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Abstract. We address the problem of recovering 3D human pose from single 2D

images, in which the pose estimation problem is formulated as a direct nonlinear

regression from image observation to 3D joint positions. One key issue that has

not been addressed in the literature is how to estimate 3D pose when humans

in the scenes are partially or heavily occluded. When occlusions occur, features

extracted from image observations (e.g., silhouettes-based shape features, his-

togram of oriented gradient, etc.) are seriously corrupted, and consequently the

regressor (trained on un-occluded images) is unable to estimate pose states cor-

rectly. In this paper, we present a method that is capable of handling occlusions

using sparse signal representations, in which each test sample is represented as a

compact linear combination of training samples. The sparsest solution can then be

efficiently obtained by solving a convex optimization problem with certain norms

(such as l1-norm). The corrupted test image can be recovered with a sparse linear

combination of un-occluded training images which can then be used for estimat-

ing human pose correctly (as if no occlusions exist). We also show that the pro-

posed approach implicitly performs relevant feature selection with un-occluded

test images. Experimental results on synthetic and real data sets bear out our

theory that with sparse representation 3D human pose can be robustly estimated

when humans are partially or heavily occluded in the scenes.

1 Introduction
Estimating 3D articulated human pose from single view is of great interest to numerous

vision applications, including human-computer interaction, visual surveillance, activ-

ity recognition from images, and video indexing as well as retrieval. Notwithstanding

some demonstrated success in the literature, this problem remains very challenging for

several reasons. First, recovering 3D human poses directly from 2D images is inher-

ently ambiguous due to loss of depth information. This problem is alleviated with ad-

ditional information such as temporal correlation obtained from tracking, dynamics of

human motion and prior knowledge, or multiple interpretations conditioned on partial

image observations. In addition, the shape and appearance of articulated human body

vary significantly due to factors such as clothing, lighting conditions, viewpoints, and

poses. The variation of background scenes also makes the pose estimation more dif-

ficult. Therefore, designing image representations that are invariant to these factors is

critical for effective and robust pose estimation.

Human pose estimation algorithms can be categorized as generative (model-based)

and discriminative (model-free). Generative methods employ a known model (e.g., tree

structure) based on prior knowledge [1]. The pose estimation process includes two parts:

1) modeling: constructing the likelihood function and 2) estimation: predicting the most

likely hidden poses based on image observations and the likelihood function. However,



it is difficult to consider factors such as camera viewpoint, image representations and

occlusion in the likelihood functions. Furthermore, it is computationally expensive to

compute these functions and thus makes them unsuitable for inferring the hidden poses.

In contrast, discriminative methods do not assume a particular human body model,

and they can be further categorized as example-based [2] and learning-based [3–5].

Example-based approaches store a set of training samples along with their correspond-

ing pose descriptors. For a given test image, a similarity search is performed to find

similar candidates in training set and then obtain estimated poses by interpolating from

their poses [2]. On the other hand, learning-based approaches learn the direct mapping

from image observations to pose space using training samples [3–5]. While generative

methods can infer poses with better precision than discriminative ones, discriminative

approaches have the advantage in execution time.

Several image representations have been proposed in discriminative pose estima-

tion algorithms such as shape context of silhouettes [6], signed-distance functions on

silhouettes [7], binary principal component analysis of appearance [8], and mixture

of probabilistic principal component analysis on multi-view silhouettes [2]. However,

silhouettes are inherently ambiguous as different 3D poses can have very similar sil-

houettes. In addition, clean silhouette can be better extracted with robust background

subtraction methods, which is not applicable in many real-world scenarios (e.g., videos

with camera motion, dynamic background, sudden illumination change, etc.). To cope

with this problem, appearance features like block SIFT descriptors [9], Haar-like fea-

tures [10], Histogram of oriented gradients (HOG) [6, 11, 12] or bag-of-visual-words

representations [13] have been proposed for pose estimation. These descriptors contain

richer information than silhouette-based features, but they inevitably encode irrelevant

background clutter into the feature vector. These unrelated feature dimensions may have

accumulative negative effects on learning the image-to-pose mapping and thereby in-

crease errors in pose estimation. Agarwal et al. [6] deal with this problem by using

non-negative matrix factorization to suppress irrelevant background features, thereby

obtaining most relevant HOG features. In [10], relevant features are selected from a pre-

defined set of Haar-like features through multi-dimensional boosting regression. Okada

and Soatto [12] observed that the components related to human pose in a feature vector

are pose dependent. Thus, they first extract pose clusters using kernel support vector

machine, and then train one local linear regressor for each cluster with features selected

from the cluster.

Another important issue that has not been explicitly addressed in the literature is

how to robustly estimate 3D pose when humans in the scenes are partially or heavily

occluded. When parts of a human body are occluded, the extracted descriptors from

image observation (e.g., shape features from silhouettes, block SIFT, HOG, or part-

based features, etc.) are seriously corrupted. The learned regressor, induced from un-

occluded images, is not able to estimate pose parameters correctly when a human is

occluded in an image. While using tracking algorithm or making use of human motion

prior may alleviate this problem, an effective approach is needed to explicitly handling

occlusion.

In this paper, we show we are able to deal with such problems using sparse im-

age representations in which each test sample can be represented as a compact linear



combination of training samples, and the sparest solution can be obtained via solv-

ing a convex optimization problem with certain norms (such as l1-norm). Within this

formulation, the corrupted test image can be recovered with a linear combination of

un-occluded training images which can then be used for estimating human pose cor-

rectly (as if no occlusions exist). The proposed algorithm exploits both the advantages

of example-based and learning-based algorithms for pose estimation. In our algorithm,

when we represent a given image as a linear combination of training samples and ob-

tain a sparse solution, we are actually searching for a small number of candidates in

the training data set that best synthesizes the test sample. It is similar to the idea of

example-based approaches which perform efficient nearest neighbor search, but yet we

use a more compact representation that has been proven to be effective in dealing with

noise. We then learn a mapping between the compact representation and their corre-

sponding pose space using regression functions. The major difference between sparse

image representation and example-based approach (nearest neighbor search) is that we

consider all possible supports and adaptively select the minimal number of training

samples required for representing each test sample. Hence, with the recovered test sam-

ple, we can estimate 3D human pose when humans in the scenes are partially or heavily

occluded. Moreover, by using sparse representations we can implicitly perform relevant

feature selection. When representing each test sample as a compact linear combination

of training samples, those mismatched components are treated as part of reconstruction

error and discarded directly. Intuitively, we are replacing the background clutter in the

test samples with backgrounds in the training images. In this way, we achieve pose-

dependent feature selection without making any approximation (like clustering poses

in [12] or bag-of-visual-words in [13]) and avoid the need to increase the complexity of

the learning-based algorithms.

The contributions in this paper can be summarized in two main aspects. First, we

propose an algorithm to handle occlusion in estimating 3D human pose by representing

each test sample as a sparse linear combination of training samples. The prediction

errors are significantly reduced by using the reconstructed test samples instead of the

original ones when human in images are occluded. Second, we achieve pose-dependent

feature selection by solving sparse solution with reconstruction error. Our approach

improves over the learning-based algorithm without feature selection.

The remainder of this paper is organized as follows. Section 2 describes related

works on human pose estimation. In Section 3, we introduce the proposed image repre-

sentation scheme. We test our approach on both synthesized (INRIA) and real data set

(HumanEva I) to demonstrate the ability to handle occlusion and feature selection in

Section 4. We conclude this paper with comments on future work in Section 5.

2 Related Work

Due to its scope and potential applications, there has been a substantial amount of work

on the general problem of human motion capture and understanding. As such, we find

it useful to place the focus of our work within the taxonomy proposed by Moedlund

and Granum [14] whereby the field of work is presented in the categories of person

detection, tracking, pose estimation and recognition. Out approach fits best into the

category of pose estimation where the goal is to accurately estimate the positions of the

body parts. More specifically, our approach is to estimate 3D pose from a single image



without the use of temporal information. We will focus on previous work with a similar

goal and leave interested readers to consult one of the surveys for a more complete

listing of work in this general area [14, 15].

Previous approaches to human pose estimation from a single image can be broadly

categorized as model-based or model-free based. In model-based approaches a para-

metric model that captures the kinematics of the human body is explicitly defined. This

model can be used in a predict-match-update paradigm in which maximal agreement

between the model and the image measurements is sought. One method for this is to

simultaneously detect body parts and assemble them in a bottom-up manner. Picto-

rial structures [16] presented a convenient discrete graphical form for this that can be

adapted for people using an efficient dynamic programming minimization proposed by

Felzenszwalb and Huttenlocher [17] and later used in various forms by a number of re-

searchers [18–20]. Mori et al. followed a similar line of thought, but employed “super-

pixels” for the task of segmenting and detecting body parts [21]. Sigal et al. presented

a bottom-up approach in a continuous parameter space using a modified particle filter

for the minimization [1]. In contrast, Taylor developed a method to invert a kinematic

model given an accurate labeling of joint coordinates that provides reconstruction up to

a scale ambiguity [22]. This method was combined with shape-context matching in a

fully automatic system by Mori and Malik [23].

Model-free based approaches, which include regression and example based meth-

ods, take a top-down approach to this problem and attempt to recover a mapping from

image feature space to pose parameter space directly. An early approach of this type

represented 3D pose space as a manifold that could be approximated by hidden Markov

models [24]. Agarwal and Triggs advocated the relevance vector machine (RVM) [25]

to learn this mapping where silhouette boundary points were used as features [26]. Ros-

ales and Sclaroff used specialized maps in addition to an inverse rendering process to

learn this mapping [27]. Along a different line, Shakhnarovich do not learn a regression

function, but instead directly make use of training examples in a lookup table using

an efficient hashing [28]. The feature space used for these types of methods, with few

exceptions, is global in the sense that the features carry no information about the body

region they describe. This provides a clean top-down approach that circumvents any

need to implement part detectors. One exception to this is recent work by Agarwal and

Triggs where the goal is pose estimation in cluttered environments that localized feature

with respect to the window of interest [6].

Our approach uses a regression model to learn the mapping from image feature

space to pose space, but differs from previous work in that sparse representations are

learned from examples with demonstrated ability to handle occlusions.

3 Image Representation

We represent each input image observation as x ∈ IRm and the output 3D human pose

vector as y ∈ IRk. Given a training set of N labeled examples {(xi,yi)|i = 1, 2...N},

the goal of a typical learning-based approach in human pose estimation is to learn

a smooth mapping function that generalizes well for unseen image observation b in

the testing set. As mentioned in the Section 1, straightforward appearance features in-

evitably encode unwanted background information in x, which may introduce signifi-

cant errors in estimating pose from the test samples since the background clutters may



be quite different. The performance of the learned mapping function will also be seri-

ously degraded if humans are occluded in images because part of feature dimensions

are corrupted. To address these two problems, we present a formulation to represent

test samples such that the occluded or the irrelevant parts of the test samples can be

recovered by solving convex optimization problems.

3.1 Test Image as a Linear Combination of Training Images

Given sufficient number of training samples, we model a test sample b by the linear

combination of the N training samples:

b = ω1x1 + ω2x2 + · · · + ωNxN , (1)

where ωi, i ∈ {1, 2, . . . , N} are the scalar coefficients denoting the weights of the i-th

training sample contributing for synthesizing the test samples b. By arranging the N

training samples as columns of a matrix A = [x1,x2, · · · ,xN ] ∈ IRm×N , the linear

representation of b can be written compactly as

b = Aω, (2)

where ω = [ω1, ω2, . . . , ωN ]T is the coefficient vector.

With this formulation, each test sample b can be represented using the correspond-

ing coefficient vector ω by solving the linear system of equations b = Aω. If the

number of the dimension of the image observation m is larger than the number of train-

ing samples N , then the unique solution for ω can usually be obtained by solving the

overdetermined system. However, with data noise or if N > m, then the solution is not

unique. Conventionally, the method of least squares can be used to find an approximate

solution to this case by solving minimum l2-norm solution:

min ||ω||2 subject to Aω = b. (3)

For the system Aω = b, the minimum l2-norm solution can be obtained by ω̂2 =
(ATA)−1ATb. However, the minimum l2-norm (energy) solution ω̂2 is usually dense

(with many nonzero entries), thereby losing the discriminative ability to select the most

relevant training samples to represent the test one. As the vectors of pose parameters

for articulated human body pose reside in an high-dimensional space, the resulting pose

variations are large and diverse. It is reasonable to assume that only very a small portion

of training samples are needed to synthesize a test sample (i.e., only a few nonzero

terms in the solution ω̂ for solving Aω = b). This is especially true when the training

set contain a large number of examples that densely cover the pose space.

3.2 Finding Sparse Solutions via l1-norm Minimization

To find the sparest solution to Aω = b, we can solve the optimization problem in (2)

with l0-norm

min ||ω||0 subject to Aω = b, (4)

where l0-norm counts the nonzero entries in the vector ω. However, solving the l0-norm

minimization problem is both numerically unstable and NP-hard (no polynomial time

solutions exist).



Recent theories from compressive sensing [29–32] suggest that if the solution of ω

is sparse enough, then the sparsest solution can be exactly recovered via the l1-norm

optimization:

min ||ω||1 subject to Aω = b, (5)

where the l1-norm sums up the absolute weights of all entries in ω (i.e., ||ω||1 :=
∑

i
|ωi|, where ωi stands for the i-th entry in the vector). This is a convex optimiza-

tion problem that can be solved by linear programming methods (e.g., generic path-

following primal-dual algorithm) [33], also known as basis pursuit [34].

3.3 Coping with Background Clutter and Occlusion

Although sparse solution for the coefficient ω can be obtained by solving an l1 opti-

mization in (5), in the context of human pose estimation we may not find the sparest

solution ω̂1 that well explains the similarity between the test sample b and the train-

ing samples A. This can be explained with several factors. First, the background clutter

may be quite different been training and testing samples, and thus there exist inevitable

reconstruction errors when representing the test sample by training samples. For exam-

ple, even the test sample contains pose exactly the same as one of the training samples,

the background could be quite different, causing reconstruction error in representing

the test sample. Second, when humans in the test images are occluded, the linear com-

bination of training samples may not able to synthesize the occluded parts. Third, if we

use dense holistic appearance features such as HOG or block SIFT, there may have mis-

alignments within the detected image regions. To account for these errors, we introduce

an error term e and then modify (2) as

b = Aω + e = [A I]

[

ω

e

]

= Bv, (6)

where B = [A I] ∈ IRm×(N+m) and v = [ω e]T. If the vector v is sparse enough, the

sparest representation can be obtained by solving the extended l1-norm minimization

problem:

min ||v||1 subject to Bv = b (7)

In this way, the first N entries of vector v obtained from solving (7) correspond to the

coefficients of the training samples that can represent the test sample best using mini-

mum nonzero entries. On the other hand, the latter m entries account for those factors

(occlusion, misalignment, and background clutter) which can not be well explained by

the training samples.

We validate the recovery ability of our approach using a synthetic data set [26] in

which 1927 silhouette images are used for training and 418 images for testing. These

images are first manually cropped and aligned to 128 × 64 pixels. For efficiency, we

further downsample these images by a factor of 4 and add random blocks to simulate the

occluded silhouettes. Fig. 1 shows that we can recover from the corrupted test feature

(c) to (d). The reconstructed feature vector (d) can then be used for regressing the output

3D joint angle vector.

We also demonstrate that our algorithm, as a result of using sparse representation,

is able to perform feature selection implicitly by discarding irrelevant background in-

formation in the feature vectors in Fig. 2. Fig. 2 shows the original test image, the



Fig. 1. Occlusion recovery on a synthetic dataset. (a)(b) The original input image and its fea-

ture. (c) Corrupted feature via adding random block. (d) Recovered feature via find the sparsest

solution (7). (e) Reconstruction error.

corresponding HOG feature vector, and the recovered feature vector, and the recon-

struction errors using our sparse representations (from (a) to (d)). Note that most of

the reconstruction errors appear at the locations corresponded to background clutters,

thereby validating our claim that the proposed sparse representation is able to filter out

irrelevant noise.

Fig. 2. Feature selection example. (a) Original test image. (b) The HOG feature descriptor com-

puted from (a). (c) Recovered feature vector by our algorithm. (d) The reconstruction error.

4 Experimental Results

We test the proposed algorithm on synthetic [26] and real [4] data sets for empiri-

cal validation. In all experiments, we use Gaussian process regressor [35] to learn the

mapping between image features and the corresponding 3D pose parameters. We first

demonstrate the proposed method is able to estimate human pose from images with oc-

clusions. Even without occlusions, we show that the our algorithm still outperforms the

baseline methods as a result of implicit feature selection within our formulation.

4.1 Robustness to Occlusion

We use the synthetic data set in [26] to show that the proposed algorithm is able to

recover the un-occluded silhouettes from occluded ones. We generate random blocks

(with their width corresponds to the corruption level (CL)) to the all test sample to

synthesize occluded image silhouettes (see Fig. 3 for some sample test images under

various corruption level). We use two different feature representations in our experi-

ment. The first one is the principle component analysis (PCA) where each test image is

represent by its first 20 coefficients of principal components. The second image feature

is based on the image appearance (i.e., pixel values) of the downsampled images.



Fig. 4 shows the average errors in angles (degree) for three experiment settings:

1) features extracted from original test image (baseline), 2) features computed from

the corrupted images (see Fig. 3), and 3) recovered features using the proposed algo-

rithm. First we note that in both PCA and appearance settings, the proposed algorithm

improves the accuracy of pose estimation under occlusions. We also observe that our

method with appearance features (e.g., downsampled images) performs better than that

with holistic features (e.g., PCA). This can be explained by the fact holistic PCA is

known to be sensitive to outliers. Thus, when a silhouette is occluded, the PCA coeffi-

cients computed from the occluded images are likely to be very different from the ones

without occlusions. In contrast, only a small number of pixels of the occluded images

have been changed or corrupted, thereby facilitating the process of recovering the un-

occluded images. These results suggest that sparse and localized feature representations

are suitable for pose estimation from occluded images.

(a) CL=0.1 (b) CL=0.2 (c) CL=0.3 (d) CL=0.4 (e) CL=0.5 (f) CL=0.6

Fig. 3. Sample test images under various corruption levels (CL) in the synthetic data set. The

occlusions seriously corrupt the shape of the silhouette images.

(a) (b)

Fig. 4. Average error of pose estimation on synthetic data set using different features: (a) principle

component analysis with 20 coefficients. (b) downsampled (20×20) images.

To further gauge the performance of the proposed method, we use the synchronized

image and motion capture data from the HumanEva data sets [4] for experiments. The

HumanEva I data set consists of 4 views of 4 subjects performing a set of 6 predefined

actions (walking, jogging, gesturing, throwing/catching, boxing, combo) 3 times. For

efficiency and performance analysis, we chose the common motion walking sequences

of subjects S1, S2, S3 for experiments. Since we are dealing with pose estimation from

one single view, we use the images (2950 frames) taken from the first camera (C1).

The original HumanEva data set is partitioned into training, validation, and test subsets

(where the test subset is held out by [4]). For each subject, we use a subset of the



training set to train a Gaussian precess regressor [35] and test on a subset of the original

validation where both the images and motion capture data are available.

As there are no occluded cases in the original HumanEva data set, we randomly

generate two occluding blocks in the test images with various corruption level for syn-

thesizing images with occlusions. The center locations of these blocks are randomly

chosen within images and the block widths are correlated with the correction level. The

aspect ratio of each block are sampled from a uniform distribution between 0 and 1.

In Fig. 5, we show sample images taken from the walking sequence of three subjects

with various corruption levels. The corruption level ranges from 0.1 to 0.6. We can

see that although human vision can still infer the underlying poses under occlusion,

it is difficult for pose estimation algorithms to handle such test images due to heavy

occlusions.

(a) CL=0.1 (b) CL=0.2 (c) CL=0.3 (d) CL=0.4 (e) CL=0.5 (f) CL=0.6

Fig. 5. Synthesized images with occlusions with HumanEva data set I (all walking sequence).

Top row: Subject 1, Second row: Subject 2, and Third row: Subject 3. Each corrupted test image

contains two randomly generated blocks with their widths equal to corruption level (CL) times

original image width and with their centers located at the position from uniformly random sample

from image. Each column shows the sample corruption at certain corruption level.

We use histograms of oriented gradients as our feature vectors to represent train-

ing and test images. In our experiments, we compute the orientation of gradients in

[0, π] (unsigned) and construct the histograms using 6 bins in each cell. We use 10×10

pixels per cell, 3×3 cells per block, and uniformly place 3×3 blocks overlapping with

neighbor blocks by one cell. Thus, for each image window we obtain a 486-dimensional

feature vector. We then learn the mapping function between the feature vectors and their

corresponding pose parameters.

We carry out a series of experiments with three different settings: 1) HOG feature

vectors from original testing images without synthetically generated occluding blocks,

2) corrupted HOG feature vectors computed from the occluded images (see Fig. 5),

and 3) the recovered test feature vectors by solving the extended l1-norm minimization

problem (7). In the third setting, after solving (7), we discard the reconstruction error

vector e and use Aω as our recovered feature vector. All feature vectors obtained in

the above three settings are used to regress the pose vector using Gaussian process

regressor. We present in Fig. 6 the mean errors of relative joint positions on the testing



sub-set of HumanEva data set under various corruption levels (from 0.06 to 0.6). We

show the increasing error curves on three settings in terms of joint position error in

millimeters of our approach over the baseline (i.e., using HOG feature vectors computed

from occluded images.) In all three subjects, we show that from occluded images our

approach is able to recover the un-occluded images and then the pose parameters. It

is also worth noting that our algorithm also often outperforms the baseline algorithm

(trained and tested on un-occluded images). This can be explained by the fact that our

algorithm also implicitly performs feature selection whereas the performance of the

baseline algorithm is inevitably affected by noise contained in the training data.

(a) S1 (b) S2 (C) S3

Fig. 6. Results of pose estimation on HumanEva data set I in walking sequences. (a) Subject 1. (b)

Subject 2. (c) Subject 3. Images in the first row show the 3D mean errors of relative joint position

in millimeters (mm) under various corruption level (from 0.06 to 0.6). The blue lines indicate

the results from the original test samples, thus the predicted errors are independent of corruption

level. The green curves stand for the results from the corrupted test samples with different level

of corruption and the red curve are the results from recovered test samples using sparse signal

representation.

4.2 Robustness to Background clutter

In this section, we show that the proposed method is able to select relevant feature

vectors. We use the same 486 dimensional HOG feature vectors to describe the image

observation. We compare two settings: 1) HOG features computed from the original test

image sequences, and 2) features extracted from our sparse representation. The mean

3D joint position errors (mm) for each frame are plotted in Fig. 7 for the whole test

set. The blue and green error curves correspond to the results using the original HOG

feature vectors and the ones extracted from our method, respectively. The improvements

(i.e. reduction) of mean position errors (mm) of our method in three subjects are 4.89,

10.84, and 7.87 for S1, S2 and S3, respectively.

5 Conclusion

In this paper, we have presented a method capable of recovering 3D human pose when

a person is partially or heavily occluded in the scene from monocular images. By repre-

senting the test images as a sparse linear combination of training images, the proposed

method is able to recover the set of coefficients from the corrupted test image with min-

imum error via solving l1-norm minimization problem, and therefore obtains robust

pose estimation results. In addition, our algorithm improves the pose estimation accu-

racy even on images without occlusions by implicitly selecting relevant features and

discarding unwanted noise from background clutter. Our future work includes more ex-

periments with real image data where synchronized ground truth pose parameters and



Fig. 7. Mean 3D error plots for the walking sequences (S2). The blue line indicates the errors

by using the original test samples. The green line represents the error predicted from recovered

feature vectors by the proposed algorithm. The results are comparable or better than the original

test samples thanks to the ability of selecting relevant feature entries.

occluded images are available. We also plan to extend our sparse representation algo-

rithm to temporal domain, making use of motion dynamics to further help disambiguate

different poses with similar image observations.
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