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ABSTRACT 

Heterogeneous treatment effects are widely recognized but seldom studied empirically in 
quantitative sociological research. We suspect that lack of accessible statistical methods is 
one reason why heterogeneous treatment effects are not routinely assessed and reported. 
In this paper, we discuss a practical approach to studying heterogeneous treatment effects, 
under the same assumption commonly underlying regression analysis: ignorability. We 
specifically describe two methods. For the first method (SM-HTE), we begin by estimating 
propensity scores for the probability of treatment given a set of observed covariates for 
each unit and construct balanced propensity score strata; we then estimate propensity 
score stratum-specific average treatment effects and evaluate a trend across the strata-
specific treatment effects. For the second method (MS-HTE), we match control units to 
treated units based on the propensity score and transform the data into treatment-control 
comparisons at the most elementary level at which such comparisons can be constructed; 
we then estimate treatment effects as a function of the propensity score by fitting a non-
parametric model as a smoothing device. We illustrate the application of the two methods 
with a concrete empirical example.  
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1 Introduction 

A feature common to all social phenomena is variability across units of analysis (Xie 2007). The 

development of statistical methods to better understand and accommodate such variability has 

been a major methodological achievement of modern quantitative social science, especially micro 
economics (e.g., Heckman 2001). Individuals differ not only in their background characteristics, but 

also in how they respond to a particular treatment, intervention, or stimulation. We call the latter 
type of variability “heterogeneous treatment effects.” Heterogeneous treatment effects are widely 

recognized but seldom studied empirically in quantitative sociological research. Researchers using 

traditional regression modeling assume, often unknowingly, constant effects. We suspect that lack 
of accessible statistical methods is one reason why heterogeneous treatment effects are not 

routinely assessed and reported. In this paper, we describe a straightforward approach to exploring 
and estimating heterogeneous treatment effects with observational data.  
 Heterogeneity in treatment effects has important implications for social and behavioral 
research and for social policy (e.g., Heckman, Urzua, and Vytlacil 2006; Manski 2007). On the one 

hand, if a treatment is costly and difficult to administer and, as a result, is available only to those 

subjects who are likely to benefit most from it, increasing the pool of subjects receiving the 
treatment may reduce its average effectiveness. On the other hand, if individuals with current 

access to a treatment are not the individuals likely to benefit most from the treatment, increasing 
the availability of the treatment may increase the average effect among the treatment recipients. If 

policy makers understand patterns of treatment effect heterogeneity, they can more effectively 

assign different treatments to individuals so as to balance competing objectives, such as reducing 
cost, maximizing average outcomes, and reducing variance in outcomes within a given population 

(Manski 2007). The study of treatment effect heterogeneity can also yield important insights about 
how scarce social resources are distributed in an unequal society.  

We propose an approach to studying treatment effect heterogeneity that builds on a 

common framework for estimating causal effects. We develop two specific methods under the 
ignorability assumption. The first method has been applied in several recent empirical applications 

(Brand 2010; Brand and Davis [forthcoming]; Brand and Xie 2010; Tsai and Xie 2008; Xie and Wu 
2005). In this paper, we focus on estimating issues of this previously applied method. The second 

method is a non-parametric counterpart to the first method. Our discussion proceeds as follows. In 
section 2, we discuss population heterogeneity, selection into treatments, causal inference, and the 

sociological significance of studying heterogeneous treatment effects. In section 3, we present our 

approach to studying treatment effect heterogeneity. In section 4, we present an empirical example 
in which we use the methods. In section 5, we discuss the benefits and limitations of this approach 

and conclude the paper. 
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2 Background and Significance 

2.1 Causal Inference in the Population Sciences 

Sociology is a population science, concerned with understanding characteristics of what Neyman 

called “populations” – “categories of entities satisfying certain definitions but varying in their 

individual properties” (quoted by Duncan 1984, p. 96). Population sciences, including economics, 

demography, epidemiology, psychology, and sociology, all treat individual-level variation as a main 

object of scientific inquiry, rather than a mere nuisance or measurement error while assuming that 

all units of analysis are essentially the same (Angrist and Kruger 1999; Ansari and Jedidi 2000; 

Bauer and Curran 2003; Greenland and Poole 1988; Heckman 2001, 2005; Heckman and Robb 

1985; Lubke and Muthen 2005; Manski 2007; Moffitt 1996; Rothman and Greenland 1998; Winship 

and Morgan 1999; Xie 2007). The idea that scientists can fruitfully study categories of entities that 

vary from one another was a revolutionary concept that originated with Darwin (1859) (see Mayr 

1982, 2001). The recognition of inherent individual-level heterogeneity has important 

consequences for research designs in the social sciences. Because individuals differ from one 

another and differ in their response to treatments, results can vary widely depending on population 

composition.  

 The large methodological literature on causal inference using statistical methods recognizes 

the importance of and consequently allows for population heterogeneity (Heckman 2005; Holland 

1986; Manski 1995; Rubin 1974; Winship and Morgan 1999). Suppose that a population, U, is being 

studied. Let Y denote an outcome variable of interest (with its realized value being y) that is a 

function for each member in U. Let us define treatment as an externally induced intervention that 

can, at least in principle, be given to or withheld from a unit under study. For simplicity, we 

consider only dichotomous treatments and use D to denote the treatment status (with its realized 

value being d), with D=1 if a member is treated and D=0 if a member is not treated. Let subscript i 

represent the ith member in U. We further denote 1
iy  as the ith member’s potential outcome if 

treated (i.e., when di=1), and 0
iy as the ith member’s potential outcome if untreated (i.e., when di=0). 

The framework for counterfactual reasoning in causal inference (Heckman 2005; Holland 1986; 

Manski 1995; Morgan and Winship 2007; Rubin 1974; Sobel 2000; Winship and Morgan 1999) 

states that we should conceptualize a treatment effect as the difference in potential outcomes 

associated with different treatment states for the same member in U: 

 𝛿𝑖 = 𝑦𝑖1 − 𝑦𝑖0, (1) 
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where δi represents the hypothetical treatment effect for the ith member. The fundamental problem 

of causal inference (Holland 1986) is that, for a given unit i, we observe either 𝑦𝑖1 (if di=1) or 𝑦𝑖0(if 

di=0), but not both. Given this fundamental problem, how can we estimate treatment effects? 

Holland describes two possible solutions: the “scientific solution” and the “statistical solution.”  

 The scientific solution capitalizes on homogeneity in assuming that all members in U are the 

same, in either the treated state or the control state: 𝑦𝑖1 = 𝑦𝑗1and𝑦𝑖0 = 𝑦𝑗0, where j ≠ i in U. That is, 

there is only a difference between the treated state and the untreated state, but there is no 

variability across units of analysis within the same state, so that all treated units are identical and 

untreated units are identical. This strong homogeneity assumption would enable a researcher to 

identify individual-level treatment effects. Indeed, if the strong homogeneity assumption can be 

maintained, and there is no measurement error, one would need no more than two cases in U (say i 

and j with different treatment conditions) to reveal treatments effects for all members in the 

population, as the following would hold true:  

 𝛿 = 𝑦𝑖1 − 𝑦𝑖0 = 𝑦𝑗1 − 𝑦𝑗0 = 𝑦𝑖1 − 𝑦𝑗0, (2) 

for any j ≠ i, where we can drop the subscript of δ because it does not vary across members in the 

population. While strong homogeneity may hold true in experimental science, sociology, as we 

discussed above, is a population science so that pervasive heterogeneity across units in U is the 

norm rather than the exception. Thus, in general, the formula under the strong homogeneity 

assumption [equation (2)] has no practical value in social and behavioral sciences in general. 

 For a population science, the statistical solution is a necessity. The statistical approach is to 

compute quantities of interest that reveal treatment effects only at the group level. For example, we 

may compare the average difference between a randomly selected set of members in U that were 

treated to another randomly selected set of members that were untreated. For simplicity, we focus 

our discussion on identification issues and ignore the problem of statistical inference (Manski 

1995). That is, we assume that we have a very large sample so that we are not concerned with 

statistical inference. The comparison of the two groups randomly selected from the whole 

population as described above yields a quantity that is called the Average Treatment Effect (ATE):  

𝐴𝑇𝐸 = 𝐸�𝑌1 − 𝑌0�.       (3) 

While ATE is defined for the whole population, the researcher may wish to focus and define a 

treatment effect for a well-defined subpopulation. For example, Treatment Effect of the Treated 
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(TT) refers to the average difference by treatment status among those individuals who are actually 

treated: 

𝑇𝑇 = 𝐸�𝑌1 − 𝑌0�𝐷 = 1�.        (4) 

Analogously, Treatment Effect of the Untreated (TUT) refers to the average difference by treatment 

status among those individuals who are not treated: 

𝑇𝑈𝑇 = 𝐸(𝑌1 − 𝑌0|𝐷 = 0).            (5) 

Although various statistical quantities of interest can easily be defined theoretically with the 

statistical “solution,” there is actually no simple solution, as estimating these quantities in social 

research can be very difficult, indeed often impossible, in practice. In order to compute ATE, TT, and 

TUT with observational data, it is necessary to invoke assumptions, a topic to be discussed later.  

Because all statistical quantities of interest can be computed only at the group level, the 

researcher is forced to overlook, within the context of a given study, within-group individual-level 

variation, which we know must exist (Xie 2007). This is always true despite various efforts to allow 

for or to recover some degree of heterogeneity through various (but related) statistical approaches, 

such as regression models with interactions between treatment indicators and contextual or 

individual level variables, as commonly practiced in multilevel models (Raudenbush and Bryk 

2002; Vermunt 2003), Bayesian analysis (Gelman et al. 2004), growth-curve analysis (Muthén and 

Muthén 2000), meta-analysis (Hedges 1982), the latent class model (D'Unger et al. 1998; Heckman 

and Singer 1984; Vermunt 2002), and Rasch models (Duncan, Stenbeck, and Brody 1988; Rasch 

1966). Most notably, Heckman and his associates have extensively discussed heterogeneous 

treatment effects, they call “essential heterogeneity,” in a class of models relying on instrumental 

variables (Carneiro, Heckman, and Vytlacil forthcoming; Heckman, Urzua, and Vytlacil 2006). In our 

view, the real challenge in a research setting is thus not to establish absolute homogeneity across 

units of analysis, which is impossible, but to realize that any approach to analyzing observational 

data is essentially marginal: in order to focus on differences across subpopulations to answer 

questions of research interest, we temporarily overlook heterogeneity within subpopulations 

defined by observable characteristics by aggregating over heterogeneous units of analysis within 

subpopulations thus defined. Different analysis specifications essentially boil down to different 

ways to define such subpopulations.  
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2.2  Two Types of Heterogeneity 

In the preceding section, we established the need to conduct group-level comparisons for causal 
inference. The rationale is to compare groups that are essentially comparable except for their 
treatment status. However, due to population heterogeneity, there is no guarantee that the group 
that actually receives the treatment is comparable, in observed and particularly in unobserved 
contextual and individual characteristics, to the group that does not receive the treatment. 
Individuals may self-select into treatment based on their anticipated monetary and nonmonetary 
benefits and costs of treatment. To see this, let us partition the total population U into the 
subpopulation of the treated U1 (for which D=1) and the subpopulation of the untreated U0 (for 
which D=0). We can thus decompose the expectation for the two counterfactual outcomes as 
follows: 
 𝐸(𝑌1) = 𝐸(𝑌1|𝐷 = 1)𝑃(𝐷 = 1) + 𝐸(𝑌1|𝐷 = 0)𝑃(𝐷 = 0) (6)  

and 

 𝐸(𝑌0) = 𝐸(𝑌0|𝐷 = 1)𝑃(𝐷 = 1) + 𝐸(𝑌0|𝐷 = 0)𝑃(𝐷 = 0). (7) 

What we observe from data are: 𝐸(𝑌1|𝐷 = 1),𝐸(𝑌0|𝐷 = 0),𝑃(𝐷 = 1), and 𝑃(𝐷 = 0). A concern 
with selection bias is due to:  

 𝐸(𝑌1|𝐷 = 1) ≠ 𝐸(𝑌1|𝐷 = 0) ≠ 𝐸(𝑌1) (8) 

and 

 𝐸(𝑌0|𝐷 = 1) ≠ 𝐸(𝑌0|𝐷 = 0) ≠ 𝐸(𝑌0). (9)  

To see how selection into treatment may cause biases on treatment effects, let us now use the 
following abbreviated notations:  

p = the proportion treated (i.e., the proportion of cases D=1), 

q = the proportion untreated (i.e., the proportion of cases D=0),  

𝐸(𝑌𝐷=11 ) = 𝐸(𝑌1|𝐷 = 1),  

𝐸(𝑌𝐷=10 ) = 𝐸(𝑌0|𝐷 = 1), 

𝐸(𝑌𝐷=01 ) = 𝐸(𝑌1|𝐷 = 0),  

𝐸(𝑌𝐷=00 ) = 𝐸(𝑌0|𝐷 = 0). 

Using the iterative expectation rule, we can decompose ATE as follows: 

  𝐴𝑇𝐸 = 𝐸�𝑌1 − 𝑌0�  

= 𝐸(𝑌𝐷=11 )𝑝 + 𝐸(𝑌𝐷=01 )𝑞 − 𝐸(𝑌𝐷=10 )𝑝 − 𝐸(𝑌𝐷=00 )𝑞 

= 𝐸(𝑌𝐷=11 ) − 𝐸(𝑌𝐷=11 )𝑞 + 𝐸(𝑌𝐷=01 )𝑞 − 𝐸(𝑌𝐷=10 ) + 𝐸(𝑌𝐷=10 )𝑞 − 𝐸(𝑌𝐷=00 )𝑞 

= 𝐸(𝑌𝐷=11 ) − 𝐸(𝑌𝐷=00 )− [𝐸(𝑌𝐷=10 ) − 𝐸(𝑌𝐷=00 )] − (𝑇𝑇 − 𝑇𝑈𝑇)𝑞,        (10) 



Heterogeneous Treatment Effects                                                                                                                          9 

 

 

where, as previously defined in equations (4) and (5), TT is the average Treatment Effect of the 

Treated, and TUT is the average Treatment Effect of the Untreated:  

𝑇𝑇 = 𝐸(𝑌𝐷=11 − 𝑌𝐷=10 ), 

𝑇𝑈𝑇 = 𝐸(𝑌𝐷=01 − 𝑌𝐷=00 ). 

 Note that the simple comparison estimator from observed data is 𝐸(𝑌𝐷=11 )− 𝐸(𝑌𝐷=00 ). If we 

use this naive estimator for ATE, we see two sources of bias from equation (10):  

(1) The average difference between the two groups in outcomes if neither group receives the 

treatment: 𝐸(𝑌𝐷=10 ) − 𝐸(𝑌𝐷=00 ). We call this the “pre-treatment heterogeneity bias,” or “Type 

I selection bias.” 

(2) The difference in the average treatment effect between the two groups, (𝑇𝑇 − 𝑇𝑈𝑇), 

weighted by the proportion untreated 𝑞. The weight of 𝑞 results from our choice to define 

pre-treatment heterogeneity bias for the untreated state. We call this the “treatment-effect 

heterogeneity bias,” or “Type II selection bias.”  

When there is treatment-effect heterogeneity bias, we have the following 

 𝑇𝑇 ≠ 𝑇𝑈𝑇; 

ATE ≠ 𝑇𝑇; 

ATE ≠ 𝑇𝑈𝑇. 

Consider two concrete examples representing the two different sources of selection bias. 

First, pre-school children from poor families are selected into Head Start programs and thus would 

compare unfavorably to other children who do not attend Head Start programs without an 

adequate control for family socioeconomic resources (Xie 2000). Second, economic theory predicts 

that attainment of college education may be selective because it may attract young persons of 

greater ability and persons who may gain more than persons who do not attend college (Willis and 

Rosen 1979). While the first example illustrates the importance of controlling for pre-treatment 

heterogeneity bias that may be represented by “covariates” or “fixed effects,” the second example 

underscores treatment-effect heterogeneity bias – sorting on the treatment effects – that cannot be 

“controlled for” by covariates or fixed-effects.  

Experimental studies rely on random assignment to eliminate both sources of selection bias. 

Random assignment ensures that a sample of units in U receives either the treatment or control 

condition by chance only. Let  ∥  denote independence. Random assignment, in theory, assures:  

 (𝑌1,𝑌0)  ∥  𝐷, (11) 
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so that  

 𝐸(𝑌𝐷=11 ) = 𝐸(𝑌𝐷=01 ) = 𝐸(𝑌1)  (12) 

and 

 𝐸(𝑌𝐷=10 ) = 𝐸(𝑌𝐷=00 ) = 𝐸(𝑌0) . (13) 

Under these conditions, we can easily compute ATE, TT, and TUT as: 

𝐴𝑇𝐸 = 𝑇𝑇 = 𝑇𝑈𝑇 = 𝐸(𝑌𝐷=11 ) − 𝐸(𝑌𝐷=00 )  

 Note that the commonly used fixed-effects estimator for observational studies eliminates 
only (time-invariant) pre-treatment heterogeneity bias (Type I selection bias), but not treatment-
effect heterogeneity bias (Type II selection bias), because the fixed effects estimator (Angrist and 
Krueger 1999) eliminates pre-treatment (i.e., fixed) differences between the treated and untreated 
groups:  

 𝐸(𝑌𝐷=10 − 𝑌𝐷=00 ).  

       In general, with data from observational studies, where subjects have made their own 
choices regarding the treatment status of interest, the independence condition of equation (11) 
does not hold true. Most likely, subjects were sorted into treatment or control groups for a number 
of reasons, some of which may be unknowable to the researcher.  
 When assignment to treatment is not random, researchers primarily resort to two 
strategies. First, they may capitalize on a variable (or variables) that affects assignment to 
treatment exogenously but affects the outcome only indirectly through treatment. For example, 
draft lottery may be associated with military enlistment but should not affect economic outcomes 
directly (Angrist 1990). Such variables are called “instrumental variables” (IV) (Angrist and 
Krueger 1999; Angrist, Imbens, and Rubin 1996; Bound, Jaeger, and Baker 1995; Heckman, Urzua, 
and Vytlacil 2006; Winship and Morgan 1999). An IV must satisfy the assumption of exclusion 
restriction in that it affects the outcome of interest (Y) only indirectly via affecting the treatment 
status (D). However, the IV approach has three major weaknesses: (a) it is very hard to find a 
meaningful IV that satisfies the exclusion restriction assumption; (b) a weak IV may give rise to 
imprecise IV estimates and estimates that are biased in finite samples (Bound, Jaeger, and Baker 
1995); and (c) if treatment effects are heterogeneous, the estimates using the IV formula should be 
only interpreted as local average treatment effects (LATE), average effects that pertain only to the 
units whose treatment assignment statuses are affected by the instrument (Angrist and Krueger 
1999; Angrist, Imbens, and Rubin 1996; Heckman, Urzua, and Vytlacil 2006; Imbens and Angrist 
1994). We will discuss the IV method in relation to treatment effect heterogeneity in the next 
subsection.  
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 The second approach is to control for differences between the treatment group and the 

control group with observed covariates (Angrist and Krueger 1999; Cochran 1972; Cornfield et al. 

1959; Heckman, LaLonde, and Smith 1999; Imbens 2004). While it is not possible for a researcher 

to claim that he or she has controlled for all variables that may affect the outcome, the weaker 

assumption of having controlled for all relevant pre-treatment variables that simultaneously affect 

the treatment assignment and the outcome is more plausible. Only covariates that meet the 

condition of affecting both the treatment assignment and the outcome confound the observed 

relationship between treatment and outcome (Rubin 1997). It is thus hoped that through control of 

the relevant covariates the treatment will be independent of potential outcomes. This conditional 

independence assumption is called “ignorability,” “unconfoundedness” or “selection on 

observables.”  Let X denote a vector of observed covariates. The ignorability assumption states:  

 (𝑌1,𝑌0)  ∥  𝐷|𝑋. (14) 

Comparison of equations (11) and (14) highlight the role of covariates X. Because we can never be 

sure after inclusion of which covariates equation (14) would hold true, the ignorability condition is 

always held as an assumption, indeed an unverifiable assumption. Substantive knowledge about the 

subject matter needs to be brought in before a researcher can entertain the ignorability 

assumption.  Measurement of theoretically meaningful confounders makes ignorability tentatively 

plausible, but not necessarily true. Pearl (2009) provides conditions for including relevant 

covariates as appropriate controls.  

However, the researcher can always consider the ignorability assumption and then assess 

its plausibility in a concrete setting through sensitivity or auxiliary analyses (Cornfield et al. 1959; 

DiPrete and Gangl 2004; Harding 2003; Rosenbaum 2002). Results for causal inference under the 

ignorability assumption thus should always be interpreted provisionally and cautiously, as we do in 

our own work (Brand 2010; Brand and Davis [forthcoming]; Brand and Xie 2010; Tsai and Xie 

2008; Xie and Wu 2005).  

 Conditioning on X can be difficult in applied research due to the “curse of dimensionality.” 

However, Rosenbaum and Rubin (1983, 1984) show that, when the ignorability assumption holds 

true, it is sufficient to condition on the propensity score as a function of X. Thus, equation (14) is 

changed to 

 (𝑌1,𝑌0)  ∥  𝐷|𝑃(𝐷 = 1|𝑋), (15) 
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where 𝑃(𝐷 = 1|𝑋) is the propensity score, the probability of treatment that summarizes all the 

relevant information in covariates X. In other words, covariates X may confound the observed 

relationship between treatment D and outcome Y only through the propensity score 𝑃(𝐷 = 1|𝑋). 

The literature on propensity score matching recognizes the utility of the propensity score as a 

solution to data sparseness in a finite sample (Morgan and Harding 2006). We will discuss this 

approach and its relation to treatment effect heterogeneity more fully in section 3. 

2.3 The IV Approach and Treatment Effect Heterogeneity 

In a series of papers, Heckman and his associates (Heckman, Urzua, and Vytlacil 2006; Heckman 

and Vytlacil 1999, 2001, 2005) have proposed a method of estimating heterogeneous treatment 

effects using instrumental variables (IV). An IV is a predictor of the treatment probability that 

satisfies the following assumption of exclusion restriction: affecting the substantive outcome 

variable (Y) only indirectly via the treatment status (D). At the core of this IV approach is the use of 

a new concept -- the marginal treatment effect (MTE) (Björklund and Moffitt 1987) -- the expected 

treatment effect conditional on observed covariates as well as the marginal point at which a latent 

factor determining treatment status is neutral – i.e., does not favor either treatment or control. One 

important result of this line of work is that once MTE is known, all common treatment parameters 

of concern, such as ATE, TT, and TUT, can be derived as weighted averages of MTE. For an 

application of this approach in sociology, see Tsai and Xie (forthcoming).  

 The estimation of MTE is conditional on covariates X. The MTE method attempts to estimate 

heterogeneous treatment effects over the entire range of the unobserved factor via IVs, given X. 

 This IV requirement is very stringent, far more demanding than what is available in actual settings 

for empirical research.  In typical situations employing IVs, the researcher may be in the fortunate 

situation of affording the assumption that a random event affects the likelihood of treatment status 

within a small range, but it affects the outcome only indirectly through the treatment. In a typical 

situation, we may assume that subjects have their otherwise natural propensity of treatment, but 

some of them were somewhat “induced” into treatment by a randomly occurring event (e.g., IV). 

Angrist and Pischke (2009) give a good account of such applications in empirical settings. However, 

in actual applications, this inducement effect of an IV on treatment is usually very small, because 

social events still occur in their natural course without the interference of IVs.  Consider two well-

known empirical studies with IVs: (1) the inducement of an IV is only 0.016 for the birth quarter 

effect on the likelihood of high school graduation; and (2) the inducement of an IV is only 0.060 for 

the same sex effect of first two children on the likelihood of having a third child (Angrist and 
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Pischke 2009, p.169). If treatment effects are homogeneous, this low inducement effect of IVs on 

the treatment likelihood is not a major limitation, as the estimator based on the small proportion of 

individuals who were induced into treatment can be generalized to the whole population. However, 

in the presence of heterogeneous treatment effects, we can only limit the interpretation of the 

resulting estimator to this particular group of individuals being induced, as implied by the term the 

“local average treatment effect” (LATE) (Angrist, Imbens, and Rubin 1996; Angrist and Pischke 

2009). We already know that IVs of this kind that would yield LATE are rare opportunities in 

empirical research. It stands to reason that IVs that could be utilized to identify MTE for the whole 

distribution of the latent factor conditional on X are indeed very difficult, if not impossible, to find.1

3 Approach for Estimating Heterogeneous Treatment Effects under Ignorability  

  

3.1 The Rationale  

Given this practical difficulty of using the IV method to identify heterogeneous treatment effects, we 

discuss in this paper a simple and straightforward approach under the ignorability assumption. 

This approach capitalizes on the fact that under the ignorability assumption, any imbalance 

between the treated group and the untreated group can be adequately captured and characterized 

by the propensity score, shown in equation (15). We will then detect heterogeneous treatment 

effects by the propensity score in two ways, the stratification-multilevel method and the matching-

smoothing method. Of course, we realize that a narrow focus on estimating heterogeneity in 

treatment effects by observed covariates is limited, as we by necessity overlook heterogeneity in 

treatment effects due to unobserved variables. The plausibility of the ignorability assumption is a 

substantive rather than a methodological issue, depending on the richness of the empirical data. 

Because we can never be sure which covariates would make equation (14) true, the ignorability 

condition is always held as an unverifiable assumption. However, the researcher can consider the 

ignorability assumption and then evaluate its plausibility in a concrete setting through sensitivity 

or auxiliary analyses (Cornfield et al. 1959; DiPrete and Gangl 2004; Harding 2003; Rosenbaum 

2002). 

                                                             

1 Of course, we are aware of empirical applications of the MTE method (Heckman, Urzua, and Vytlacil 
2006; Carneiro, Heckman, and Vytlacil forthcoming; Tsai and Xie forthcoming). However, unlike the 
examples given by Angrist and Pischke (2009), these studies rely on theory-based assumptions, rather 
than “natural experiments,” to justify the choice of their IVs.  
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The ignorability assumption allows the researcher to explore empirical patterns of 

treatment effect heterogeneity as a function of the propensity score, which in turn is a function of 

observed covariates (Brand 2010; Brand and Davis [forthcoming]; Brand and Xie 2010: Tsai and Xie 

2008; Wu 2009; Xie and Wu 2005).  Without additional assumptions, analysis under the 

ignorability assumption is the best that we can do with the information contained in observed data. 

After we detect heterogeneous treatment effects under the ignorability assumption, as in examples 

given before, we can then revisit the assumption and ask whether it is indeed plausible given the 

results. For example, Xie and Wu (2005) interpret a negative selection pattern detected under the 

ignorability assumption in terms of differential selectivity into treatment status. That is, the 

ignorability assumption may yield empirical patterns of heterogeneous treatment as a function of 

covariates, but the empirical results are subject to different interpretations, including those 

involving selective mechanisms due to unobserved variables.  

   Why can we eliminate the two types of heterogeneity bias when controlling for the 

propensity score if the ignorability assumption is true? Recall from equation (15) that, under the 

ignorability assumption, conditional on the propensity score, treatment status is independent of the 

two potential outcomes under alternative treatment conditions. In other words, given a level of the 

propensity score, we assume no bias. Given our earlier discussion that bias can manifest in two 

types (subsection 2.2), this is tantamount to two “no-bias” conditions:  

(1) There is no pre-treatment heterogeneity bias, or Type I selection bias, conditional on p(X). 

In reference to equation (10), this means 

𝐸[𝑌𝑑=10 |𝑝(𝑿)]=𝐸[𝑌𝑑=00 |𝑝(𝑿)]       (16) 

 

(2) There is no treatment-effect heterogeneity bias, or Type II selection bias, conditional on 

p(X).  In reference to equation (10), this means 

𝐸[𝑌𝑑=11 − 𝑌𝑑=10 |𝑝(𝑿)] = 𝐸[𝑌𝑑=01 − 𝑌𝑑=00 |𝑝(𝑿)] .     (17) 

Here, we make the propensity score a function of only X, not Z, because we do not assume the 

presence of any IVs that satisfy the exclusion restriction.  

Hence, the proposed approach places a large emphasis on the propensity score, as it plays a 

crucial role in both pre-treatment heterogeneity and treatment-effect heterogeneity, as shown in 

equation (16) and (17). Both types of heterogeneity bias, i.e., systematic differences between the 
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treatment group (𝐷 = 1) and the control group (𝐷 = 0) for causal inference, are captured by the 

propensity score. That is to say, the researcher should pay attention only to the interaction between 

the treatment indicator and the propensity score, as far as a selection bias is concerned. Given (17), 

it is easy to show that  

𝐸[𝑌1 − 𝑌0|𝑝(𝑿)] = 𝐸[𝑌𝑑=11 |𝑝(𝑿)] − 𝐸[𝑌𝑑=00 |𝑝(𝑿)].          (18) 

Equation (18) provides the rationale for estimating heterogeneous treatment effects as a function 

of the propensity score.  

3.2 Estimation of the Propensity Score 

In subsection 3.1, we discussed the role of the propensity score as if it is known. In reality, of 

course, it is unknown and needs to be estimated. For estimating the propensity score we use a 

probit model.2

We now assume that we have obtained good estimated propensity scores at the individual 

level, �̂�𝑖(𝑿 = 𝒙𝒊). These estimated individual-level propensity scores can be used to balance the 

distribution in covariates between the treatment group and the control group. When the balance is 

accomplished, we can examine heterogeneous treatment effects as a function of the propensity 

score. Below, we discuss two different estimation methods based on estimated propensity scores.  

 The assumption of exclusion restriction for instrumental variables is unnecessary. 

All pre-treatment covariates that are unevenly distributed between the treatment group and the 

control group could potentially contribute to selection biases; they can all be included as predictors 

of the propensity model. How good the covariates are as predictors of the propensity score is a 

substantive question. There is a large literature on the estimation and use of the propensity score 

(see Morgan and Harding 2006; Gangl 2010 for recent reviews). One possible scenario is one of “no 

common support” – regions of the propensity score in which we do not observe both treated and 

untreated cases. When there are regions of no common support, the researcher can either impose a 

structure to essentially impute data for propensity score estimation there or, to be safe, give up 

inferences for such regions.   

                                                             

2 Of course, we can also estimate the propensity score with a logit model. Differences between the two 
models are usually minor (Powers and Xie 2008, p.44).  
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3.3 The Stratification-Multilevel Method (SM-HTE)  

The first method we discuss is what we call the “stratification-multilevel method of estimating 

heterogeneous treatment effects,” or “SM-HTE" for short. It consists of the following concrete steps:  

(1) Estimate propensity scores for each unit for the probability of treatment given a set of 

observed covariates, P(d=1|X), using probit or logit regression models, as discussed in 

subsection 3.2.  

(2) Construct balanced propensity score strata (or ranges of the propensity score) where there 

are no significant differences in the average values of covariates and the propensity score 

between the treatment and control groups.3

(3) Estimate propensity score stratum-specific treatment effects within strata. We can do this 

either by drawing a direct comparison in the outcome variable between the treatment 

group and the control group within strata, shown in equation (18), or by applying a 

regression model within strata to further adjust for any remaining covariate imbalance 

within strata. Results by strata, or level-1 estimates, are obtained from this step of the 

analysis.  Because we do not constrain the comparison of the treatment group and the 

control group across strata in any way, data analysis at this stage is non-parametric across 

strata.  

 The underlying assumption is that we consider 

all units, treated and untreated, within a stratum as homogeneous for estimating treatment 

effects. As we discussed earlier, some grouping is necessary when computing statistical 

quantities representing causal effects. While the assumption of within-stratum homogeneity 

may not hold true in practice, it is less stringent relative to the original differences between 

the treatment group and the control group. It is hoped that the stratification of data by the 

propensity score is an effective way to remove most biases between the treated and 

untreated groups (Rosenbaum and Rubin 1984).   

(4)  Evaluate a trend across the strata using variance-weighted least squares regression of the 

strata-specific treatment effects, obtained in step (3), on strata rank at level-2.  This step 

departs from the conventional use of propensity scores in constructing strata, where the 

emphasis is usually on removing biases due to covariate imbalances simply by averaging 

                                                             

3 The researcher would need to specify a level of significance for testing the differences. As expected, the 
lower the level, the more stringent the test (i.e., the more likely that some covariates do not satisfy it and 
remain unbalanced). 
 



Heterogeneous Treatment Effects                                                                                                                          17 

 

 

the estimated treatment effects across strata (Dehejia and Wahba. 1999; Rosenbaum and 

Rubin 1984). In contrast, the main research objective emphasized in this paper is to look for 

a systematic pattern of heterogeneous treatment effects across strata. For simplicity and to 

preserve statistical power, we mainly suggest modeling the heterogeneity pattern as a 

linear function across strata ranks. A linearity specification would force the data to tell us 

whether the treatment effect is either a positive or a negative function of propensity. This 

strategy has proved useful in empirical research (Brand 2010; Brand and Davis 

[forthcoming]; Brand and Xie 2010; Tsai and Xie 2008; Xie and Wu 2005). Of course, with 

more complicated research goals and richer data, the researcher is free to specify different 

parametric functions at level 2 for the heterogeneity in treatment effects across propensity-

score strata, as in ordinary multi-level models (Raudenbush and Bryk 1986, 2002).  

The SM-HTE approach has two notable shortcomings. First, the researcher is forced to divide 

the full range of the propensity score into a limited number of intervals, called strata, within which 

we assume neither Type I nor Type II selection bias. That is, we impose a form of within-group 

homogeneity so that both all treated (or untreated) observations are treated as interchangeable 

within strata. Second, across the strata, we impose a higher-level regression to detect a pattern of 

treatment heterogeneity. Given the limited number of observations, i.e., strata, for this secondary 

analysis, a strong functional form, such as the linear form, is often used. To overcome these 

shortcomings, we introduce a more flexible method below.  

3.4  The Matching-Smoothing Method (MS-HTE) 

The second method, which we call the “matching-smoothing method of estimating heterogeneous 

treatment effects,” or MS-HTE for short, overcomes the assumption of homogeneity within strata in 

the SM-HTE method. The researcher using this method can retain individual-level information 

before making cross-individual comparisons to detect heterogeneous treatment effects. In a way, 

however, the method can be thought of as the limiting case of SM-HTE with the strata being 

individual treatment-control comparisons at the most elementary level at which such comparisons 

can be constructed.  

A typical approach to matching is to first define treated units (or untreated) units as the 

target group to be matched and then select appropriate untreated (or treated) units as matches 

based on closeness in propensity scores.  One convenience of this approach is that the researcher 

can easily obtain TT (or TUT) by aggregating differences over all matches between treated units 

and untreated units. For convenience, we focus on the treatment group and find a matched control 
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case for each treated case to illustrate the method. The method consists of the following concrete 

steps:  

(1) Estimate propensity score for each unit, as discussed in subsection 3.2 and step (1) of 

subsection 3.3.  

(2) Match treated units to control units with a matching algorithm. We will discuss matching 

options below. The basic idea is to find a control unit (or control units) that is a good match 

for each treated unit based on estimated propensity scores. For convenience, the 

discussions here in (2)-(4) presume one-to-one matching. With one-to-one matching, the 

data are paired, i.e., with each pair consisting of a treated unit and an untreated unit with 

almost the same propensity score. When one-to-multiple matching is used instead, the 

comparison is made to the group mean of multiple matched controls rather than just a 

single matched control.  

(3) Plot the observed difference in a pair between a treated unit and an untreated unit against a 

continuous representation of the propensity score.  While we cannot treat the difference 

between only two observations in a pair as a true “estimate,” it is the building block for the 

next step of the analysis. In other words, we transform the data so that the differences in 

pairs between treated units and their matched untreated units constitute the “observed” 

data subject to further modeling.  

(4) Use a nonparametric model to smooth the variation in matched differences to obtain the 

pattern of treatment effect heterogeneity as a function of the propensity score. That is, we 

will obtain, typically in a graphic form, a non-parametric smoothed curve for the trend in 

matched differences as a function of the propensity score.  The researcher can then 

interpret the curve to answer substantive research questions.  

Algorithmic matching estimators differ according to the number of matched control units 

and how multiple matched control units are weighted if more than one control unit is matched to 

each treated unit (Abadie and Imbens 2009; Morgan and Harding 2006). In one-to-one matching, 

we match to the nearest neighbor. One can either use replacement or no replacement of controls to 

match to treated units. We recommend using replacement. The original motivation of matching is to 

change the observed distribution of the control cases to that of the treatment cases to estimate 

treatment effects for the treated. As such, many observed units may not be used in matching 

procedures.  
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All matching estimators of TT take the following general form: 

𝑇𝑇� = 1
𝑛1
∑ �𝑦𝑖,𝑑=1 − ∑ 𝑤𝑗(𝑖)

𝐽(𝑖)
𝑗(𝑖) 𝑦𝑗(𝑖),𝑑=0�

𝑛1
𝑖 ,    (19)  

where n1 is the number of treatment cases, i is the index over treatment cases, j(i) is the index over 
control cases for treated case i (j(i)=1,…J(i)), and 𝑤𝑗(𝑖)  is the scaled weight (with sum of one) that 

measures the relative importance of each control case. For one-to-one matching, 𝐽(𝑖) = 1, 𝑤𝑗(𝑖) = 1, 

treated unit i is matched by a single case, which can be denoted by 𝑦𝑖,𝑑=0𝑀 . We thus simplify equation 

(28) to:  

𝑇𝑇� = 1
𝑛1
∑ �𝑦𝑖,𝑑=1 − 𝑦𝑖,𝑑=0𝑀 �𝑛1
𝑖 ,      (20)  

Two basic variants of matching include nearest neighbor matching and kernel matching. 
With nearest neighbor matching, treated units are matched to control units that are closest to the 
treated units in their estimated propensity scores (Rubin 1973a, 1973b). In one-to-multiple 

matching, wj(i) is set to equal for a given i, i.e., 1
ik  for the matched nearest neighbors, where ki is the 

number of matches selected for each treated unit. A caliper can be applied to restrict matched 
control units to some maximum distance from the target treated unit. With kernel matching, all 
control units are used and weighted according to the distance from the estimated propensity score 
of the target treated unit (Heckman, Ichimura, and Todd 1997, 1998). New developments in genetic 
matching offer some potentially useful weights for achieving balance (Diamond and Sekhon 2005; 
Sekhon and Grieve 2008). Still, there is no clear consensus as to which matching estimator 
performs best in each application (Morgan and Harding 2006). We compare nearest neighbor 
matching with 1 and 5 controls to kernel matching. We also compare local polynomial to Lowess 
smoothing as we examine the variation in the differences between the treated units and their 
matched control units along the propensity score axis.  

So far, we focused on a matching estimator for TT. We could instead match treated units to 
control units to construct an estimate of TUT. These different estimators require different 
independence assumptions, as described in the large literature on matching (Brand and Halaby 
2006; Morgan and Harding 2006). Consider the example of the effects of college attendance on 
women’s fertility. For the TT, we assume that the fertility observed for women who did not attend 
college represents what the fertility of women who attend college would have been had they 
instead not attended college. For the TUT, we assume the corollary, that the fertility observed for 
women who attend college represents what the fertility of women who did not attend college 
would have been had they instead attended college.  
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As we discussed around equation (18), the ignorability assumption states that there is no 
bias resulting from using the naive estimator for estimating the treatment effect conditional on the 
propensity score. This also means that TT and TUT are the same conditional on the propensity 
score. As a result, the distinction between choosing treated units or untreated units as the target 
group is of minor consequence for the MS-HTE method. Note that the choice of the target group is 
consequential for unconditional TT and TUT because the choice dictates the weights over which 
conditional treatment effects are aggregated over the range of the propensity score. That is, in 
theory, the MS-HTE provides the same pattern for heterogeneous treatment effects as a function of 
the propensity score, no matter whether treated units or untreated units are taken as the target 
group for matching. In practice, results of the two approaches would often differ somewhat due to 
data limitation, typically at the tails of the propensity score.   

4  Empirical Example 
To demonstrate the two methods that we discussed earlier, we draw the example from Brand and 
Davis’s [forthcoming] study in analyzing the effects of college attendance on women's fertility. We 
replicate one segment of their original analysis with our first estimator (SM-HTE) and then 
demonstrate our second estimator (MS-HTE). In the subsections that follow, we (1) describe our 
data, (2) report results for our propensity score model, (3) present results for effects of college 
attendance on women's fertility under an assumption of treatment effect homogeneity, and then (4) 
discuss results for heterogeneous college effects using SM-HTE and MS-HTE. 

4.1  Data Description 

We use panel data from the National Longitudinal Survey of Youth 1979 (NLSY), a nationally 
representative sample of 12,686 respondents who were 14-22 years old when they were first 
interviewed in 1979. NLSY respondents were interviewed annually through 1994 and are currently 
interviewed on a biennial basis. We use data gathered from 1979 through 2006. We restrict our 
sample to women (n = 6,283) who were 14-17 years old at the baseline survey in 1979 (n = 2,736), 
who had completed at least the 12th grade when they were 19 years old (n = 2,090), who did not 
have missing data on college attainment (n = 2,013) or fertility in the 2006 survey (n = 1,512). We 
set these sample restrictions so that all measures we use are pre-college, particularly ability, and to 
compare college-educated women with women who completed at least a high school education.4

                                                             

4 We impute missing values for our set of pre-treatment covariates based on all other covariates. Most 
variables have 1-2% missing values. Only two variables are missing for more than 5% of the sample: 
parents' income (355 cases) and high school college-preparatory program (135 cases). 
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The women we lose due to missing data and attrition tend to be from more disadvantaged family 
backgrounds and levels of achievement than those women we retain.  
 Our treated group is comprised of women who completed at least the first year of college by 

age 19, and our control group is comprised of women who completed high school but did not attend 

college by age 19. Of those women who attend college by age 19, roughly half complete college by 

age 23 and two-thirds complete by their early 40s. About 40% of non-college attendees attend 

college later, although less than 14% complete college. Non-college attendees who attend college at 

some future point represent a distinct treatment group who are on average more disadvantaged 

than timely college attendees (Rosenbaum, Deli-Amen, and Person 2006). We do not restrict the 

control group to women who never attend college; we follow Brand and Xie (2007) in this regard 

and collapse all future paths when assessing the treatment at a particular time. That is, we focus on 

whether or not a college education occurs at a particular time and remain agnostic about future 

educational acquisition, allowing the reference to be a composite of future counterfactual paths. 

The likelihood of attending college varies by race and ethnicity, social origins, ability,5

4.2 Propensity Score Estimation 

 

academic achievement, and pre-college fertility in expected directions. Blacks, Hispanics, teenage 

mothers, and women with disadvantaged social backgrounds and low levels of academic 

achievement and ability are less likely to go to college than white women, women who are not teen 

mothers, and women with advantaged social backgrounds and high levels of academic achievement 

and ability. See Appendix A for descriptive statistics. 

The first step in our analysis is to estimate propensity scores for each woman in the sample for the 

probability of timely college attendance given a set of observed covariates using a probit regression 

model, predictors being observed pre-college covariates. Table 1 provides results for the 

propensity model, which support the literature on the determinants of college attendance. 

  

                                                             

5 In 1980, 94% of the NLSY respondents were administered the Armed Services Vocational Aptitude 
Battery (ASVAB), ten intelligence tests measuring knowledge and skill in areas such as mathematics and 
language. We residualize separately by race and ethnicity each of the ASVAB tests on age at the time of 
the test, standardize the residuals to mean zero and variance one, and construct a scale of the 
standardized residuals (α = .92) with a mean of zero, a standard deviation of 0.75, and a range of -3 to 3 
(Cawley et al. 1997). 
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Black -0.133 (0.116)
Hispanic 0.051 (0.158)
Mother's education -0.136 (0.080)
Mother's education2 0.009 ** (0.003)
Father's education 0.038 * (0.018)
Parents' inc. (1979 $1,000s) -0.202 (0.448)
Intact family 0.038 (0.112)
Number of siblings -0.040 † (0.024)
U.S. born 0.353 (0.258)
Rural residence -0.157 (0.110)
Southern residence 0.283 ** (0.099)
Catholic -0.018 (0.108)
Jewish 0.292 (0.458)
Mental ability 0.638 *** (0.079)
College-preparatory 0.380 *** (0.098)
Parents' encouragement 0.455 *** (0.119)
Friends' plans 0.058 * (0.023)
Child by age 18 -1.230 *** (0.240)
Non-missing on covariates 0.001 (0.098)
Constant -2.437 *** (0.608)

Wald χ2 299.43
P > χ2 0.000

Table 1. Propensity Score Probit 
Regression Models Predicting College 
Attendance (N=1,512)

Notes: Numbers in parentheses are standard errors. 
Dependent variable is college attendance by age 19 (1) versus 
high school completion but no college attendance by age 19 
(0).

* p <. 05   ** p < .01   *** p < .001   (two-tailed tests)
 

4.3  Homogenous Effect Estimates 

Before turning to our heterogeneous effect estimates, we estimate the effect of education on 

women's fertility under a, likely unrealistic, assumption of college effect homogeneity. We evaluate 

the average effect of college attendance by age 19 on number of children by age 41 using a Poisson 

regression model controlling for the estimated propensity score.6

                                                             

6 We use a Poisson rather than a negative binomial model because we did not find evidence of 
overdispersion (i.e., the variance of the outcome is not greater than the mean of the outcome). 
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Our estimator takes the following form: 

 𝑙𝑜𝑔𝜇𝑖 = 𝛼 + 𝛿𝑑𝑖 + 𝛽𝑝𝑖,      (21) 

where μi is the conditional expected number of children for the ith observation; di indicates whether 

or not a woman attends college; and pi represents the propensity for college attendance.  

We report the estimated average effects in Table 2. The results from Model 1 suggest a 17% 

reduction in the number of children for college-educated women relative to less-educated women. 

However, this is a zero-order relationship. Controlling for the propensity for college attendance in 

Model 2, or factors that might lead to pre-treatment heterogeneity bias, we find an 11% reduction 

in the number of children women bear by age 41 associated with college attendance. However, 

these average effects, whether or not we control for factors that predispose women to attend 

college, conceal underlying systematic heterogeneity in the effects of college attendance shaped by 

the population composition of college goers.  To this heterogeneity issue we now turn.  

Model 
1

Model 
2

College Attendan -0.171 ** -0.106 †
(0.049) (0.057)

Incidence rate ratio 0.843 0.889
Propensity Score --- -0.225 *

(0.108)
Incidence rate ratio 0.824
Constant 0.647 *** 0.697 ***

(0.024) (0.034)

Wald χ2 12.10 15.59
P > χ2 0.001 0.000

Table 2. Homogenous Effects of College 
Attendance on Fertility, Poisson 
Regression Models (N=1,512)

Notes: Numbers in parentheses are standard errors.
Dependent variable is number of children by age 
41. Propensity scores were generated by a probit 
regression model of college attendance by age 19 
on the set of pre-college covariates.
† p<.10   * p <.05   *** p < .001   (two-tailed tests)  
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4.4  Heterogeneous Effect Estimates using the SM-HTE 

To estimate heterogeneous treatment effects with the stratification-multilevel method (SM-HTE), 

we first group respondents into propensity score strata such that average values of the propensity 

score and each covariate do not significantly differ between college and non-college women 

(p<.001) (Becker and Ichino 2002). The frequency distributions for college and non-college women 

run in opposite directions: for college-educated women the frequency count increases with the 

propensity score whereas for non-college-educated women the count decreases, as shown in Table 

3. There is, however, overlap within each stratum (i.e., for each propensity score stratum there are 

both college and non-college educated women).  

Two issues may emerge when studying effect heterogeneity with SM-HTE. First, there may 

not be a sufficient number of treated and control cases within each stratum to estimate level-1 

effects. The number of treated cases in the lowest propensity score stratum and the number of 

control cases in the highest propensity score stratum, the "against the odds" units, pose the most 

likely problem. There is a tension between achieving balance in the covariate distribution and 

stability in the estimated effects. We suggest at least 20 treated and 20 control cases within each 

stratum. For our empirical example, we did not have a sufficient number of non-college goers in the 

final stratum (i.e., initially we had 14), and therefore collapsed the final two strata and adjusted for 

the estimated propensity score in the level-1 stratum 5 regression. Second, some covariates may 

not balance within some strata. We suggest trying different specifications of the propensity score, 

such as adding interactions and quadratic terms, to achieve balance. But if there is no reasonable 

adjustment that renders all strata balanced, the analyst may adjust for the unbalanced covariate(s) 

in the level-1 models. Our indicator of Hispanic ethnicity was not balanced in stratum 1 for the 

college attendance model and was thus added as a covariate in our level-1 stratum 1 model. 

Table 3 provides covariate means by propensity score strata and college attendance. These 

statistics demonstrate the characteristics of a typical woman within each stratum. For the kth 

covariate in the jth stratum, we estimate the standardized mean covariate difference to quantify the 

bias between the treatment and the control groups (DiPrete and Gangl 2004; Morgan and Winship 

2007): 

𝐵𝑘,𝑗 = |𝑋�𝑘,𝑗,𝐷=1−𝑋�𝑘,𝑗,𝐷=0|

�𝑆𝑘,𝑗,𝐷=1
2 +𝑆𝑘,𝑗,𝐷=0

2

2

       (22) 

where 𝑋�𝑘,𝑗,𝐷 is the sample mean and 𝑆𝑘,𝑗,𝐷
2  is the sample variance of the kth covariate in the jth 

stratum for the treated and control groups as indexed by D=(1,0).   
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Variables
E(X) | 
d =0

E(X) | 
d =1 B

E(X) | 
d =0

E(X) | 
d =1 B

E(X) | 
d =0

E(X) | 
d =1 B

E(X) | 
d =0

E(X) | 
d =1 B

E(X) | 
d =0

E(X) | 
d =1 B

Black 0.18 0.07 0.65 0.15 0.22 0.32 0.16 0.13 0.06 0.07 0.10 0.21 0.10 0.06 0.16
Hispanic 0.07 0.35 1.11 0.05 0.05 0.02 0.04 0.04 0.06 0.05 0.02 0.27 0.06 0.02 0.38
Mother's edu. 10.34 9.97 0.45 11.19 11.71 0.23 11.74 11.85 0.07 12.58 12.55 0.09 14.10 14.45 0.16
Father's edu. 9.92 9.98 0.38 11.18 10.73 0.24 11.94 12.55 0.11 12.80 13.17 0.10 15.43 15.35 0.08
Parents' inc/1000 18.07 16.06 0.18 19.95 16.32 0.22 20.22 0.20 0.03 23.21 0.26 0.20 0.29 0.32 0.16
Intact family 0.71 0.77 0.02 0.72 0.72 0.06 0.75 0.62 0.01 0.80 0.89 0.06 0.80 0.85 0.16
Num. of siblings 3.96 3.68 0.27 3.34 3.48 0.07 2.87 2.90 0.22 2.69 2.43 0.18 2.20 2.33 0.01
U.S. born 0.96 0.74 0.51 0.97 0.96 0.10 0.96 0.98 0.04 0.94 0.98 0.27 0.98 0.97 0.09
Rural res. 0.25 0.02 0.54 0.24 0.35 0.22 0.26 0.20 0.09 0.18 0.21 0.11 0.15 0.16 0.06
Southern res. 0.31 0.29 0.47 0.25 0.38 0.26 0.34 0.37 0.12 0.40 0.37 0.15 0.40 0.35 0.16
Catholic 0.28 0.40 0.63 0.30 0.44 0.06 0.35 0.31 0.01 0.37 0.38 0.01 0.39 0.31 0.17
Jewish 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.01 0.14 0.01 0.00 0.13 0.05 0.05 0.02
Mental ability -0.34 -0.47 0.14 -0.03 0.04 0.16 0.29 0.28 0.04 0.60 0.67 0.09 0.98 1.04 0.03
College-prep. 0.06 0.03 0.06 0.16 0.14 0.08 0.32 0.32 0.01 0.57 0.61 0.15 0.72 0.77 0.02
Parents' enc. 0.44 0.58 0.19 0.68 0.63 0.03 0.83 0.82 0.03 0.92 0.91 0.05 0.95 0.96 0.05
Friends' plans 12.79 13.75 0.38 13.76 13.83 0.14 14.40 14.67 0.16 15.08 14.91 0.03 16.17 15.88 0.11
Child by age 18 0.23 0.11 0.32 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.12
Propensity score 0.05 0.06 0.45 0.15 0.16 0.41 0.28 0.31 0.38 0.48 0.50 0.29 0.73 0.74 0.07
Sample Size 420 21 223 55 245 98 112 116 72 150

Notes: E(X) |d =0 indicates the mean of X  for women who did not attend college by age 19 but completed high school, and E(X) |d =1 indicates the 
mean of X  for women who attended college by age 19.

Stratum 1 Stratum  2 Stratum  3
[0.0-0.1)

Table 3. Covariate Means by Propensity Score Strata and College Attendance (N=1,512)
Stratum  4 Stratum  5

[0.1-0.2) [0.2-0.4) [0.4-0.6) [0.6-1.0]
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The standardized difference is clearly larger in some strata than in others for some covariates, 
suggesting that what differentiates those who attend college from those who do not differs between 
more and less advantaged women. Bias between college and non-college goers' characteristics is 
largest in stratum 1 for our empirical example; we should take this differential bias into 
consideration when we interpret our results. 
 We next report results of estimating heterogeneous treatment effects with the SM-HTE. In 
level-1, we first present the non-parametric results after stratification only, i.e., propensity score 
stratum-specific college effects on number of children using Poisson regression models: 

𝑙𝑜𝑔𝜇𝑖𝑗 = 𝛼𝑗 + 𝛿𝑗𝑑𝑖         (23) 

where all the terms are defined above. Subjects indexed by i are nested in propensity score strata 
indexed by j. Separate Poisson regression models are estimated for each propensity score stratum 
as indicated by the subscript j. Intercepts and slopes are allowed to be estimated freely within 
propensity score strata.  

To detect patterns in treatment effects across propensity-score strata, we now take the 
estimated stratum-specific slopes as observations in a level-2 model. For simplicity, we summarize 
the pattern in heterogeneous treatment effects across propensity-score strata with the following 
linear model: 

𝛿𝑗 = 𝛿0 + 𝜙𝑗 + 𝜂𝑗,       (24)  

where level-1 slopes (𝛿𝑗) are regressed on propensity score rank indexed by j, 𝛿0 represents the 

level-2 intercept (i.e., the predicted value of the effect of college for the lowest propensity women), 
and 𝜙 represents the level-2 slope (i.e., the change in the effect of college on fertility with each one- 
unit change to a higher propensity score stratum). Normality of 𝜂𝑗is assumed for inference. We use 

variance-weighted least squares to estimate equation (33), and thus do not assume homogeneity of 
variances across the δ's. Variances across the δ's come from two sources: sampling variation (due to 
different sample sizes by group) and true population variance (heteroskedasticity). When we 
account for varying precision of level-1 slopes estimated within strata due to sampling variation, 
the level-2 slope estimate is more efficient. Heteroskedasticity in this case is substantively 
significant, as it suggests that the uncertainty of treatment effects may vary across groups 
(Raudenbush and Bryk 2002).  

Table 4 and Figure 1 report our multilevel model results for heterogeneous effects of 
college on fertility. These results are virtually the same as those reported in Brand and Davis 
[forthcoming], except that we constructed the strata based on a different sample size that led to 
some moderately different estimates. To facilitate implementation of our method, we use the newly 
developed Stata module --hte-- (Jann, Brand, and Xie 2010; in Stata "ssc install hte"). The level-2 
slope indicates a significant decline in the fertility-decreasing effect of college attendance, a 
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difference of 0.12 for each unit change in propensity score rank. Level-1 estimates range from a 
61% decrease in the number of children for women with the lowest propensity to attend college 
(stratum 1), to a 16% decrease in stratum 2, to a 7% increase in the number of children for women 
with the highest propensity to attend college (stratum 5). Figure 1 summarizes the results in Table 
5. “Dots” in Figure 1 represent point estimates of level-1 slopes, stratum-specific Poisson regression 
effects of college on number of children by age 41. The linear plot in the figure is the level-2 
variance-weighted least squares slope. We reverse the y-axis to emphasize the fertility-decreasing 
effect of college.  

Level-1 Slopes
Poisson Regression
P-Score Stratum 1 -0.944 **

[0.0-0.1) (0.349)
Incidence rate ratio 0.389
P-Score Stratum 2 -0.18

[0.1-0.2) (0.150)
Incidence rate ratio 0.835

P-Score Stratum 3 -0.165
[0.2-0.4) (0.101)

Incidence rate ratio 0.848

P-Score Stratum 4 -0.064
[0.3-0.6) (0.115)

Incidence rate ratio 0.938
P-Score Stratum 5 0.07

[0.6-1.0] (0.128)
Incidence rate ratio 1.072

Level-2 Slope 0.129 *
Variance Weighted Least Squares (0.055)

Table 4. Heterogeneous Effects of College 
Attendance on Fertility, SM-HTE (N = 1,512)

Notes: Numbers in parentheses are standard errors.

Dependent variable is number of children by age 41. 
Propensity scores were generated by a probit 
regression model of college attendance by age 19 on 
the set of pre-college covariates. Propensity score 
strata were balanced such that mean values of 
covariates did not significantly differ between college 
and non-college goers.

† p < .10   * p <. 05   ** p<.01   (two-tailed tests)  
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A few additional issues about the SM-HTE approach should be noted. First, as shown in 
Table 4, few of the level-1 estimated effects are significant, despite the significant level-2 slope. 
Second, there may be differential bias in observed and unobserved factors influencing the 
treatment and the outcome across propensity score strata. If the bias is greater in stratum 1 than in 
stratum 5, for example, what can we say about the estimated trend in effects? Perhaps the 
researcher should resort to sensitivity tests to gauge the susceptibility of the level-2 slope to the 
presence of stratum-specific omitted variable bias. This issue requires future research.  

Finally, Figure 1 depicts the close correspondence between the level-1 college effects on 
fertility and the level-2 linear slopes. Although this example demonstrates a linear trend in effects 
of college, linearity is unlikely to hold in most applications (see, for example, Brand and Xie [2010] 
and Brand 2010). In an actual research setting, linearity should be taken as the first-order 
approximation of a trend. If an analyst has a larger sample size and more strata, and finds evidence 
of non-linearity, he or she might fit a quadratic or cubed term in level-2. However, in practice, the 
researcher would have difficulty identifying higher-order interactions with the SM-HTE approach 
because typically only a few strata are formed so that only a limited number of δ's are estimated in 
the stratification step, too limited for the identification of higher-order functions. It is precisely the 
need for detecting potential non-linearity that motivates our second method, the matching-
smoothing (MS-HTE) method, which is non-parametric.   
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4.5  Heterogeneous Effect Estimates using the MS-HTE 

To estimate heterogeneous treatment effects with the matching-smoothing method (MS-HTE), we 

begin once again by estimating the propensity score for treatment. In our example, we estimate the 

propensity score of college attendance. The second step is to match treated and control units by the 

estimated propensity scores and generate differences between treated and control units. As we 

discussed earlier in subsection 3.4, there are several options for matching treated and control units. 

We choose three options for illustration and compare the results from these options: (1) nearest 

neighbor matching with 1 control, (2) nearest neighbor matching with 5 controls, and (3) kernel 

matching (Leuven and Sianesi 2003). 7

The results from the different smoothing methods yield very similar results. To conserve 

space, we choose to present results from only one of them. Figure 2 depicts the estimated results 

for the treatment group with local polynomial smoothing and nearest neighbor matching with 5 

controls. The curve for the treatment effect as a function of the propensity score in Figure 2 can be 

interpreted as a non-parametric regression for the individually matched differences given in 

Appendix C. In other words, the “raw” data for the second step of smoothing analysis (Figure 2) are 

differences of matched comparisons in the first step (Appendix C).

 For the main substantive results, we plot the matched 

differences between treated and control units along a propensity score x-axis and fit a smoothed 

curve. Since the main objective of using the MS-HTE method is to be non-parametric with respect to 

the pattern of the heterogeneous treatment effects over the range of the propensity score, the 

researcher would want to use a flexible modeling device to fit the data. In our example, we use both 

local polynomial smoothing (degree-1, bandwidth 0.2) and Lowess smoothing.  

8

Figure 2 differs from Figure 1 in that the x-axis is a continuous representation of the 

propensity score rather than discrete strata. Moreover, we now have a fully non-parametric 

depiction of treatment effect heterogeneity, rather than the imposition of a functional form on the 

heterogeneity in effects. In the empirical example, it appears that linearity is a reasonable 

   

                                                             

7 Appendix B provides matching estimates of TT and TUT for these various matching algorithms. These 
estimates suggest heterogeneity in treatment effects, as we observe substantially greater negative 
effects for the TUT than for the TT, irrespective of which matching algorithm we use, although none of 
the estimates reflect statistically significant differences. A greater effect for a randomly selected non-
college attendee relative to a randomly selected college attendee would support the results from Figure 
1, i.e., that the fertility-decreasing effects of college are larger for women with a low propensity than for 
women with a high propensity for college attendance. 
8 The y-axis is wider in Appendix C than in Figure 2 in order to fit all the data points. 
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functional form. Hence, the substantive conclusion from using either the SM-HTE or the MS-HTE 

method is the same. That is, we still observe a progressively smaller fertility-decreasing effect of 

college attendance as women’s propensity for college increases. While the data analyzed for this 

empirical example are well suited to SM-HTE because the trend in effects appears linear, there are 

surely scenarios in which MS-HTE can be shown to be advantageous over SM-HTE, and vice-versa.  

We observe generally the same pattern in Figure 2 using either the local polynomial 

smoothing or the Lowess smoothing, although we see more curvature at the ends with the latter. In 

the interest of space, and because results are largely the same, we do not show figures for 

alternative matching algorithms. In results not shown, we observe a moderately steeper slope using 

nearest neighbor matching with 5 controls than with kernel matching and we observe a larger 

effect for women with a low likelihood of college attendance when we apply the method to the 

untreated rather than the treated. This is due to the increased data mass at the lower end of the 

propensity score, which makes the smoothing more adaptive in this region.  
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5  Discussion and Conclusion 

Heterogeneous treatment effects, while widely recognized in sociological research, are seldom 

studied. If heterogeneity in treatment effects is such that the treatment effect size is correlated with 

the propensity score, average treatment effects for units at the margin, units being treated, and 

units not being treated all change when selection criteria for receiving treatment change. This is 

true even when the proportion receiving treatment simply increases or decreases, as in situations 

when the pool of treatment expands due to either eligibility criteria becoming lower or incentives 

becoming higher. By revealing how effects differ among subpopulations, we can contribute to 

sociological knowledge about the mechanisms through which treatments affect individuals’ 

opportunity structures and enable policy makers to make informed decisions to maximize 

population benefits.  

In this paper, we discuss a practical approach to studying heterogeneous treatment effects, 

under the same assumption commonly underlying regression analysis: ignorability. We describe 

two methods within this general approach. For the first method (SM-HTE), we begin by estimating 

propensity scores for the probability of treatment given a set of observed covariates for each unit 

and construct balanced propensity score strata; we then estimate propensity score stratum-specific 

average treatment effects and evaluate a trend across the strata-specific treatment effects across 

strata. For the second method (MS-HTE), we match control units to treated units based on the 

propensity score and transform the data into treatment-control comparisons at the crudest level 

possible; we then estimate treatment effects as a function of the propensity score by fitting a non-

parametric model as a smoothing device. There are tradeoffs between the two methods. The first 

method (SM-HTE) generates stratum-specific estimates that aid the interpretation of treatment 

effects across strata, which can be compared to regression estimates for the population under an 

assumption of homogeneity. This method can also provide an estimate of the across-stratum slope, 

indicating whether or not effect heterogeneity is roughly linear across propensity-score strata. The 

second method (MS-HTE) does not have these advantages, but overcomes some disadvantages 

specific to SM-HTE, as it does not assume a global functional form on the heterogeneity in treatment 

effects. It also allows for heterogeneous treatment effects as a continuous function of the propensity 

score rather than imposing homogeneity within strata with a sufficient number of observations. We 

suggest using these methods concurrently to test the corresponding underlying assumptions. 

A few comments are in order as to the benefits of the general approach of focusing on 

observable heterogeneity in treatment effects. First, while the ignorability assumption is unlikely to 



Heterogeneous Treatment Effects                                                                                                                          32 

 

 

be true for most sociological applications, its plausibility depends on how rich the covariates are 

and is thus a substantive issue in actual research rather than a methodological question that can be 

debated in general. Second, we assume ignorability only so as to see how much we can learn from 

the data. Without this assumption, strong parametric assumptions are needed about unobservable 

variables (Heckman 1978; Willis and Rosen 1979). Third, we can always revisit the assumption of 

ignorability after the analyses are conducted (Harding 2003; Rosenbaum 2002; Xie and Wu 2005). 

Fourth, ignorability is not incompatible with the common notation of selection bias. Indeed, we 

hypothesize that much selection bias may reveal unobserved heterogeneity in selection into 

treatment. Our approach facilitates investigation of heterogeneity bias across the observed 

likelihood of treatment. Our work on heterogeneous treatment effects therefore complements a 

large literature that capitalizes on unobserved variables and identification strategies through 

parametric assumptions and instrumental variables (Heckman 1978; Heckman, LaLonde, and Smith 

1999; Heckman, Urzua, and Vytlacil 2006; Willis and Rosen 1979). Finally, while the kind of 

heterogeneity in treatment effects we discuss is potentially observable in empirical research using 

regression analyses without any additional assumptions, it does not mean that it is actually 

observed or reported in empirical research. That is, while treatment effect heterogeneity under 

ignorability has long been recognized and accepted, few researchers actually examine patterns of 

treatment effect heterogeneity by observed covariates. We suspect that lack of ready-to-use 

statistical methods is a reason why heterogeneous treatment effects are not routinely checked and 

reported.  

There are alternative methods to those we discussed in this paper. One possibility is 

stratification by key covariates, allowing the interaction of treatment and certain covariates that are 

believed to be of primary importance in heterogeneous treatment effects, such as gender and race.  

Another related method is to test cross-level interactions: estimation of a hierarchical linear model 

that allows the regression coefficient at the lower level to vary across higher-level units 

(Raudenbush and Bryk 1986, 2002). However, for the question of whether there are potential 

selection biases, i.e., systematic differences between the treatment group and the control group, the 

interaction between the propensity score and the treatment indicator is the only interaction that 

should concern the researcher. In this paper, we discussed methods that can be used to detect this 

important interaction pattern, under the same assumption that underlies most of the empirical 

analyses currently practiced in sociology, no matter whether they are interested in homogeneous 

effects or interaction effects. That is, while we maintain the ignorability assumption, we relax the 

strict homogeneity assumption. 
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Of course, a study of heterogeneous effects using methods discussed in this paper does not 

solve the main methodological challenge facing empirical researchers: selection on the 

unobservables.  Thus, the methods we proposed in this paper are limited, only because they use the 

same information and presume the same assumption as conventional methods. However, without 

any additional assumption or additional data, the new methods yield new information of potential 

importance that is often overlooked in empirical research. Given that no more new data or 

assumptions are required for the methods being proposed here, continuing the practice of ignoring 

this kind of information seems unwarranted.  Thus, we recommend that researchers use the 

methods we have proposed here in their empirical work, if not to test theoretically derived 

hypotheses about heterogeneous treatment effects, then merely as a new way to explore and better 

understand their empirical data.   
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Variables Mean Std. Dev. Mean Std. Dev.
Race

Black (0-1) 0.149 0.356 0.100 0.301
Hispanic (0-1) 0.055 0.228 0.035 0.185

Family background
Mother's education (years) 11.402 2.286 13.050 2.430
Father's education (years) 11.425 3.095 13.636 3.247
Parents' income (1979 dollars) 20418 11636 26143 13139
Intact family age 14 (0-1) 0.737 0.440 0.800 0.401
Number of siblings 3.285 2.195 2.610 1.686
U.S. born (0-1) 0.960 0.197 0.971 0.167
Rural residence, age 14 (0-1) 0.235 0.423 0.197 0.167
Southern residence, age 14 (0-1) 0.321 0.466 0.360 0.476
Catholic (0-1) 0.322 0.467 0.345 0.476
Jewish (0-1) 0.005 0.071 0.025 0.156

Ability and academics
Mental ability* 0.089 0.616 0.659 0.564
College-prep. (0-1) 0.253 0.423 0.559 0.492

Social-psychological
Parents' enc. college (0-1) 0.678 0.457 0.881 0.322
Friends' plans (years schooling) 13.905 2.060 15.133 1.900

Fertility history
Had a child by age 18 (0-1) 0.084 0.276 0.004 0.063

Fertility
Number of children age 41 1.909 1.301 1.610 1.246

Sample Size
Weighted Sample Prop.

Appendix A. Descriptive Statistics of Pre-College Covariates and 
Fertility by College Attendance, NLSY Women (N=1,512)

Notes:  Ability is measured with a scale of standardized residuals of the ASVAB. All 
statistics are weighted by a NLSY panel weight.

No College 
Attendance by Age 19

College Attendance 
by Age 19

4401072
0.68 0.32
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TT TUT
Nearest neighbor matching, 1 contr -0.123 -0.24

(0.123)
Nearest neighbor matching, 5 contr -0.157 -0.49

(0.095)
Kernel matching -0.099 -0.41

(0.090)

Notes: Numbers in parentheses are standard errors.

† p < .10   * p <. 05   ** p<.01   (two-tailed tests)

Appendix B. Matching Estimates of Effects of College 
Attendance on Fertility (N = 1,512)

Dependent variable is number of children by age 41. Treatment is 
college attendance by age 19. Propensity scores were generated by 
a probit regression model of college attendance on the set of pre-
college covariates. 

 
 
 
 

 




