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Abstract

The increasing size and diversity of genome-wide association studies provide an exciting

opportunity to study how the genetics of complex traits vary among diverse populations.

Here, we introduce covariate-adjusted LD score regression (cov-LDSC), a method to

accurately estimate genetic heritability (h2
g) and its enrichment in both homogenous

and admixed populations with summary statistics and in-sample LD estimates.

In-sample LD can be estimated from a subset of the GWAS samples, allowing our

method to be applied efficiently to very large cohorts. In simulations, we show that

unadjusted LDSC underestimates h2
g by 10% − 60% in admixed populations; in contrast,

cov-LDSC is robust to all simulation parameters. We apply cov-LDSC to genotyping

data from approximately 170,000 Latino, 47,000 African American and 135,000

European individuals. We estimate h2
g and detect heritability enrichment in three

quantitative and five dichotomous phenotypes respectively, making this, to our

knowledge, the most comprehensive heritability-based analysis of admixed individuals.

Our results show that most traits have high concordance of h2
g and consistent

tissue-specific heritability enrichment among different populations. However, for age at

menarche, we observe population-specific heritability estimates of h2
g. We observe

consistent patterns of tissue-specific heritability enrichment across populations; for

example, in the limbic system for BMI, the per-standardized-annotation effect size τ∗ is

0.16 ± 0.04, 0.28 ± 0.11 and 0.18 ± 0.03 in Latino, African American and European

populations respectively. Our results demonstrate that our approach is a powerful way

to analyze genetic data for complex traits from underrepresented populations.
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Author summary

Admixed populations such as African Americans and Hispanic Americans bear a

disproportionately high burden of disease but remain underrepresented in current

genetic studies. It is important to extend current methodological advancements for

understanding the genetic basis of complex traits in homogeneous populations to

individuals with admixed genetic backgrounds. Here, we develop a computationally

efficient method to answer two specific questions. First, does genetic variation

contribute to the same amount of phenotypic variation (heritability) across diverse

populations? Second, are the genetic mechanisms shared among different populations?

To answer these questions, we use our novel method to conduct the first comprehensive

heritability-based analysis of a large number of admixed individuals. We show that

there is a high degree of concordance in total heritability and tissue-specific enrichment

between different ancestral groups. However, traits such as age at menarche show a

noticeable differences among populations. Our work provides a powerful way to analyze

genetic data in admixed populations and may contribute to the applicability of genomic

medicine to admixed population groups.

Introduction 1

It is important for human geneticists to study how genetic variants that influence 2

phenotypic variability act across different populations worldwide [1, 2]. With 3

increasingly large and diverse genetic studies, it is now becoming feasible to assess how 4

the genetic mechanisms of complex traits act across populations. However, to date, 5

most genome-wide association studies (GWAS) have been focused on relatively 6

homogenous continental populations, and in particular those of European descent [3]. 7

Non-European populations, particularly those with mixed ancestral backgrounds such 8

as African Americans and Latinos, have been underrepresented in genetic studies. Many 9

statistical methods to analyze genetic data assume homogeneous populations. In order 10

to ensure that the benefits of GWAS are shared beyond individuals of homogeneous 11

continental ancestry, statistical methods for admixed populations are needed [4]. 12

Among methods to analyze polygenic complex traits in homogeneous populations, 13
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summary statistics-based methods such as linkage disequilibrium score regression 14

(LDSC) [5, 6] and its extensions [7–9] have become particularly popular due to their 15

computational efficiency, relative ease of application, and their applicability without raw 16

genotyping data [10]. These methods can be used to estimate SNP-heritability, the 17

proportion of phenotypic variance explained by genotyped variants [5, 11–13], 18

distinguish polygenicity from confounding [5], establish relationships between complex 19

phenotypes [7], and model genome-wide polygenic signals to identify key cell types and 20

regulatory mechanisms of human diseases [6, 9, 14]. 21

Summary statistics-based methods for polygenic analysis frequently rely on linkage 22

disequilibrium (LD) calculations. For LD score regression, the LD information needed is 23

the LD score for each SNP, defined to be the sum of its pairwise correlations (r2) with 24

all other SNPs. For homogeneous populations there is usually a reference panel of 25

individuals with matching ancestry that can be used to approximate the in-sample LD. 26

For studies with heterogeneous or admixed ancestry, however, even when reference 27

panels are available, they may not be representative of the precise populations used in 28

the genetic study. For example Latino populations in different regions worldwide may 29

share the same ancestral continental populations, but with dramatic differences in 30

admixture proportions and timing of the admixture event [15]. A generic reference 31

panel cannot easily capture these differences and hence cannot produce accurate LD 32

scores that can be widely used for all Latino populations. Moreover, the structure of LD 33

in heterogenous and admixed populations is complex and includes longer-range 34

correlations that are absent or negligible in homogeneous populations. Thus, while LD 35

scores computed from a matching reference panel reflect the appropriate matching LD 36

for summary statistics computed in a homogeneous population, it has not been clear 37

what the appropriate matching LD is for summary statistics computed in a 38

heterogenous or admixed population, and so LDSC has only been recommended to be 39

applied in homogeneous populations. 40

Here, we evaluate the heritability estimates using LDSC in admixed population and 41

observe systematic underestimation. We then introduce covariate-adjusted LD score 42

regression (cov-LDSC) to estimate heritability and partitioned heritability in admixed 43

populations. We apply our approach to 8, 124 Latinos from a type 2 diabetes study (the 44

Slim Initiative in Genomic Medicine for the Americas, SIGMA) [16] as well as 161, 894 45
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Latino, 46, 844 African American, and 134, 999 European research participants from a 46

personal genetics company (23andMe). We analyze three quantitative phenotypes (body 47

mass index (BMI), height, and age at menarche), and five dichotomous phenotypes 48

(type 2 diabetes (available in the SIGMA cohort only), left handedness, morning person, 49

motion sickness, and nearsightedness). 50

One powerful component of LDSC is that it can be used to test whether a particular 51

genome annotation -- for example, sets of genes that are specifically expressed within a 52

candidate tissue or cell type -- capture more heritability than expected by chance [9, 11]. 53

We demonstrate that cov-LDSC can be applied in the same way to identify trait-relevant 54

tissue and cell types in admixed and homogenous populations with well-calibrated type 55

I error. We examine height, BMI and morning person since these traits had sufficient 56

statistical power [6] for cell-type enrichment analyses in the 23andMe cohort. We 57

observe a high level of consistency among enriched tissue types, highlighting that the 58

underlying biological processes are shared among studied populations. This heritability 59

enrichment analysis of hundreds of genome annotations in cohorts of over 100,000 60

individuals would have been challenging with existing genotype-based methods [17–19]. 61

Results 62

Overview of methods 63

In this work, we extended the LDSC-based methods to heterogeneous and admixed 64

populations by introducing covariate-adjusted LDSC (cov-LDSC). We first showed 65

through derivations that the appropriate matching LD for summary statistics computed 66

in a heterogeneous or admixed population is in-sample LD computed on genotypes that 67

have been adjusted for the same covariates (e.g. principal components) included in the 68

summary statistics (S1 Appendix). In cov-LDSC, we compute these covariate-adjusted 69

LD scores and then use LDSC to estimate heritability and its enrichment (Methods). 70

We showed that, unlike LDSC, cov-LDSC produces accurate estimates of heritability 71

with summary statistics from admixed populations (Methods, Fig 1). Furthermore, 72

heritability can be partitioned to identify key gene sets that have disproportionately 73

high heritability. While access to the genotype data of the GWAS samples is required to 74

compute the covariate-adjusted LD scores, LD can be estimated on a random subset of 75
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the individuals, preserving the computational efficiency of LDSC and allowing for its 76

application to very large studies. Individual cohorts can also release the in-sample 77

covariate-adjusted LD scores as well as the summary statistics to avoid privacy concerns 78

associated with genotype-level information to facilitate future studies. 79

Robustness of LD score estimation 80

To demonstrate the effect of admixture on the stability of LD score estimates, we first 81

calculated LD scores with genomic window sizes ranging from 0-50 cM in both 82

European (EUR, N = 503) and admixed American (AMR, N = 347) populations from 83

the 1000 Genomes Project [20]. As window size increases, we expect the mean LD score 84

to plateau because LD should be negligible for large enough distance. If the mean LD 85

score does not plateau, but continues to rise with increasing window size, then one of 86

two possibilities may apply: (1) the window is too small to capture all of the LD; (2) 87

the LD scores are capturing long-range pairwise SNP correlations arising from 88

admixture. If this increase is non-linear then there is non-negligible distance-dependent 89

LD, violating LDSC assumptions. Examining unadjusted LD scores, we observed that 90

in the EUR population [5], the mean LD score estimates plateaued at windows beyond 91

1-cM in size, as previously reported. However, in the AMR population the mean LD 92

score estimates continued to increase concavely with increasing window size. In contrast, 93

when we applied cov-LDSC with 10 PCs to calculate covariate adjusted LD scores, we 94

observed that LD score estimates plateaued for both EUR and AMR at a 1-cM and 95

20-cM window size respectively (< 1% increase per cM, S1 Table). This suggested that 96

cov-LDSC was able to correct the long-range LD due to admixture and yielded stable 97

estimates of LD scores (Method, S1 Fig), and also that cov-LDSC was applicable in 98

homogeneous populations (S1 Table). The larger window size for the AMR population 99

was needed due to residual LD caused by recent admixture. We next tested the 100

sensitivity of the LD score estimates with regard to the number of PCs included in the 101

cov-LDSC. We observed that in the AMR panel, LD score estimates were unaffected by 102

adding PCs and by increasing window sizes above 20-cM (S2 Fig). 103
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Simulations with simulated genotypes 104

To assess whether cov-LDSC produces less biased estimates of h2
g, we simulated 105

genotypes of two admixed populations (African American and Latino, Methods). We 106

simulated genotypes of 10, 000 unrelated diploid admixed individuals for approximately 107

400, 000 common SNPs on chromosome 2 in a coalescent framework using 108

msprime [21](Methods). First, we tested LDSC and cov-LDSC with different 109

admixture proportions between two ancestral populations, and a quantitative phenotype 110

with a h2
g of 0.4 using an additive model (Methods). We observed that as the 111

proportion of admixture increased, ĥ2
g for LDSC increasingly underestimated true h2

g by 112

as much as 18.6%. In marked contrast, cov-LDSC produced consistently less biased 113

estimates regardless of admixture proportion for both Latinos (S3 Fig(a)) and African 114

Americans (S4 Fig). Since both simulated admixed populations would lead to the same 115

conclusions, we performed the subsequent simulations in the Latino individuals only. 116

Second, we varied the percentage of causal variants from 0.01% to 50% in a 117

polygenic quantitative trait with h2
g = 0.4 in a population with a fixed admixture 118

proportion of 50%. LDSC again consistently underestimated h2
g by 12% − 18.6%. In 119

contrast, cov-LDSC yielded less biased estimates regardless of the percentage of causal 120

variants (S3 Fig(b)). 121

Third, we assessed the robustness of LDSC and cov-LDSC for different assumed 122

total h2
g (0.05, 0.1, 0.2, 0.3, 0.4 and 0.5). At each h2

g value, LDSC underestimated by 123

11.5% − 19.6%. For cov-LDSC, we observed that the standard error increased with h2
g, 124

but point estimates remained less biased (S3 Fig(c)). 125

Fourth, we included an environmental stratification component aligned with the first 126

PC of the genotype data (Methods), and concluded that cov-LDSC was also robust to 127

confounding (S3 Fig(d)). 128

Finally, to assess the performance of cov-LDSC in polygenic binary phenotypes, we 129

simulated genotype data for a binary trait with a prevalence of 0.1 assuming a liability 130

threshold model (Methods). We showed that cov-LDSC provided less biased estimates 131

in case-control studies with the same four simulation scenarios (S5 Fig). In contrast, 132

LDSC underestimated heritability for binary phenotypes in the same way as it did for 133

quantitative phenotypes. 134
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Simulation results with real genotypes 135

We next examined the performance of both unadjusted LDSC and cov-LDSC on real 136

genotypes of individuals from admixed populations. We used genotype data from the 137

SIGMA cohort, which includes 8,214 Mexican and other Latino individuals. Using 138

ADMIXTURE [22] and populations from the 1000 Genomes Project [20] as reference 139

panels, we observed that each individual in the SIGMA cohort had different admixture 140

proportions (S6 Fig). As in the AMR panel, we observed that using a 20-cM window, 141

LD score estimates plateaued in the SIGMA cohort (S7 Fig, S2 Table), and were 142

unaffected by different numbers of PCs (S8 Fig). When we assumed a non-infinitesimal, 143

additive model with 1% of all SNPs to be causal and h2
g = 0.4, we observed that 144

cov-LDSC h2
g estimates produced less biased estimates using a 20-cM window with 10 145

PCs (S9 Fig). We subsequently used a 20-cM window and 10 PCs in all simulations. 146

We observed that cov-LDSC yielded less biased h2
g estimates in simulated traits 147

where we varied the number of causal variants and total heritability compared to the 148

original LDSC (Fig 2(a)-(b)). In contrast, LDSC underestimated heritability by as 149

much as 62.5%. To examine the performance of cov-LDSC in the presence of 150

environmental confounding factors, we simulated an environmental stratification 151

component aligned with the first PC of the genotype data, representing European v.s. 152

Native American ancestry. In this simulation scenario, cov-LDSC still provided less 153

biased h2
g estimates (Fig 2(c)). Intercepts of all the simulation scenarios were less than 154

the genomic control inflation factor (GC), suggesting that polygenicity accounts for a 155

majority of the increase in the mean χ2 statistic compared to potential confounding 156

biases (S10 Fig(a)-(c), S3 Table). 157

Thus far, we have used cov-LDSC by calculating LD scores on the same set of 158

samples that were used for association studies (in-sample LD scores). In practical 159

applications, computing LD scores on the whole data set can be computationally 160

expensive and difficult to obtain, so we investigated computing LD scores on a subset of 161

samples. To investigate the minimum number of samples required to obtain accurate 162

in-sample LD scores, we computed LD scores on subsamples of 100, 500, 1, 000 and 163

5, 000 individuals from a GWAS of 10, 000 simulated genotypes (S11 Fig). We repeated 164

these analyses in simulated phenotypes in the SIGMA cohort. We subsampled the 165
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SIGMA cohort, and obtained less biased estimates when using as few as 1, 000 samples 166

(Fig 2(d)). We therefore recommend computing in-sample LD scores on a randomly 167

chosen subset of at least 1, 000 individuals from a GWAS in our approach. 168

Assessing power and bias in tissue type specific analysis 169

Following Finucane et al [9], we extended cov-LDSC so that we can assess enrichment in 170

and around sets of genes that are specifically expressed in tissue and cell-types 171

(cov-LDSC-SEG). To test whether cov-LDSC can produce robust results with properly 172

controlled type I error, We calculated the in-sample LD scores using LDSC and 173

cov-LDSC, respectively, using a 20-cM window and 10 PCs in cov-LDSC for all 53 174

baseline and limbic system annotations. We used PLINK2 [23] for association test and 175

performed tissue type specific enrichment analysis using both LDSC and cov-LDSC for 176

limbic system conditioning on all 53 baseline annotations. We reported the number of 177

significant tests out of 1, 000 simulations in each scenario. We observed no inflation in 178

false-positive rate (FPR) at 0.05 for both LDSC and cov-LDSC under null (i.e., no 179

enrichment). The greatest gains in power were observed in cases where there were 180

modest enrichment (< 2×). We showed that cov-LDSC-SEG was better powered to 181

detect tissue type specific signals compared to LDSC-SEG (S12 Fig). 182

Application to SIGMA and 23andMe cohorts 183

We next used cov-LDSC to estimate h2
g of height, BMI and T2D phenotypes, measured 184

within the SIGMA cohort (Methods, Table 1). We estimated h2
g of height, BMI and 185

T2D to be 0.38 ± 0.08, 0.25 ± 0.06 and 0.26 ± 0.07, respectively. These results were 186

similar to reported values from UK Biobank [24] and other studies [17, 25] for European 187

populations. Although estimands differed in different studies (Methods), we noted 188

that without cov-LDSC, we would have obtained severely deflated estimates (Table 1). 189

To confirm that our reported heritability estimates were robust under different model 190

assumptions, we applied an alternative approach based on REML in the linear mixed 191

model framework implemented in GCTA [17]. To avoid biases introduced from 192

calculating genetic relatedness matrices (GRMs) in admixed individuals, we obtained a 193

GRM based on an admixture-aware relatedness estimation method REAP [26] 194
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(Methods). GCTA-based results were similar to reported h2
g estimates from cov-LDSC, 195

indicating our method was able to provide reliable h2
g estimates in admixed populations 196

(Table 1). We noted, however, that the GCTA-based results would be computationally 197

expensive to obtain on the much larger datasets, for example the 23andMe cohort 198

described below. 199

We next applied both LDSC and cov-LDSC to 161, 894 Latino, 46, 844 African 200

American and 134, 999 European research participants from 23andMe. We analyzed 201

three quantitative and four dichotomous phenotypes (Methods, S4 Table). In this 202

setting, we noted that if different individuals were included in different traits of 203

interests, one would need to re-compute the GRM for each trait when using 204

genotype-based methods such as GCTA [17] or BOLT-REML [19]. Whereas for 205

cov-LDSC we do not require complete sample overlap between LD reference panel and 206

summary statistics generation. Thus one would only need to compute 207

covariate-adjusted baseline LD score once for each cohort. This makes cov-LDSC a 208

more computationally attractive strategy for estimating heritability and its enrichment 209

in large cohorts. We used a 20-cM window and 10 PCs in LD score calculations for both 210

populations (S13 Fig, S5 Table). LDSC and cov-LDSC produced similar heritability 211

estimates in the European population, whereas in the admixed populations, LDSC 212

consistently provided low estimates of h2
g (S6 Table). For each phenotype, we estimated 213

h2
g using the same population-specific in-sample LD scores. Intercepts of all the traits 214

were substantially less than the genomic control inflation factor (λgc), suggesting that 215

polygenicity accounts for a majority of the increase in the mean χ2 statistics (S7 Table). 216

For most phenotypes, the reported h2
g was similar among the three population groups 217

with a notable exception for age at menarche (Fig 3, S8 Table). This suggested possible 218

differences (two-sample t-test p = 7.1 × 10−3 between Latinos and Europeans) in the 219

genetic architecture of these traits between different ancestral groups. It has been long 220

established that there is population variation in the timing of menarche [27–29]. Early 221

menarche might influence the genetic basis of other medically relevant traits since early 222

age at menarche is associated with a variety of chronic diseases such as childhood 223

obesity, coronary heart disease and breast cancer [30, 31]. These results highlighted the 224

importance of including diverse populations in genetic studies in order to enhance our 225

understanding of complex traits that show differences in their genetic heritability. 226
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Tissue type specific analysis 227

We applied stratified cov-LDSC to sets of specifically expressed genes [9] (SEG) to 228

identify trait-relevant tissue and cell types in traits included in the 23andMe cohort 229

across European, Latino, and African American populations. We only tested height, 230

BMI and morning person, which were the three traits that had heritability z-scores 231

larger than seven in at least two populations [6] (S9 Table). We also performed 232

inverse-variance weighting meta-analysis across the three populations (S10 Table). 233

Across different populations, BMI showed consistent enrichment in central nervous 234

system gene sets . In the European population, most of the enrichments recapitulated 235

the results from the previous analysis using UK Biobank [9]. We found similar but fewer 236

enrichments in Latinos and African Americans, most likely due to smaller sample sizes. 237

The most significantly enriched tissue types for BMI in all three populations were limbic 238

system (τ∗
EUR = 0.18, τ∗

LAT = 0.16, τ∗
AA = 0.28, τ∗

meta = 0.18), entorhinal cortex 239

(τ∗
EUR = 0.18, τ∗

LAT = 0.15, τ∗
AA = 0.24, τ∗

meta = 0.17), and cerebral cortex 240

(τ∗
EUR = 0.16, τ∗

LAT = 0.14, τ∗
AA = 0.15, τ∗

meta = 0.15); none of the three effects 241

were significantly different across populations. When we compared the enrichment for 242

all of the tissues between population pairs, we observed that they have significant 243

non-zero concordance correlation coefficient (ρEUR-LAT = 0.78 (0.72 − 0.83); 244

ρEUR-LAT = 0.32 (0.21 − 0.42)) (Fig 4(a)-(e), S11 Table). The sizes of these three 245

brain structures have been shown to be correlated with BMI using magnetic resonance 246

imaging data [32]. The midbrain and the limbic system are highly involved in the food 247

rewarding signals through dopamine releasing pathway [33]. Furthermore, the 248

hypothalamus in the limbic system releases hormones that regulate appetite, energy 249

homeostasis and metabolisms, like leptin, insulin, and ghrelin [33,34]. For height, 250

similar to previously reported associations [9], we also identified enrichments in the gene 251

sets derived from musculoskeletal and connective tissues. In the meta-analysis, the three 252

most significant enrichments were cartilage (τ∗
EUR = 0.21, τ∗

LAT = 0.19, τ∗
AA = 0.24, 253

τ∗
meta = 0.20), chondrocytes (τ∗

EUR = 0.21, τ∗
LAT = 0.15, τ∗

AA = 0.11, 254

τ∗
meta = 0.17), and uterus (τ∗

EUR = 0.17, τ∗
LAT = 0.15, τ∗

AA = 0.16, τ∗
meta = 0.16). 255

A heterogeneity test revealed no difference across three populations (I2 < 70% and 256

p-value > 0.05). The concordance correlation coefficients were 257
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ρEUR-LAT = 0.91 (0.89 − 0.93) between European and Latio; 258

ρEUR-AA = 0.60 (0.50 − 0.68) between European and African American (Fig 4(f)-(j), 259

S11 Table). The importance of these tissues and their roles in height have been 260

addressed in the previous pathway analysis, expression quantitative trait loci (eQTLs) 261

and epigenetic profiling [35,36]. Previous studies have shown that the longitudinal 262

growth of bones is partly controlled by the number and proliferation rate of 263

chondrocytes on the growth plate which is a disc of cartilages [37]. For the morning 264

person phenotype, we found enrichments in many brain tissues in Europeans, 265

concordant with a previous study [38]. Entorhinal cortex (τ∗
EUR = 0.16, τ∗

LAT = 0.22, 266

τ∗
meta = 0.18), cerebral cortex (τ∗

EUR = 0.15, τ∗
LAT = 0.22, τ∗

meta = 0.18), and 267

brain (τ∗
EUR = 0.17, τ∗

LAT = 0.19, τ∗
meta = 0.18) were enriched in both Latinos and 268

Europeans. Evidence showed that circadian rhythm was controlled by the 269

suprachiasmatic nucleus, the master clock in our brain, and also the circadian oscillator 270

that resides in neurons of the cerebral cortex [39–41]. We also found unique enrichments 271

of esophagus muscularis and the esophagus gastroesophageal junction in the Latino 272

populations, but the heterogeneity test showed that the difference is not significant 273

(I2 = 0.49 and 0.50, respectively). We observed that the concordance correlation 274

coefficient across gene sets was 0.63 (0.51 − 0.68) between Latino and European 275

(Fig 4(k)-(n), S11 Table). Compared to the original LDSC-SEG, cov-LDSC-SEG 276

appeared to have increased statistical power in detecting tissue type specific enrichment 277

in the African American and Latino population (S12 Fig, S14 Fig, S15 Fig, S16 Fig). 278

Discussion 279

As we expand genetic studies to explore admixed populations around the world, 280

extending statistical genetics methods to make inferences within admixed populations is 281

crucial. This is particularly true for methods based on summary statistics, which are 282

dependent on the use of LD scores that we showed to be problematic in admixed 283

populations. In this study, we confirmed that LDSC that was originally designed for 284

homogenous populations, should not be applied to admixed populations. We introduced 285

cov-LDSC which regresses out global PCs on individual genotypes during the LD score 286

calculation, and showed it can yield less biased LD scores, heritability estimates and its 287
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enrichment, such as trait-relevant cell and tissue type enrichments, in homogenous and 288

admixed populations. 289

Although our work provides a novel, efficient approach to estimate genetic 290

heritability and to identify trait-relevant cell and tissue types using summary statistics 291

in admixed populations, it has a few limitations. First, covariates included in the 292

summary statistics should match the covariates included in the covariate-adjusted LD 293

score calculations (S1 Appendix). To demonstrate this, we simulated the phenotypes 294

using real genotypes included in the SIGMA cohort. We performed cov-LDSC to 295

measure total heritability and its enrichment with varied number of PCs included in 296

summary statistics and in LD score calculation. As the differences between the number 297

of PCs included in the summary statistics and LD score calculation increase, we 298

observed an increase in bias of the total heritability estimation (S17 Fig) and a loss in 299

power when detecting tissue-specific enrichment (S18 Fig). Second, h2
g estimates and 300

their enrichment in admixed populations are more sensitive to potentially unmatched 301

LD reference panels. Unmatched reference panels are likely to produce biased 302

estimates [42,43] and under-powered enrichment analysis (S12 Table, S14 Fig, S15 Fig, 303

S16 Fig). We examined the performance of using an out-of-sample reference panel in 304

admixed populations (See S2 Appendix) and caution that when using 1000 Genomes or 305

any out-of-sample reference panels for a specific admixed cohort, users should ensure 306

that the demographic histories are shared between the reference and the study cohort. 307

Large sequencing projects such as TOPMed [44] that include large numbers (N > 1, 000) 308

of admixed samples can potentially serve as out-of-sample LD reference panels, although 309

further investigations are needed to study their properties. We therefore advise to 310

compute in-sample LD scores from the full or a random subset of data (N > 1, 000) 311

used to generate the admixed GWAS summary statistics when possible. For tissue and 312

cell type-specific analyses, this means one needs to compute covariate-adjusted LD 313

scores for the genome annotations that were derived from the publicly available gene 314

expression data. We have released open-source software implementing our approach 315

based on all genome annotations derived previously (URLs). We strongly encourage 316

cohorts to release their summary statistics and in-sample covariate-adjusted LD scores 317

at the same time to facilitate future studies. Third, when applying cov-LDSC to 318

imputed variants, particularly those with lower imputation accuracy (INFO < 0.99), we 319
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caution that the heritability estimates and its enrichment can be influenced by an 320

imperfect imputation reference panel, especially in Latino populations [45, 46]. To limit 321

the bias in varying genotyping array and imputation quality in studied admixed cohorts, 322

we recommend restricting the heritability analyses to common HapMap3 variants. Any 323

extension to a larger set of genetic variants, especially across different cohorts should be 324

performed with caution. Fourth, when we evaluated the performance of cov-LDSC in 325

case-control studies, we assumed no presence of binary covariates with strong effects 326

and demonstrated that cov-LDSC can yield robust h2
g estimates. However, it has been 327

shown that LDSC can provide biased estimates in the presence of extreme ascertainment 328

for dichotomous phenotypes [47]. Adapting cov-LDSC into case-control studies under 329

strong binary effects remains a potential avenue for future work. Fifth, recent studies 330

have shown that heritability estimates can be sensitive to the choice of the LD- and 331

frequency-dependent heritability model [8, 11,13,48]. Since our approach can flexibly 332

add annotations to estimate heritability under the model that is best supported by the 333

data, we believe it provides a good foundation for addressing the question of how to 334

incorporate ancestry-dependent frequencies in the LD-dependent annotation in the 335

future (Methods). Sixth, summary statistics derived from linear mixed models cannot 336

currently be used for cov-LDSC analysis (S19 Fig). This is due to the fact that, just as 337

the LD needs to be adjusted for the same covariates included in the summary statistics 338

(S1 Appendix), it also needs to be corrected appropriately for the random effect. We 339

leave efficient computation of random effect-adjusted LD score to future work. 340

Despite these limitations, in comparison with other methods, such as those based on 341

restricted maximum likelihood estimation (REML) [17,19] with an admixture-aware 342

GRM [26], for estimating h2
g in heterogeneous or admixed populations, cov-LDSC has a 343

number of attractive properties. First, covariate-adjusted in-sample LD scores can be 344

obtained with a subset of samples, enabling analysis of much larger cohorts than was 345

previously possible. Second, LD scores only need to be calculated once per cohort; this 346

is particularly useful in large cohorts such as 23andMe and UK Biobank [49], where 347

multiple phenotypes have been collected per individual and per-trait heritability and its 348

enrichment can be estimated based on the same LD scores. Third, as a generalized form 349

of LDSC, it is robust to population stratification and cryptic relatedness in both 350

homogenous and admixed populations. Fourth, similar to the original LDSC methods, 351
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cov-LDSC can be extended to perform analyses such as estimating genetic correlations, 352

partitioning h2
g by functional annotations, identifying disease-relevant tissue and cell 353

types and multi-trait analysis [6, 9, 50,51]. 354

By applying cov-LDSC to approximately 344, 000 individuals from European, 355

African American, and Latin American ancestry, we observed evidence of heritability 356

differences across different populations. Differences in environmental exposures and 357

biological mechanisms can both contribute to the observed differences in genetic 358

heritability across trans-ethnic populations. These differences highlight the importance 359

of studying diverse populations In particular, the differences in biological mechanisms 360

may lead to mechanistic insights about the phenotype. One strategy to do this, which 361

we explored by extending cov-LDSC, is to partition heritability by different cell type- 362

and tissue-specific annotations to dissect the genetic architecture in admixed 363

populations. Our results demonstrated that although there are some cases of nominal 364

heterogeneity across populations among tested tissue-types, most of the tissue-specific 365

enrichments are consistent among the populations studied here. This is consistent with 366

the previous findings that show strong correspondence in functional and cell type 367

enrichment between Europeans and Asians [52,53]. Seeing the same tissue-type for a 368

single trait emerge in multiple populations can give us more confidence that this tissue 369

may account for polygenic heritability. Larger sample sizes are needed to increase the 370

power of our current analyses and to enhance our understanding of how genetic variants 371

that are responsible for heritable phenotypic variability differ among populations. 372

As the number of admixed and other diverse GWAS and biobank data become 373

readily available [1, 44,54], our approach provides a powerful way to study admixed 374

populations. 375

Materials and methods 376

Mathematical framework of cov-LDSC 377

Details of the mathematical derivation of cov-LDSC are presented in S1 Appendix. 378

Briefly, in the standard polygenic model on which LDSC is based, x1, . . . , xN are the 379

length-M genotype vectors for the N individuals, where M is the number of SNPs. We 380
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model the phenotypes yi 381

yi = xiβ + ǫi, (1)

where ǫ1, ..., ǫN
iid
∼ N (0, σ2

e) and β ∈ R
M is a vector of per-normalized-genotype effect 382

sizes, which we model as random with mean zero. In standard LDSC, the variance of βj , 383

Var(βj), is the per-SNP heritability of SNP j, that is, the total SNP-heritability h2
g 384

divided by the total number of SNPs M (hg
2/M). In stratified LD score regression the 385

variance of βj depends on a set of genome annotations. 386

Let χj
2 denote the chi-square statistic for the jth SNP, approximately equal to 387

(Xj
T Y )2/N , where Xj = (x1j , ..., xNj)T and Y = (y1, ..., yN )T . The main equation on 388

which LDSC is based is: 389

E[χ2
j ] ≈ 1 + Na +

Nh2
g

M
ℓ(j), (2)

where a is a constant that reflects population structure and other sources of

confounding, and the LD score, ℓ(j), is:

ℓ(j) =
∑

R2
jk.

Rjk
2 is the correlation between SNPs j and k in the underlying population. A new 390

derivation for this equation is given in S1 Appendix. We estimate the total 391

SNP-heritability h2
g via weighted regression of χ2

j on our estimates of ℓ(j), evaluating 392

significance with a block jackknife across SNPs [6]. 393

In the absence of covariates, the LD scores can be estimated from an external 394

reference panel such as 1000 Genomes, as long as the correlation structure in the 395

reference panel matches the correlation structure of the sample. In most homogeneous 396

populations, we can also assume that the true underlying correlation is negligible 397

outside of a 1-cM window. 398

In the presence of covariates, we let C denote the N × K matrix of covariates, each 399

column centered to mean zero, and let ci be the i-th row of C. Equation (1) can then 400

be replaced with 401

yi = xiβ + ciβcov + ǫi, (3)

where βcov is a vector of effect sizes of covariates. We can project the covariates out of 402
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this equation by multiplying by P = I − C(CT C)−1CT on the left to get 403

Ỹ = X̃β + ǫ̃, (4)

where Ỹ = PY , X̃ = PX and ǫ̃ = Pǫ (if the covariates are genotype principal 404

components, then P = I − CCT ).Under this model, an equation identical to Equation 405

(2) can be derived, but where both summary statistics and LD are adjusted for the same 406

covariates (see S1 Appendix). 407

If X is a homogeneous population, then the covariate-adjusted LD will be similar to 408

the non-covariate-adjusted LD and well-approximated by a reference panel. However, if 409

X is the genotype matrix from an admixed or heterogeneous population and the 410

covariates include PCs, then the covariate-adjusted LD is no longer well-approximated 411

by either non-covariate-adjusted LD or by a reference panel. Thus, in cov-LDSC, we 412

compute LD scores directly from the covariate-adjusted in-sample genotypes or a 413

random subsample thereof. We call them the covariate-adjusted LD scores. 414

Using genotype data to compute LD scores means that the model being fit is based 415

on the joint effects of a sparser set of SNPs, e.g. the genotyped SNPs, than when 416

sequence data is used to compute LD scores. For estimating total SNP-heritability, this 417

means that cov-LDSC estimates the same estimand as GCTA (h2
g) and not the usual 418

estimand of LDSC (h2
common; see below). For partitioned heritability, the density of 419

reference panel SNPs can be important because the joint effect of a SNP in an 420

annotation can include the tagged effect of an untyped SNP that is not in the 421

annotation, deflating estimates of enrichment. Thus, we recommend using cov-LDSC 422

only on annotations made of large contiguous regions, such as gene sets. Moreover, we 423

urge caution when interpreting quantitative estimates of heritability enrichment. Here, 424

we look at the significance of the conditional enrichment (i.e., regression coefficient) of 425

gene sets for our tissue-specific analysis (see below). 426

Window size and number of PCs in LD score calculations 427

In addition to computing LD from the covariate-adjusted genotypes, we also investigate 428

the appropriate window size for estimating LD scores. To do this, we examine the effect 429

of varying the genomic window size for both simulated and real data sets. We determine 430
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that LD score estimates were robust to the choice of window size if the increase in the 431

mean LD score estimates was less than 1% per cM beyond a given window. Using this 432

criterion, we use window sizes of 5-cM and 20-cM for the simulated and real genotypes, 433

respectively (S13 Table, S2 Table, S5 Table). We also calculate the squared correlations 434

between LD score estimates using the chosen window size and other LD score estimates 435

with window sizes larger than the chosen window. The Pearson squared correlations 436

were greater than 0.99 in all cases (S14 Table, S15 Table, S16 Table) indicating the LD 437

score estimates were robust at the chosen window sizes. 438

Similarly, to determine the number of PCs needed to be included in the GWAS 439

association tests and cov-LDSC calculations, we examine the effect of varying the 440

genomic window size using different numbers of PCs. The number of PCs that needed 441

to be included for covariate adjustment depended on the population structure for 442

different datasets. 443

Genotype simulations 444

We evaluate the performance of LDSC and cov-LDSC with simulated phenotypes and 445

both simulated and real genotypes. For the simulated genotypes, we used msprime [21] 446

version 0.6.1 to simulate population structure with mutation rate 2 × 10−8 and 447

recombination maps from the HapMap Project [55]. We adapt the demographic model 448

from Mexican migration history [56] for Latinos and the out of Africa model [57] for 449

African Americans using parameters that were previously inferred from the 1000 450

Genomes Project [20]. We assume the admixture event happened approximately 500 451

years and 200 years ago for Latino and African American populations, respectively. We 452

set different admixture proportions to reflect different admixed populations. In each 453

population, we simulate 10, 000 individuals after removing second degree related 454

samples (kinship> 0.125) using KING [58]. 455

Slim Initiative in Genomic Medicine for the Americas (SIGMA) 456

Type 2 Diabetes (T2D) cohort 457

8, 214 Mexican and other Latin American samples were genotyped with Illumina 458

HumanOmni2.5 array. We further filter the genotyped data to be MAF > 5% and 459
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remove SNPs in high LD regions. After QC, a total of 8, 214 individuals and 943, 244 460

SNPs remain. We estimate the in-sample LD score with a 20-cM window and 10 PCs in 461

all scenarios. 462

We use these genotypes for simulations. We also analyze three phenotypes from the 463

SIGMA cohort: height, BMI, and type 2 diabetes (T2D). For T2D, we assume a 464

reported prevalence in Mexico of 0.144 [16]. For each phenotype, we include age, sex, 465

and the first 10 PCs as fixed effects in the association analyses. 466

Phenotype simulations 467

We simulate phenotypes with two different polygenic genetic architectures, given by 468

GCTA [17] and the baseline model [6], respectively. In the GCTA model, all variants 469

are equally likely to be causal independent of their functional or minor allele frequency 470

(MAF) structure, and the standardized causal effect size variance is constant, i.e. 471

Var(βj) = h2
g/M . In contrast, the baseline model incorporates functionally dependent 472

architectures. Briefly, it includes 53 overlapping genome-wide functional annotations 473

(e.g. coding, conserved, regulatory). It models Var(βj) =
∑

C αc(j)τc where αc(j) is the 474

value of annotation αc at variant j and τc represents the per-variant contribution, of 475

one unit of the annotation αc, to heritability. We generate all causal variants among 476

common observed variants with MAF > 5% (∼ 40, 000 SNPs in simulated genotypes 477

and 943, 244 SNPs in the SIGMA cohort). To represent environmental stratification, 478

similar to previously described [5], we add 0.2× standardized first principal component 479

to the standardized phenotypes. 480

We simulate both quantitative and case-control traits with both GCTA and baseline 481

model genetic architectures, using both simulated and real genotypes, varying the 482

number of causal variants, the true heritability, and environmental stratification. For 483

case-control simulations, we adopt a liability threshold model with disease prevalence 484

0.1. We obtain 5, 000 cases and 5, 000 controls for each simulation scenario. 485

To obtain summary statistics for the simulated traits, we apply single-variant linear 486

models for quantitative traits and logistic models for binary trait both with 10 PCs as 487

covariates in association analyses using PLINK2 [23]. 488
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23andMe cohort 489

All participants were drawn from the customer base of 23andMe, Inc., a direct to 490

consumer genetics company. Participants provided informed consent and participated in 491

the research online, under a protocol approved by the external AAHRPP-accredited 492

IRB, Ethical & Independent Review Services (www.eandireview.com). Samples from 493

23andMe are then chosen from consented individuals who were genotyped successfully 494

on an Illumina Infinium Global Screening Array (∼ 640, 000 SNPs) supplemented with 495

∼ 50, 000 SNPs of custom content. We restrict participants to those who have 496

European, African American, or Latino ancestry determined through an analysis of 497

local ancestry [59]. 498

To compute LD scores, we use both genotyped and imputed SNPs. We filter 499

genotyped variants with a genotype call rate ≤ 90%, non-zero self-chain score, strong 500

evidence of Hardy Weinberg disequilibrium (p > 10−20 to accommodate large sample 501

sizes included for detecting deviations) , and failing a parent-offspring transmission test. 502

For imputed variants, we use a reference panel that combined the May 2015 release of 503

the 1000 Genomes Phase 3 haplotypes [20] with the UK10K imputation reference 504

panel [60]. Imputed dosages are rounded to the nearest integer (0, 1, 2) for downstream 505

analysis. We filter variants with imputation r-squared ≤ 0.9. We also filter genotyped 506

and imputed variants for batch effects (if an F-test from an ANOVA of the SNP dosages 507

against a factor dividing genotyping date into 20 roughly equal-sized buckets has a 508

p-value less than 10−50) and sex dependent effects (if the r-squared of the SNP is 509

greater than 0.01 after fitting a linear regression against the gender). To minimize 510

rounding inaccuracies, we prioritize genotyped SNPs over imputed SNPs in the merged 511

SNP set. We restrict the merged SNP set to HapMap3 variants with MAF ≥ 0.05. We 512

measure LD scores in a subset of African Americans (61, 021) and Latinos (9, 990) on 513

chromosome 2 with different window sizes from 1-cM to 50-cM (S5 Table) and squared 514

correlation between different window sizes (S16 Table). We compute all LD scores with 515

a 20-cM window. 516

In genome-wide association analyses, for each population, we choose a maximal set 517

of unrelated individuals for each analysis using a segmental identity-by-descent (IBD) 518

estimation algorithm [61]. We define individuals to be related if they share more than 519
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700-cM IBD. 520

We perform association tests using linear regression model for quantitative traits and 521

logistic regression model for binary traits assuming additive allelic effects. We include 522

covariates for age, sex and the top 10 PCs to account for residual population structure. 523

We list details of phenotypes and genotypes in S4 Table. 524

Heritability estimation 525

We calculate in-sample LD scores using both a non-stratified LD score [5] model and 526

the baseline model [6]. In simulated phenotypes generated with the GCTA model, we 527

use non-stratified LDSC to estimate heritability. In simulated phenotypes generated 528

using the baseline model, we use LDSC-baseline to estimate heritability. We use the 53 529

non-frequency dependent annotations included in the baseline model to estimate h2
g in 530

the 23andMe research database and the SIGMA cohort real phenotypes. We recognize 531

that recent studies have shown that genetic heritability can be sensitive to the choice of 532

LD-dependent heritability model [8, 11,13]. However, understanding the LD- and 533

MAF-dependence of complex trait genetic architecture is an important but complex 534

endeavor potentially requiring both modeling of local ancestry as well as large 535

sequenced reference panels that are currently unavailable. We thus leave this complexity 536

for future work. 537

h2
g versus h2

common 538

The quantity (h2
g) we reported in the main analysis is defined as heritability tagged by 539

HapMap3 variants with MAF ≥ 5%, including tagged causal effects of both 540

low-frequency and common variants. This quantity is different from h2
common, the 541

heritability casually explained by all common SNPs excluding tagged causal effects of 542

low-frequency variants, reported in the original LDSC [5]. In Europeans and other 543

homogeneous populations, it is possible to estimate h2
common, since reference panels, 544

such as 1000 Genomes Project [20], are available which include > 99% of the SNPs with 545

frequency > 1%. However, in-sample sequence data is usually not available for an 546

admixed GWAS cohort, and so cov-LDSC can only include genotyped SNPs in the 547

reference panel, and thus can only estimate the heritability tagged by a given set of 548
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genotyped SNPs. In order to compare the same quantity across cohorts, we use common 549

HapMap3 SNPs (MAF ≥ 5%) for in-sample LD reference panel calculation, since most 550

of them should be well imputed for a genome-wide genotyping array. To quantify the 551

difference between h2
g and h2

common, we pre-phase the genotype data in the SIGMA 552

cohort using SHAPEIT2 [62]. We use IMPUTE2 [63] to impute genotypes at untyped 553

genetic variants using the 1000 Genomes Project Phase 3 [20] dataset as a reference 554

panel. We merge genotyped SNPs and all well imputed (INFO> 0.99) SNPs (> 6.9 555

million) in the SIGMA cohort as a reference panel and reported h2
common, to 556

approximate what the estimate of h2
common would have been with a sequenced reference 557

panel (S17 Table). 558

Tissue type specific analyses 559

We generate the τ for 53 baseline annotations with 40% of annotations with non-zero τ 560

and 60% of annotations with zero τ . We then generate different regression coefficients τ 561

for limbic system in gene sets defined in Franke et al [64,65] with different enrichment. 562

We scale all the τ to make the total h2
g = 0.5. For each variant j, the variance of βj is 563

the sum of the of all the categories that the variant is in (Var(βj) = τc). We randomly 564

draw j from a normal distribution with mean zero and variance Σc:j∈Cc
τc to simulate 565

the phenotypes. We run 1, 000 simulations for each enrichment set (ranging from no 566

(1×) enrichment to 2.5× enrichment). We annotate the genes with the same set of 567

tissue specific expressed genes identified previously [9] using the Genotype–Tissue 568

Expression (GTEx) project [66] and a public dataset made available by the Franke 569

lab [64,65]. We calculate within-sample stratified cov-LD scores with a 20-cM window 570

and 10 PCs in the 23andMe cohort for each of these 205 gene sets and 53 baseline 571

annotations. We obtain regression coefficients τ̂c from the model and normalize them as 572

τ∗
c =

Mh2
g

· sdc

h2
g

τ̂c,

where Mh2
g

is the number of SNPs used to calculate h2
g and sdc is the standard 573

deviation (sd) of annotation ac [8]. We interpret τ∗
c as the proportional change of 574

averaged per-SNP heritability by one sd increase in value of the annotation of each cell 575

type, conditional on other 53 non-cell type specific baseline annotations. We calculate a 576
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one-tailed p-value for each coefficient where the null hypothesis is that the coefficient is 577

non-positive [9]. All the significant enrichments are reported with false discovery rate 578

< 5% (− log10(p) > 2.75). We perform fixed-effect inverse variance weighting 579

meta-analysis using τ∗
c and normalized standard error across populations. 580

Software Availability 581

An open-source software implementation of covariate-adjusted LD score regression is 582

publicly available (see Web Resources). 583

Web Resources 584

cov-LDSC software and tutorials, https://github.com/immunogenomics/cov-ldsc 585

msprime, https://pypi.python.org/pypi/msprime; 586

GCTA, http://cnsgenomics.com/software/gcta/; 587

BOLT-LMM, v2.3.4, https://data.broadinstitute.org/alkesgroup/BOLT-LMM/; 588

LDSC, https://github.com/bulik/ldsc/; 589

PLINK2, https://www.cog-genomics.org/plink2; 590

REAP v1.2, http://faculty.washington.edu/tathornt/software/REAP/download.html; 591

ADMIXTURE v1.3.0, 592

http://www.genetics.ucla.edu/software/admixture/download.html; 593
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Supporting information 790

S1 Table. Mean of LD scores with varying window sizes for populations 791

included in the 1000 Genomes project. AMR (N = 347) represents Admixed 792

American and EUR represent European populations (N = 503). 10 PCs are included in 793

all cov-LDSC estimates. 794

S2 Table. Mean of LD scores with varying window sizes for the SIGMA 795

cohort using LDSC and cov-LDSC. 10 PCs are included in all cov-LDSC 796

estimates. 797

S3 Table. Genomic inflation factor (λgc), mean chi-square statistics, 798

estimated h2
g and intercept under different simulation scenarios using the 799

SIGMA cohort as described in Fig 2 and S10 Fig. Each estimate represents the 800

mean h2
g estimates from 100 simulations of 10, 000 unrelated individuals. s.e. represents 801

for standard error. 802

S4 Table. Sample sizes (N) and number of SNPs (M) used in LD 803

calculation and heritability estimation of seven selected traits in the 804

23andMe cohort. 805

S5 Table. mean of LD scores with varying window sizes for the 23andMe 806

cohort using LDSC and cov-LDSC. 10 PCs are included in all cov-LDSC 807

estimates. 808

S6 Table. Heritability estimates of three quantitative and five binary 809

traits included in 23andMe and SIGMA cohorts using different LD models. 810

Stratified LD model uses genome-wide functional information from all SNPs and 811

explicitly models LD based on 53 functional annotations. 812

S7 Table. Heritability estimates, mean chi-square statistics and genomic 813

control inflation factor (λgc) of three quantitative and four binary traits 814

included in 23andMe using LDSC and cov-LDSC. cov-LDSC reports the 815
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stratified LD model that uses genome-wide functional information from all SNPs and 816

explicitly models LD based on 53 functional annotations. 817

S8 Table. Pairwise heritability comparison for seven traits reported in the 818

23andMe cohort. P-values are obtained using two-sample t-test with unequal 819

variance.* indicates a p-value passing Bonferroni correction (< 0.05/3). 820

S9 Table. z-scores for seven traits included in the 23andMe cohort and 821

two continuous traits in the SIGMA cohort. 822

S10 Table. Tissue and type specific analysis on three traits in the 823

23andMe cohort and their inverse-variance weighting meta-analysis. 824

S11 Table. Concordance correlation coefficient (ρ) of pairwise comparison 825

of tissue-type enrichment analysis between two ancestral groups. We 826

reported the estimated and their 95% confidence intervals (CIs) 827

S12 Table. Heritability estimation of seven traits included in the 828

23andMe Latino cohort when using in-sample and out-of-sample LD 829

reference panel. We obtain in-sample reference panel from the 23andMe samples and 830

we use 1000 Genomes AMR samples as out-of-sample reference panel. We estimate h2
g 831

using baseline cov-LDSC model with 10 PCs and a 20-cM. 832

S13 Table. Mean of LD scores with varying window sizes for the 833

simulated Latino genotypes using LDSC and cov-LDSC. 10 PCs are included 834

in all cov-LDSC estimates. 835

S14 Table. Pearson r-squared of LD scores with different window sizes 836

when using cov-LDSC in the simulated Latino and African American 837

genotypes. 10 PCs are included in all cov-LDSC estimates. 838

S15 Table. Pearson r-squared of LD scores with different window sizes 839

when using cov-LDSC in the SIGMA cohort. 10 PCs are included in all 840

cov-LDSC estimates. 841
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S16 Table. Pearson r-squared of LD scores with different window sizes 842

when using cov-LDSC in the 23andMe cohort. 10 PCs are included in all 843

cov-LDSC estimates. 844

S17 Table. Difference between h2
common and h2

g in the SIGMA cohort for 845

height, body mass index (BMI) and type 2 diabetes (T2D). 846

S1 Fig. LD score estimates with varying window size in populations from 847

the 1000 Genomes project. LD score estimates with varying window size using 848

unadjusted LDSC (orange) and cov-LDSC (blue) with 10 PCs with varying window size 849

in both Europeans (N = 503, dashed line) and Admixed Americans (N = 347, solid 850

line) from the 1000 Genomes Project. The x-axis shows the genomic window size used 851

for estimating LD scores measured in centimorgan (cM). The y-axis shows the mean LD 852

score estimates. 853

S2 Fig. LD score estimates with varying window size and number of PCs 854

in Admixed Americans included in the 1000 Genomes project. LD score 855

estimates (y-axis) using different numbers of PCs at different window sizes (x-axis). 856

S3 Fig. Estimates of heritability (h2
g) under different simulation scenarios 857

using the simulated genotypes reflecting a Latino population. LDSC (orange) 858

underestimated h2
g and cov-LDSC (blue) yielded robust estimates under all settings. 859

Each boxplot represents the mean LD score estimate from 100 simulations of 10, 000 860

unrelated individuals. For cov-LDSC, a window size of 5-cM with 10 PCs are used in all 861

scenarios. For LDSC, a window size of 5-cM are used in all scenarios. A true polygenic 862

quantitative trait with h2
g = 0.4 is assumed for scenarios (a), (b) and (d). 1% causal 863

variants are assumed for (a) and (c) - (d). (b)-(d) assumed a dataset with an admixture 864

proportion of 50% from two different ancestral populations. (a) h2
g estimation with 865

varying admixed proportions (x-axis) from two ancestral populations. (b) h2
g estimation 866

with varying proportions of causal variants (0.01% − 50%). (c) h2
g estimation with 867

varying heritability (0.05, 0.1, 0.2, 0.3, 0.4 and 0.5). (d) h2
g estimation when an 868

environmental stratification component aligned with the first PC of the genotype data 869

is included in the phenotype simulation. 870
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S4 Fig. Estimates of heritability (h2
g) in simulated genotypes reflecting an 871

African American population. LDSC (orange) underestimated and cov-LDSC 872

(blue) yielded less biased h2
g estimates with varying admixed proportions (x-axis). Each 873

boxplot represents the mean LD score estimate from 100 simulations of 10, 000 874

unrelated African American individuals. For cov-LDSC, a window size of 5-cM with 10 875

PCs are used in all scenarios. For LDSC, a window size of 5-cM are used in all scenarios. 876

A true polygenic quantitative trait with 1% causal variants and a true h2
g = 0.4 is 877

assumed for scenarios. 878

S5 Fig. Estimates of heritability (h2
g) in case-control phenotypes under 879

different simulation scenarios using the simulated genotypes reflecting a 880

Latino population. h2
g estimation in a phylogenetic binary trait with assumed 881

prevalence of 0.1. 50, 000 unrelated individuals are simulated in total. Each scenario has 882

5,000 cases and 5,000 controls. h2
g estimation (a) with varying admixed proportions 883

(x-axis) from two ancestral populations; (b) with varying proportions of causal variants 884

(0.01% − 50%); (c) with varying heritability (0.05, 0.1, 0.2, 0.3, 0.4 and 0.5); and (d) 885

when an environmental stratification component aligned with the first PC of the 886

genotype data is included in the phenotype simulation. For cov-LDSC, a window size of 887

5-cM with 10 PCs are used in all scenarios. For LDSC, a window size of 5-cM are used 888

in all scenarios. 889

S6 Fig. ADMIXTURE analysis (K = 5) of individuals included in the 890

SIGMA cohort and the 1000 Genomes Project. Each individual is represented 891

as a thin vertical bar. The colors can be interpreted as different ancestries. AFR 892

represents African; AMR represents Admixed American; EAS represents East Asian; 893

EUR represents European and SAS represents South Asian. 894

S7 Fig. LD score estimates with varying window size in the SIGMA 895

cohort. LD score estimates using LDSC (orange) and cov-LDSC (blue) with varying 896

window size in the SIGMA cohort (N = 8, 214). The x-axis shows the genomic window 897

size used for estimating LD scores measured in centimorgan (cM). The y-axis shows the 898

mean LD score estimates. For cov-LDSC, 10 PCs are used in all scenarios. 899

March 11, 2020 34/55

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 18, 2020. ; https://doi.org/10.1101/503144doi: bioRxiv preprint 

https://doi.org/10.1101/503144
http://creativecommons.org/licenses/by/4.0/


S8 Fig. LD score estimates with varying window size and number of PCs 900

in the SIGMA cohort. LD score estimates (y-axis) using different number of PCs at 901

different window sizes (x-axis). 902

S9 Fig. Estimates of heritability (h2
g) with varying window sizes used in 903

LD score estimation in the SIGMA cohort. cov-LDSC (blue) with 10 PCs and 904

varying window size used to obtain LD score. We assumed a true h2
g of 0.4 and 1% 905

causal variant in each simulation. 100 replicates are used for each window size. 906

S10 Fig. Intercept of estimated h2
g under different simulation scenarios 907

using the SIGMA cohort as described in Figure 2. LDSC (orange) 908

underestimated h2
g and cov-LDSC (blue) yielded less biased h2

g estimates under all 909

settings. Each boxplot represents the mean LD score estimate from 100 simulations of 910

8, 124 individuals included in the SIGMA project. For cov-LDSC, a window size of 911

20-cM with 10 PCs are used in all scenarios. For LDSC, a window size of 20-cM are 912

used in all scenarios. A true polygenic quantitative trait with h2
g = 0.4 is assumed for 913

scenarios (a), (c) and (d). 1% causal variants are assumed for scenarios (b)-(d). (a) 914

Intercept with varying numbers of causal variants (0.01% − 50%). (b) Intercept with 915

varying heritability (0, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5). (c) Intercept with the presence of 916

an environmental stratification component aligned with the first PC of the genotype 917

data is included in the phenotype simulation. (d) Intercept when using a subset of total 918

samples and using admixed American samples included in the 1000 Genomes Project. 919

S11 Fig. Estimates of heritability (h2
g) in simulated genotypes using LD 920

scores estimated with varying sample sizes. cov-LDSC (blue) is used with 921

varying sample sizes used to obtain LD scores. A random subset of 1%, 5%, 10% and 922

50% of the total samples (N = 10, 000) in the simulated genotypes are used to calculate 923

in-sample LD scores and then to obtain h2
g estimates. LD scores are also obtained using 924

independent genotypes (N = 1, 000) using the perfect matching demographic model. 925

S12 Fig. Simulation results assessing type I error and power for LDSC 926

and cov-LDSC. We simulate a polygenic trait with h2
g = 0.5. LDSC (orange) shows 927

less power compared to cov-LDSC (blue) in detecting tissue. Each point shows the 928
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proportion of simulations (1, 000 for each point) in which a null hypothesis of no tissue 929

enrichment is rejected (Pr(rejected at P ¡ 0.05)), as a function of the z-score of total 930

SNP heritability. 931

S13 Fig. LD score estimates with varying window size in populations from 932

23andMe. LD score estimates using unadjusted LDSC (orange) and cov-LDSC (blue) 933

with 10 PCs with varying window size in both African Americans (N = 46, 844, dashed 934

line) and Latinos (N = 161, 894, solid line) from the 23andMe cohort. The x-axis shows 935

the genomic window size used for estimating LD scores measured in centimorgan (cM). 936

The y-axis shows the mean LD score estimates. 937

S14 Fig. Tissue and cell type specific analysis with summary statistics in 938

23andMe Latinos using in-sample original LD and in-sample cov-LD for 939

BMI. The left panel (a) shows the tissue and cell type specific analysis using original 940

LDSC with in-sample LD scores; while the right panel (b) shows the tissue and cell type 941

specific analysis using cov-LDSC with in-sample cov-LD scores for BMI in 23andMe 942

cohort. The label on the top right in each plot indicates the number of significant tissue 943

type enrichments for each analysis. We observed no difference between LDSC and 944

cov-LDSC in European populations. In contrast, we observed more enrichment in and 945

around sets of genes that are specifically expressed in tissue- and cell-types using 946

cov-LDSC in Latinos and African Americans. 947

S15 Fig. Tissue and cell type specific analysis with summary statistics in 948

23andMe Latinos using in-sample original LD and in-sample cov-LD for 949

height. The left panel (a) shows the tissue and cell type specific analysis using original 950

LDSC with in-sample LD scores; while the right panel (b) shows the tissue and cell type 951

specific analysis using cov-LDSC with in-sample cov-LD scores for height in 23andMe 952

cohort. The label on the top right in each plot indicates the number of significant tissue 953

type enrichments for each analysis. We observed no difference between LDSC and 954

cov-LDSC in European populations. In contrast, we observed modest increased 955

enrichment using cov-LDSC in Latinos and African Americans. 956
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S16 Fig. Tissue and cell type specific analysis with summary statistics in 957

23andMe Latinos using in-sample original LD and in-sample cov-LD for 958

morning person. The left panel (a) shows the tissue and cell type specific analysis 959

using original LDSC with in-sample LD scores; while the right panel (b) shows the tissue 960

and cell type specific analysis using cov-LDSC with in-sample cov-LD scores for morning 961

person in 23andMe cohort. The label on the top right in each plot indicates the number 962

of significant tissue type enrichments for each analysis. We observed no difference 963

between LDSC and cov-LDSC in European populations. In contrast, we observed 964

modest increased enrichment using cov-LDSC in Latinos and African Americans. 965

S17 Fig. Heritability estimate with different number of PCs for GWAS 966

association test and LD score adjustment. We simulated the phenotypes on the 967

SIGMA cohort using additive model assuming 1% causal SNPs with. We performed 968

univariate cov-LDSC to measure heritability. We varied number of PCs included in 969

summary statistics and varied number of PCs used in cov-LDSC. The x-axis shows the 970

number of PCs included in the cov-LDSC calculation and the y-axis shows the number 971

of PCs included in the summary statistics calculation within the same sample. Numbers 972

in each cell represent the mean estimates from 100 replications. The color (from white 973

to red) represents the statistical difference between the estimated and the truth 974

(measured in − log 10(P )). A red cell indicates the h2
g estimate is significantly different 975

from the truth. 976

S18 Fig. Type I error in tissue-type-specific enrichment when different 977

number of PCs are used to generate summary statistics and LD scores. We 978

generated 1, 000 simulations for scenarios where there are different number of PCs (2, 5, 979

10, 20 and 50) included when calculating LD scores and generating summary statistics 980

(10 PCs) in the cell and tissue-specific enrichment analysis. We simulated a polygenic 981

trait with h2
g = 0.5. Each bar shows the proportion of simulations in which a null 982

hypothesis of no tissue enrichment is rejected (Pr(rejected at P ¡ 0.05)), as a function of 983

the z-score of total SNP heritability. The horizontal red line indicates P = 0.05. 984

S19 Fig. LDSC and cov-LDSC with summary statistics derived from 985

linear mixed models. Estimation of heritability (truth h2
g = 0.4) using LDSC and 986

March 11, 2020 37/55

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 18, 2020. ; https://doi.org/10.1101/503144doi: bioRxiv preprint 

https://doi.org/10.1101/503144
http://creativecommons.org/licenses/by/4.0/


cov-LDSC with 10 (blue) and 50 (green) PCs and a window size of 20-cM. Each boxplot 987

represents the mean LD score estimate from 100 simulations of genotypes from the 988

8, 124 individuals included in the SIGMA cohort. All summary statistics are derived 989

from linear mixed models with genetic relationship matrix (GRM) only or GRM with 10 990

genome-wide PCs using GEMMA [67]. 991

S20 Fig. Results of multiple-tissue analysis for body mass index (BMI), 992

height and type 2 diabetes (T2D) in the SIGMA cohort. Each point represents 993

a tissue type from either the GTEx data set or the Franke lab data [64,65]. From left to 994

right, (a)-(d) show multiple-tissue analysis for BMI when using LDSC and cov-LDSC 995

with in-sample and out-of-sample LD reference panels. (e-h) show multiple-tissue 996

analysis for height (e-h) when using LDSC and cov-LDSC with in-sample and 997

out-of-sample LD reference panels. (i-l) show multiple-tissue analysis for T2D when 998

using LDSC and cov-LDSC with in-sample and out-of-sample LD reference panels. 999

S21 Fig. Enrichment analysis using in-sample and out-of-sample LD 1000

reference panel. We simulated a polygenic trait with h2
g = 0.5. Similar power was 1001

obtained when using in-sample (obtained from the SIGMA cohort, turquoise) and 1002

out-of-sample (obtained from 1000 Genomes Admixed American (AMR) samples, red) 1003

reference panel. In both cases, type I error (at no (1x) enrichment) are well controlled. 1004

Each bar shows the proportion of simulations (1,000 for each point) in which a null 1005

hypothesis of no tissue enrichment is rejected (Pr(rejected at P ¡ 0.05)), as a function of 1006

the z-score of total SNP heritability. 1007

S22 Fig. Principal component analysis (PCA) of the SIGMA samples. 1008

Samples included in the SIGMA cohort projected onto the first two principal 1009

components using SNP weights precomputed from samples in the 1000 Genomes Phase 3 1010

project using SNP weights. AFR represents Africans (green); AMR represents Admixed 1011

Americans (orange); EAS represents East Asians (yellow); EUR represents Europeans 1012

(blue); SAS represents South Asians (pink) and SIGMA samples are presented in gray. 1013

S23 Fig. Tissue and cell type specific analysis with summary statistics in 1014

23andMe Latinos using in-sample cov-LD and out-of-sample cov-LD 1015
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obtained using 1000G AMR samples. In sample LD is obtained in 23andMe 1016

Latinos with 20-cM window size and 10PCs. We observed cell type enrichments in both 1017

BMI and height using in-sample cov-LD. However, when we used out of sample 1000G 1018

AMR cov-LD with 20cM window size and 10PCs, we observed no cell type enrichments 1019

in either BMI and height. 1020

S24 Fig. Principal component analysis (PCA) of the 23andMe samples. 1021

Samples included in the 23andMe cohort projected onto the first two principal 1022

components using SNP weights precomputed from samples in the 1000 Genomes Phase 3 1023

project using SNPweights. AFR represents Africans (green); AMR represents Admixed 1024

Americans (red); EAS represents East Asians; EUR represents Europeans (blue); SAS 1025

represents South Asians (brown) and the 23andMe samples are presented in gray. 1026

S1 Appendix. Mathematical framework of cov-LDSC 1027

S2 Appendix. In-sample versus out-of-sample LD 1028
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S1 Appendix. Mathematical framework of cov-LDSC 1029

Here, we will first provide a derivation of standard LD score regression that differs 1030

somewhat from published derivations, and in particular gives a mathematical 1031

interpretation for the value of the intercept. Then we will extend this derivation to 1032

cov-LDSC. 1033

S.1 Review of LD score regression without covariates 1034

S.1.1 Summary statistics without covariates 1035

We begin by describing the input data to LD score regresion, which is the output of a 1036

standard GWAS. 1037

In a standard GWAS of a quantitative trait, a marginal linear model is fit for each 1038

SNP j. Let Y denote the N × 1 vector of phenotypes and Xj denote the N × 1 vector 1039

of genotypes for SNP j, centered to mean zero. In the absence of covariates, we 1040

typically fit the model 1041

Y = Xjβ
(marg)
j + ǫ(marg) (1)

where β
(marg)
j is the marginal effect size of SNP j and ǫ(marg) ∼ N(0, σ2

(marg)I). 1042

The F-statistic, which at GWAS sample sizes is approximately chi-square distributed 1043

under the null and often referred to as the chi-square statistic, is equal to 1044

χ2
j =

(
β̂

(marg)
j

)2

/ŝ2
j (2)

where

β̂
(marg)
j =

XT
j Y

XT
j Xj

and

ŝ2
j =

σ̂2
(marg)

XT
j Xj

,

where σ̂2
(marg) is an estimate of σ2

(marg) that, if β̂
(marg)
j is small, satisfies

σ̂2
(marg) ≈

1

N
Y T Y.

We will assume that β
(marg)
j and its estimate β̂

(marg)
j are indeed small, so that this is a 1045

valid approximation. 1046

Let V (Xj) = XT
j Xj/N and V (Y ) = Y T Y/N be the empirical variances of Xj and 1047

Y , and let X̃j = Xj/
√

V (Xj), and Ỹ = Y/
√

V (Y ) be Xj and Y , normalized to 1048
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empirical variance one. Note that when Xj and Y are random, so are V (Xj), V (Y ), X̃j , 1049

and Ỹ . Note also that X̃T
j X̃j = Ỹ T Ỹ = N , deterministically. We can now simplify the 1050

expression for χ2
j : 1051

χ2
j ≈

1

N
(X̃T

j Ỹ )2 (3)

We will assume that we have as input χ2
j for a genome-wide set of SNPs j. 1052

S.1.2 The polygenic model 1053

In LD score regression, we take these chi-square statistics as input, and we derive their 1054

expectation under a standard polygenic model. Specifically, instead of the marginal 1055

model used in GWAS, LD score regression is based on a joint model with random SNP 1056

effect sizes: 1057

Y = Xβ + ǫ (4)

where Y is the phenotype vector, X = (X1 . . . XM ) is the N × M genotype matrix, 1058

ǫ ∼ N (0, σ2
ǫ I), and β is the M × 1 vector of joint effect sizes. Let β̃j = βj

√
V (Xj), and 1059

note that Xβ = X̃β̃. We will model β̃j as random with mean zero, independent of each 1060

other and of ǫ. Here, we will perform derivations in which V ar(β̃j) = σ2
β̃
; these 1061

derivations extend easily to the case in which V ar(β̃j) depends on functional 1062

annotations. We don’t specify a distribution for β̃. 1063

In LD score regression, we derive the expectation of χ2
j under this polygenic model, 1064

and we use the resulting equation to estimate parameters such as σ2
β̃
. Because X is not 1065

observed, we ultimately treat it as random. Here, we will derive E[χ2
j ] by first deriving 1066

E[χ2
j |X] and then using the law of total expectation to remove the conditioning on X. 1067

S.1.3 Deriving the expression for E[χ2
j |X] 1068

Before deriving the expression for E[χ2
j |X], we will first derive the expected empirical

variance of Y , where the variance is over the random individuals in our GWAS and the
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expectation is over random β and ǫ, conditional on X.

E[V (Y )|X] =
1

N
E
[
(Xβ + ǫ)

T
(Xβ + ǫ) |X

]

=
1

N
E
[(

X̃β̃ + ǫ
)T (

X̃β̃ + ǫ
)

|X
]

=
1

N
E
[
β̃T X̃T X̃β̃|X

]
+

1

N
E
[
ǫT ǫ
]

=
1

N

∑

j,k

E
[
β̃j(X̃T X̃)j,kβ̃k|X

]
+ σ2

ǫ

=
1

N

∑

j 6=k

E
[
β̃j

]
E
[
β̃k

]
(X̃T X̃)j,k +

1

N

∑

j

E
[
β̃2

j

]
(X̃T X̃)j,j + σ2

ǫ

= 0 +
1

N

∑

j

σ2
β̃
(X̃T X̃)j,j + σ2

ǫ

= Mσ2
β̃

+ σ2
ǫ

We will let h2
g denote Mσ2

β̃
/E[V (Y )|X], noting that definitions of heritability depend 1069

on the model on which they are based, and so h2
g as used here is a different value than 1070

in a model in which β is fixed. 1071

It will also be useful to have

E
[(

X̃T
j ǫ
)2

|X
]

= E
[
X̃T

j ǫǫT X̃j |X
]

= X̃T
j E

[
ǫǫT
]

X̃j

= σ2
ǫ X̃T

j X̃j

= Nσ2
ǫ
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We can now derive the expected chi-square statistic:

E[χ2
j |X] = E

[
1

N

(
X̃T

j Ỹ
)2

|X

]

= E

[
1

NV (Y )

(
X̃T

j (Xβ + ǫ)
)2

|X

]

≈
1

NE[V (Y )|X]
E
[(

X̃T
j (Xβ + ǫ)

)2
|X
]

=
1

NE[V (Y )|X]
E
[(

X̃T
j

(
X̃β̃ + ǫ

))2
|X
]

=
1

NE[V (Y )|X]
E



(
∑

k

X̃T
j X̃kβ̃k + X̃T

j ǫ

)2

|X




=
N

E[V (Y )|X]

∑

k

(
X̃T

j X̃k

N

)2

E[β̃2
k] +

1

NE[V (Y )|X]
E
[(

X̃T
j ǫ
)2

|X
]

=
Nσ2

β̃

E[V (Y )|X]

∑

k

(
X̃T

j X̃k

N

)2

+
σ2

ǫ

E[V (Y )|X]

=
Nσ2

β̃

E[V (Y )|X]

∑

k



(

X̃T
j X̃k

N

)2

−
1

N


+

Mσ2
β̃

E [V (Y )|X]
+

σ2
ǫ

E[V (Y )|X]

= N
h2

g

M

∑

k



(

X̃T
j X̃k

N

)2

−
1

N


+ 1

S.1.4 Removing the conditioning on X 1072

When analyzing summary statistics, we do not have access to the true value of X, and 1073

so we need to compute the expectation of χ2
j treating X as random and integrating it 1074

out. To do this, we use the law of total expectation, and so the relevant quantity is 1075

E

[(
X̃T

j X̃k

N

)2
]

. We would like our method to be applicable in the most general 1076

circumstances, and so we do not want to assume a particular distribution on X, or even 1077

that its rows are drawn i.i.d. from some distribution. Instead, we will let Wj denote the 1078

set of SNPs in an LD window around j, and we will make three assumptions that will 1079

allow us to complete our derivation: 1080

1. There is a c such that for k 6∈ Wj , we have E

[(
X̃T

j X̃k

N

)2
]

≈ c, and the 1081

approximation is good enough that N
h2

g

M

∑
k 6∈Wj

(
E

[(
X̃T

j X̃k

N

)2
]

− c

)
is 1082

negligible. If there is no structure or relatedness in our samples (and if N is high 1083

enough that the difference between standardization in the population and in our 1084
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sample is negligible), then c can be shown to be 1/N . 1085

2. For k ∈ Wj , there is a value Rjk satisfying Rjk ≈ E

[(
X̃T

j X̃k

N

)2
]

− c, where the 1086

approximation is good enough that N
h2

g

M

∑
k∈Wj

(
E

[(
X̃T

j X̃k

N

)2
]

− c − R2
jk

)
is 1087

negligible. Note that if the rows of X are drawn i.i.d. from some distribution and 1088

Rjk is the correlation between SNPs j and k in this underlying distribution, and if 1089

|Wj | is small compared to M , then this condition in satisfied. 1090

We can now apply the law of total expectation to complete the derivation:

E[χ2
j ] ≈ N

h2
g

M

∑

k


E



(

X̃T
j X̃k

N

)2

−

1

N


+ 1

= N
h2

g

M

∑

k


E



(

X̃T
j X̃k

N

)2

− c


+ N

h2
g

M

∑

k

(
c −

1

N

)
+ 1

≈ N
h2

g

M

∑

k∈Wj


E



(

X̃T
j X̃k

N

)2

− c


+ Nh2

g

(
c −

1

N

)
+ 1

≈ N
h2

g

M

∑

k∈Wj

R2
jk + Nh2

g

(
c −

1

N

)
+ 1

= N
h2

g

M

∑

k∈Wj

R2
jk + Na + 1,

where a = h2
g(c − 1/N). Letting

ℓj =
∑

k∈Wj

R2
jk,

denote the LD score of SNP j, we obtain the main LD score regression equation: 1091

E[χ2
j ] ≈ N

h2
g

M
ℓj + Na + 1. (5)

We typically estimate ℓj using a reference panel, and we estimate h2
g via weighted 1092

regression of χ2
j on ℓ(j), evaluating significance with block jackknife across SNPs. 1093

S.2 LD score regression in the presence of covariates 1094

We will now discuss LD score regression for a quantitative trait, in the presence of 1095

covariates. For a treatment of LD score regression for case-control traits with covariates, 1096

see [Weissbrod et al. 2018 AJHG]. 1097
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S.2.1 Summary statistics 1098

Let C denote an N × K matrix of covariates, each column centered to mean zero. In a 1099

GWAS of a quantitative trait with covariates, we typically fit the model 1100

Y = Xjβ
(marg)
SNP,j + Cβ

(marg)
cov,j + ǫ

(marg)
j (6)

where β
(marg)
SNP,j is the marginal effect size of SNP j and β

(marg)
cov,j is the effect size vector of 1101

the covariates. 1102

The chi-square statistic is equal to 1103

χ2
j =

(
β̂

(marg)
SNP,j

)2

/ŝ2
j , (7)

where β̂
(marg)
SNP,j is the least-squares estimate of β

(marg)
SNP,j , and

ŝ2
j = σ̂2

(marg)(A
T
j Aj)−1

11
,

where Aj is the design matrix, given by Aj = (Xj C), where (AT
j Aj)−1

11
denotes the 1104

upper left entry of the matrix (AT
j Aj)−1, and where σ̂2

(marg),j
is again an estimate of 1105

σ2
(marg),j

. 1106

Let P = I − C(CT C)−1CT . By the Frisch-Waugh-Lovell theorem, we have

β̂
(marg)
SNP,j =

(PXj)T PY

(PXj)T PXj

,

and by block matrix inversion, we have

(AT
j Aj)−1

11 =
1

(PXj)T (PXj)
.

Again assuming that the effect size β
(marg)
SNP,j is small, we have

σ̂2
(marg) ≈

1

N
(PY )T PY.

Let V (PXj) = ((PXj)T PXj)/N and V (PY ) = (PY )T PY/N , and let 1107

X̃j = PXj/
√

V (PXj), and Ỹ = PY/
√

V (PY ). Then, we can rewrite: 1108

χ2
j ≈

1

N

(
X̃T

j Ỹ
)2

(8)

S.2.2 Deriving the expression for E[χ2
j |X] 1109

In cov-LDSC, we assume that there are covariates in our GWAS model (Eq (1)) and we 1110

include the same set of covariates in the polygenic model that we would like to fit: 1111

Y = Xβ + Cβcov + ǫ, (9)

where Y , X, β, C, and ǫ are as before. Note that under this polygenic model,

PY = PXβ + Pǫ.

Let β̃j = βj

√
V (Xj). Note that PXβ = X̃β̃. We will model β̃j as random with 1112
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mean zero and variance σ2
β̃
. Now we have 1113

E[V (PY )|X] =
1

N
E[(PY )T PY |X]

=
1

N
E
[
(PXβ + Pǫ)

T
(PXβ + Pǫ) |X

]

=
1

N
E
[(

X̃β̃ + Pǫ
)T (

X̃β̃ + Pǫ
)

|X
]

=
1

N
E[β̃T X̃T X̃β̃|X] +

1

N
E[(ǫT P T Pǫ]

=
1

N

∑

j,k

E
[
β̃j(X̃T X̃)j,kβ̃k|X

]
+

1

N

∑

j,k

E
[
ǫj

(
P T P

)
j,k

ǫk

]

=
1

N

∑

j 6=k

E
[
β̃j

]
E
[
β̃k

]
(X̃T X̃)j,k +

1

N

∑

j

E
[
β̃2

j

]
(X̃T X̃)j,j

+
1

N

∑

j 6=k

E [ǫ̃j ] E [ǫ̃k] (P T P )j,k +
1

N

∑

j

E
[
ǫ2

j

]
(P T P )j,j

= 0 +
1

N

∑

j

σ2
β̃
(X̃T X̃)j,j + σ2

ǫ + 0 +
1

N

∑

j

σ2
ǫ (P T P )j,j

= Mσ2
β̃

+ σ2
ǫ

N − K

N

where K is the rank of C. If K is small compared to N , as is typical of most GWAS,

then we can say that

E[V (PY )|X] ≈ Mσ2
β̃

+ σ2
ǫ .

We will let h2
g denote Mσ2

β̃
/E[V (PY )|X]. It will again be convenient to have

E
[
(X̃T

j Pǫ)2|X
]

= E



(

1√
V (PXj)

XT
j P T Pǫ

)2

|X




= E



(

1√
V (PXj)

XT
j P T ǫ

)2

|X




= E
[(

X̃T
j ǫ
)2

|X
]

= X̃T
j E

[
ǫǫT
]

X̃j

= σ2
ǫ X̃T

j X̃j

= Nσ2
ǫ .
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Now we have:

E[χ2
j |X] ≈

1

N
E
[(

X̃T
j Ỹ
)2

|X
]

= E

[
1

NV (PY )

(
X̃T

j PY
)2

|X

]

≈
1

NE [V (PY )|X]
E
[(

X̃T
j (PXβ + Pǫ)

)2
|X
]

=
1

NE [V (PY )|X]
E
[(

X̃T
j (X̃β̃ + Pǫ)

)2
|X
]

=
1

NE [V (PY )|X]

∑

k

(X̃T
j X̃k)2E

[
β̃2

k

]
+

1

NE [V (PY )|X]
E
[
(X̃T

j Pǫ)2|X
]

=
Nσ2

β̃

E [V (PY )|X]

∑

k

(
X̃T

j X̃k

N

)2

+
σ2

ǫ

E [V (PY )|X]

=
Nσ2

β̃

E[V (PY )|X]

∑

k



(

X̃T
j X̃k

N

)2

−
1

N


+

Mσ2
β̃

E[V (PY )|X]
+

σ2
ǫ

E [V (PY )|X]

≈
Nh2

g

M

∑

k



(

X̃T
j X̃k

N

)2

−
1

N


+ 1

S.2.3 Removing the conditioning on X 1114

We will make the same two assumptions as for LD score regression without covariates. 1115

1. There is a c such that for k 6∈ Wj , we have E

(
XT

j Xk

N

)2

≈ c. One way to formalize 1116

the notion that C captures all structure in X is that c = 1/N in this case. 1117

2. For k ∈ Wj , we have access, for example from a reference panel, to an estimate 1118

Rjk satisfying Rjk ≈ E

(
XT

j Xk

N

)2

− c. When X contains admixture or other 1119

structure, correlation as estimated from a reference panel may not suffice. In that 1120

case, we can set Rjk to be

(
X̃T

j X̃k

N

)2

, or an estimate of that quantity from a 1121

random subsample of the GWAS. We note also that even if window size is 30 cM, 1122

this is still only approximately 1% of the genome, and so |Wj | is still small 1123

compared to M . 1124

With these assumptions satisfied, the rest of the derivation is identical to the case 1125

without covariates. 1126
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S2 Appendix. In-sample versus out-of-sample LD 1127

To test the reliability of using an out-of-sample reference LD panel for cov-LDSC 1128

applications, we first examined the performance of out-of-sample LD scores obtained 1129

from 1,000 samples with a perfectly matching demographic history in the simulated 1130

genotypes. cov-LDSC yielded less biased estimates when using 1,000 samples in an 1131

out-of-sample reference panel with a perfectly matching population structure (S11 Fig). 1132

Next, we tested the accuracy of heritability estimates and type I error of enrichment 1133

analysis when using 1000 Genomes Project [20] Admixed American (AMR) samples to 1134

obtain out-of-sample LD scores. When using the AMR panel as a reference panel for 1135

the SIGMA cohort, we observed a less biased h2
g estimate (P = 0.33, Fig 2(d)), 1136

However, as we decreased the number of samples included in the subsampling, the 1137

cov-LDSC regression intercepts deviated further from one (S10 Fig(d)). This is 1138

probably due to attenuation bias from noisily estimated LD scores at N < 1, 000. We 1139

observed similar tissue type specific enrichment results for BMI, height and T2D (S20 1140

Fig). We further assessed the power and biases of using 1000 Genomes AMR samples as 1141

an external reference panel when applying it in the SIGMA cohort for tissue type 1142

specific analysis via simulation. We observed well calibrated type I error and similar 1143

power compared to in-sample LD reference panel (S21 Fig). This suggested that the 1144

AMR panel included in the 1000 Genomes Project has similar demographic history 1145

compared to the SIGMA cohort (S6 Fig, S22 Fig). 1146

Next, we explored the feasibility of applying 1000 Genomes AMR samples in 1147

heritability estimation and its enrichment analyses in the 23andMe cohort. We obtained 1148

stratified LD scores using 1000 Genomes AMR samples (N = 347) and applied it on 1149

summary statistics obtained from 23andMe. In contrast to the SIGMA cohort, we 1150

discovered total heritability estimates are significantly different from those estimated 1151

using in-sample LD scores (S12 Table) and discovered no significant tissue type 1152

enrichment (S23 Fig). This suggested that 1000 Genome AMR samples might have 1153

different demographic history compared to 23andMe samples (S24 Fig). 1154

We therefore caution that when using 1000 Genomes or any out-of-sample reference 1155

panels for a specific admixed cohort, users should ensure that the demographic histories 1156

are shared between the reference and the study cohort. We highly recommend 1157
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computing in-sample LD scores on a randomly chosen subset of at least 1,000 individuals 1158

from a GWAS. We also strongly encourage cohorts to release their summary statistics 1159

and in-sample covariate-adjusted LD scores at the same time to facilitate future studies. 1160
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Figure and table legends 1161

Fig 1. Overview of the covariate-adjusted LD score regression.(a) As input,
cov-LDSC takes raw genotypes of collected GWAS samples and their global principal
components. (b) cov-LDSC regresses out the ancestral components based on global
principal components from the LD score calculation and corrects for long-range
admixture LD. Black and red lines indicate estimates before and after covariate
adjustment respectively (c) Adjusted heritability estimation based on GWAS association
statistics (measured by χ2) and covariate-adjusted LD scores. (d) Estimation of
heritability enrichment in tissue-specific gene sets.
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Fig 2. Estimates of heritability (h2
g) under different simulation scenarios

using the SIGMA cohort. LDSC (orange) underestimated h2
g and cov-LDSC (blue)

yielded robust h2
g estimates under all settings. Each boxplot represents the mean LD

score estimate from 100 simulated phenotypes using the genotypes of 8,214 unrelated
individuals from the SIGMA cohort. We used a window size of 20-cM in both LDSC
and cov-LDSC, and 10 PCs were included in cov-LDSC in all scenarios. A true
polygenic quantitative trait with h2

g = 0.4 is assumed for scenarios (a), (c) and (d) and
1% causal variants are assumed for scenarios (b)-(d). (a) h2

g estimation with varying
proportions of causal variants (0.01% − 30%). (b) h2

g estimation with varying
heritabilities (0, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5). (c) hg

2 estimation when an
environmental stratification component aligned with the first PC of the genotype data
was included in the phenotype simulation. (d) h2

g estimation when using a subset of the
cohort to obtain LD score estimates and using out-of-sample LD score estimates
obtained from Admixed Americans included in the 1000 Genomes Project [20].
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Fig 3. Estimates of heritability (h2
g) of three quantitative and four

dichotomous traits in two admixed populations in the 23andMe research
cohort. For seven selected non-disease phenotypes (body mass index (BMI), height,
age at menarche, left handedness, morning person, motion sickness and nearsightedness)
in the 23andMe cohort, we reported their estimated genetic heritability and intercepts
(and their standard errors) using the baseline model. LD scores were calculated using
134, 999, 161, 894, 46, 844 individuals from 23andMe European, Latino and African
American individuals respectively. For each trait, we reported the sample size in
obtained summary statistics used in cov-LDSC. For BMI and height, we also reported
the h2

g estimates from the SIGMA cohort.

8,124 1.07 (0.01)
125,465 1.07 (0.03)
130,866 1.13 (0.03)

40,454 1.00 (0.01)

Sample size 
Intercept 

(s.e.)
8,124 1.02 (0.01)

125,465 1.02 (0.01)

130,866 1.11 (0.02)

40,454 1.00 (0.01)

95,663 1.02 (0.01)
17,679 1.04 (0.01)
12,419 1.00 (0.01)

121,271 1.01 (0.01)
94,786 1.01 (0.01)
42,328 0.99 (0.01)

94,015 1.02 (0.01)
100,409 1.03 (0.01)

29,966 1.00 (0.01)

102,281 1.03 (0.02)
17,894 1.02 (0.01)
13,491 1.00 (0.01)

117,258 1.04 (0.02)
35,945 1.02 (0.01)
22,581 1.01 (0.01)

Trait Heritability (s.e.)
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Fig 4. Results of multiple-tissue analysis for height, BMI and morning
person. Each point represents a tissue type from either the GTEx data set or the
Franke lab data set as defined in Finucane et al [9]. From top to bottom, (a)-(d) show
multiple-tissue analysis for BMI in the cross-population meta-analysis and in Europeans,
Latinos and African Americans respectively. (e) shows the scatter plot of the estimated
per-standardized-annotation effect size τ∗, which represents the proportional change of
averaged per-SNP heritability for one standard deviation increase in value of the
annotation of each cell type, conditional on other 53 non-cell type specific baseline
annotations, in the three populations for all tested tissue types (Methods). The x-axis
shows the τ∗ in European populations and the y-axis shows either τ∗ in Latinos (blue)
or African Americans (orange). We reported the slope and p-value when we regress
Latinos (blue) and African Americans (orange) τ∗ on Europeans τ∗ for all tissue types.
Error bars indicate standard errors of τ∗. Similarly, the results are shown in (f)-(j) for
height and (k)-(n) for morning person. The significance threshold in plots (a)-(d), (f-i)
and (k-m) is defined by the FDR < 5% cutoff, − log10(p) = 2.75. Numerical results are
reported in S10 Table.
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Table 1. Heritability estimates of height, BMI and type 2 diabetes using
different estimation methods. Reported values are estimates of h2

g (with standard
deviations in brackets) from LDSC using a 20-cM window, cov-LDSC using a 20-cM
window and 10 PCs, and GCTA using REAP [26] to obtain the genetic relationship
matrix with adjustment by 10 PCs. The final column provides reported h2

g estimates in
European populations from various studies [12,24,25].

Phenotype LDSC
(baseline)

cov-LDSC
(baseline)

GCTA
(REAP)

Public

Height 0.159 (0.037) 0.379 (0.079) 0.450 (0.042) 0.450-0.685 [12,24]
BMI 0.113 (0.030) 0.248 (0.061) 0.235 (0.041) 0.246-0.270 [24]
T2D 0.121 (0.035) 0.263 (0.073) 0.376 (0.046) 0.139-0.414 [24,25]
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