Estimating high-dimensional directed acyclic graphs with the PC-algorithm

Markus Kalisch

Seminar für Statistik, ETH Zürich, Switzerland

Markus Kalisch, ETH Zürich Estimating DAGs with the PC-algorithm

Directed Acyclic Graphs (DAGs)

- Nodes: Random Variables
- Edges: Some Dependence
- Recursive factorization:
 f(GM, C, S) =
 f(GM)f(C|GM)f(S|GM)
- We assume Multivariate Normal Distribution

Directed Global Markov Property

- DAG implies conditional independence relations
- $C \perp S | GM \iff C, S \text{ are separated by } GM \text{ in } (G_{An(C \cup S \cup GM)})^m$

- Ancestral set
- Moralize
- Drop directions

Conditional independence relations implied by DAG = Conditional independence relations of distribution

Skeleton of a DAG

- Ignore directions of arrows
- Edge between two nodes A and B ext{ or } A, B are dependent given every subset of remaining nodes

The PC-algorithm for finding a DAG

• Finding the skeleton:

Form complete graph GI = -1

repeat

```
l = l + 1
```

repeat

select (new) ordered pair of adjacent nodes A, B in Gselect (new) neighborhood N of A with size I (if possible) if A, B are cond. indep. given Nsave N in \mathbf{N} delete edge A, B in Guntil all ordered pairs have been tested until all neighborhoods are of size smaller than I

• Finding the DAG: The skeleton can be directed using N and four simple rules.

Sample Version of the PC-algorithm

- Real World: Cond. Indep. Relations A
 B|S are not known
- Instead: Test for partial correlation $\rho_{AB|S} = 0$ (due to Gaussian assumption)

Therefore:

Remove edge if test for $\rho_{AB|S} = 0$ cannot be rejected for some *S* on level α .

Consistency: Assumptions

n: Number of samples, p: Number of nodes

- Multivariate Normality, Faithfulness
- Nodes: $p_n = O(n^a)$ $0 \le a < \infty$ (high-dimensional)
- Max number of neighbors is $O(n^{1-b})$ $0 < b \le 1$ (sparse)
- Bounded partial correlations $(0 < d < \frac{b}{2})$: $\inf\{|\rho_{ij|\mathbf{k}}|; \rho_{ij|\mathbf{k}} \neq 0\} \ge c_n, \ c_n^{-1} = O(n^d) \ (\text{larger than } \frac{1}{\sqrt{n}})$ $\sup\{|\rho_{ij|\mathbf{k}}|\} \le M < 1$

Consistency: Main Result

Under these assumptions:

There exists some $\alpha_n \rightarrow 0 \ (n \rightarrow \infty)$ so that

 $\begin{array}{l} P(\text{estimated DAG} = \text{true DAG}) = 1 - O(\exp(-Cn^{1-2d})) \to 1 \\ (n \to \infty) \quad \text{for} \quad 0 < C < \infty \end{array}$

Choice of $\boldsymbol{\alpha}$

- Structural Hamming Distance (SHD) measures distance between estimated and true graph.
- Over a wide range of parameters the average SHD is minimized for significance levels between α = 0.005 and α = 0.001.
- In practice: Either choose default values for α or generate priority list of edges

Performance

Computing Time: p = 1000, n = 1000, $E[N] = 8 \rightarrow t \sim 1h$ Estimation:

- Number of variables p increases exponentially
- Number of samples n increases linearly
- Expected size of neighborhood $E[N] = \sqrt{n}$ increases sublinearly

Then: TPR increases, FPR decreases

Markus Kalisch, ETH Zürich Estimating DAGs with the PC-algorithm

Application

Production of Riboflavin (Vitamin B₂) in Bacillus Subtilis

- **Goal:** Maximize output of Riboflavin Y by manipulating genes
- Data obtained by Affymetrix B. subtilis GeneChips from DSM Nutritional Products
- Number of Variables p = 4088, number of samples n = 50

Which genes have an influence on Y?

Application 2

Result

- Small number of stable candidates extracted
- They are a subset of genes found with other techniques (Lasso, Elastic Net,...)
- Findings promising from a biological point of view
- Experimental testing in progress

- DAG, Skeleton, Dependence
- PC-algorithm finds true DAG/skeleton consistently (under some assumptions)
- PC-algorithm is fast for sparse graphs
- More information: M. Kalisch and P. Bühlmann
 Estimating High-Dimensional Directed Acyclic Graphs with the PC-algorithm
 JMLR 8 (2007)
- R-package pcalg for the PC-algorithm (including robust version)