelihood function.

To compare the computational performance of our method (implemented in HPlus) with the Arlequin,
PHASE and HAPLOTYPER implementations, we first analyzed the same subset of 8 SNPs with complete
genotype data using all four implementations on the same computer. HPlus analyzed the data in under
0.08 CPU s. Compared to this, PHASE had the slowest running time at 11 min and 31 s; Arlequin took
57 s while HAPLOTYPER ran in 0.48 s—only six times less computationally efficient than HPlus. But
HPlus has much larger capacity than the other implementations. To demonstrate this, our implementation
analyzed genotype data sets with 632 subjects and 161 SNPs in one gene and 296 SNPs in another
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Table 2.Estimated haplotype frequencies and their standard errors of the
genotype data given in Table 1 (including 8 SNPs with complete data:
core SNP [G/C], G4923a6 [T/C], G4923a7 [C/G], G4923a12 [A/T],
G4923a26 [A/G], G4923a44 [T/C], G4923a46 [C/T] and G4923a35

[C/T]) (allele 0: reference allele, 1: variant allele)

Standard error
Haplotype Haplotype frequency Proposed method EM method

(with 1000 bootstraps)
10001000 0.45659 0.05113 0.05336
01110111 0.25185 0.04500 0.05020
00001000 0.12232 0.03391 0.03707
11110111 0.06570 0.02722 0.02827
01110110 0.02302 0.01591 0.01630
01110000 0.02292 0.01581 0.01607
00001111 0.02292 0.01583 0.01653
10001001 0.01166 0.01153 0.01078
01111000 0.01151 0.01138 0.01111
10000111 0.01151 0.01137 0.01098

(from the Genetic Analysis Workshop (GAW) 12), in 14 s and 2 min, respectively. We were unable to
analyze these data sets with any other implementations. HAPLOTYPER, which is closest to our method
in computational efficiency, is less restrictive and can handle up to 256 SNPs although it limits the number
of subjects to 100.

Consequently, to compare the performance of HPlus with HAPLOTYPER, we used the GAW 12
data set with 161 SNPs and selected only the first 100 subjects. HAPLOTYPER analyzed this data set
in 22 s compared to 1.3 s for HPlus. While HPlus appears to perform considerably more efficiently than
HAPLOTYPER in this example, saving 20.7 s may not be important to some. However, its greater strength
lies in its capacity to handle the large numbers of SNPs and/or subjects, expected in future population
research.

The software was written in C++ with a user-interface and may be downloaded from our website
http://qge.fhcrc.org/hplus.
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