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Abstract

We describe a solution to the challenging problem of es-

timating human body shape from a single photograph or

painting. Our approach computes shape and pose parame-

ters of a 3D human body model directly from monocular im-

age cues and advances the state of the art in several direc-

tions. First, given a user-supplied estimate of the subject’s

height and a few clicked points on the body we estimate an

initial 3D articulated body pose and shape. Second, using

this initial guess we generate a tri-map of regions inside,

outside and on the boundary of the human, which is used

to segment the image using graph cuts. Third, we learn

a low-dimensional linear model of human shape in which

variations due to height are concentrated along a single

dimension, enabling height-constrained estimation of body

shape. Fourth, we formulate the problem of parametric hu-

man shape from shading. We estimate the body pose, shape

and reflectance as well as the scene lighting that produces a

synthesized body that robustly matches the image evidence.

Quantitative experiments demonstrate how smooth shading

provides powerful constraints on human shape. We further

demonstrate a novel application in which we extract 3D hu-

man models from archival photographs and paintings.

1. Introduction

While the estimation of 3D human pose in uncalibrated

monocular imagery has received a great deal of attention,

there has been almost no research on estimating human

body shape. The articulated and non-rigid nature of the hu-

man form makes shape estimation challenging yet its recov-

ery has many applications ranging from graphics to surveil-

lance. Here we describe the first complete solution to the

problem of human shape estimation from monocular im-

agery. In contrast to the standard multi-camera setting, we

observe that a single image silhouette is generally insuffi-

cient to constrain 3D body shape. To address this we pro-

pose the use of additional monocular cues including smooth

shading. Given an initial guess of the body pose, we op-

timize the pose, shape and reflectance properties of a 3D

Figure 1. Overview. Given a single image and minimal user input,

we compute an initial pose, light direction, shape and segmenta-

tion. Our method optimizes 3D body shape using a variety of im-

age cues including silhouette overlap, edge distance, and smooth

shading. The recovered body model can be used in many ways;

animation using motion capture data is illustrated.

body model such that it robustly matches image measure-

ments. The resulting body model can be measured, posed,

animated, and texture-mapped for a variety of applications.

The method is summarized in Figure 1.

Most work on human pose or shape estimation assumes

the existence of a known background to enable the extrac-

tion of an accurate foreground silhouette. With a monocu-

lar image, however, no known background can be assumed.

Still, the outline of the body provides a strong constraint

on body shape. Given an initial pose, obtained by manual

clicking on a few image locations corresponding to the ma-

jor joints of the body [15, 24], and the mean body shape, we

create an initial foreground region from which we derive a

tri-map for GrabCut segmentation [18]. This produces an



accurate foreground region (cf. [10]).

Our parametric representation of the body is based on

the SCAPE model [2] and our optimization follows that of

Bălan et al. [4, 5] but extends it to monocular imagery.

Body pose in a monocular image is inherently ambiguous

and its estimation from a single silhouette is poorly con-

strained. If the body limb lengths are not known, then mul-

tiple poses can equally well explain the same foreground

silhouette [23]. To deal with this we constrain the height of

the subject during optimization. Previous SCAPE formu-

lations, however, represent variation in human shapes us-

ing linear shape deformation bases computed with principal

component analysis. Since height is correlated with other

shape variations, height variation is spread across many

bases. We address this by rotating the learned SCAPE basis

so that height variation is concentrated along a single shape

basis direction. The height can then be held fixed during

optimization, significantly improving monocular shape and

pose estimation.

One of the key contributions of this work is the formula-

tion of body shape from shading. Unlike the generic shape

from shading problem, our goal is to estimate the body

shape parameters, the pose of the body, its reflectance prop-

erties and the lighting that best explains the shading and

shadows observed in the image (similar in spirit to [6] but

with a more complex model). We assume a single point

light source but our experiments suggest that the method is

quite robust to violations of this assumption. Since skin has

a significant specular component, we approximate its re-

flectance with a Blinn-Phong model [7] and an assumption

of piecewise smoothness. Given a body shape, body pose,

light direction and skin reflectance we robustly match a syn-

thesized image of the person with the observed image. Note

that exploiting shading cues requires accurate surface nor-

mals, which are provided by our learned body shape model.

Shading information provides strong constraints on surface

shape that improve the estimated body shape when com-

bined with other cues.

We quantitatively evaluate the method in a laboratory en-

vironment with ground truth 3D shape. We also show a

novel application where we compute 3D human shape from

photographs and paintings. Here our assumptions about the

illumination are only approximate, yet the method is able to

recover plausible models of the human body.

2. Related Work

3D body pose from monocular images. There are

many automated methods for extracting 2D human pose

from a monocular image that could be used to initialize our

method; a full review is beyond our scope. Instead we use

a standard method for manual initialization. Taylor [24] re-

covers a set of body poses consistent with clicked 2D points

corresponding to major joints. The method uses an articu-

lated skeleton with known limb lengths, assumes an ortho-

graphic camera and finds only relative depths. A perspec-

tive solution [15] predates Taylor and forms the basis of our

initialization method.

Body shape from images. Body shape is a pose-

independent representation that characterizes the fixed

skeletal structure (length of the bones) and the distribution

of soft tissue (muscle and fat). There are several methods

for representing body shape with varying levels of speci-

ficity: 1) non-parametric models such as visual hulls, point

clouds and voxel representations (not considered further

here); 2) part-based models using generic shape primitives

such as cylinders or cones [9], superquadrics [14, 22] or

“metaballs” [17]; 3) humanoid models controlled by a set of

pre-specified parameters such as limb lengths that are used

to vary shape [12, 13, 16]; 4) data driven models where hu-

man body shape variation is learned from a training set of

3D body shapes [2, 5, 20, 21].

Machine vision algorithms for estimating body shape

typically rely on structured light, photometric stereo, or

multiple calibrated camera views in carefully controlled set-

tings where the use of low specificity models such as vi-

sual hulls is possible. As the image evidence decreases,

more human-specific models are needed to recover shape.

Several methods fit a humanoid model to multiple video

frames, or multiple snapshots from a single camera [12, 22].

These methods estimate limited aspects of body shape such

as scaling parameters or joint locations yet fail to capture

the range of natural body shapes.

More realism is possible with data-driven methods that

encode the statistics of human body shape. Seo et al. [20]

use a learned deformable body model for estimating body

shape from multiple photos in a controlled environment

with the subject seen in a predefined pose. To estimate a

consistent body shape in arbitrary pose it is desirable to

have a body model that factors changes in shape due to

pose and identity. Consequently, we use the SCAPE model

[2], which is derived from laser scans and captures realis-

tic articulated and non-rigid pose-dependent deformations,

as well as shape variations between individuals. Bălan et

al. [5] show that such a model allows for the shape and pose

to be estimated directly from multi-camera silhouettes.

A single monocular image presents challenges beyond

the capabilities of all the methods above. The only work we

know to directly estimate body shape from a single image

is that of Sigal et al. [21]. They train a mixture of experts

model to predict 3D body pose and shape directly from var-

ious 2D shape features computed from an image silhouette.

They estimate body shape in photos taken from the Internet,

but require manual foreground segmentation and do not ac-

curately estimate pose. While silhouettes constrain the sur-

face normals at the object boundary, non-rigid deformation,

articulation and self occlusion make the silhouette boundary



insufficient to recover accurate shape from a single view.

Body shape from shading. Shape from shading has a

long history in computer vision yet typically focuses on re-

covering the shape of unknown surfaces. Here we have a

different problem in which we know that the object is a

human but the pose and shape are unknown. For a given

set of body shape and pose parameters we can compute

the surface normals at each point on the body mesh. We

then formulate and optimize a robust shape from shading

objective function in which the normals are a function of

the shape parameters. Similar to this is the work of Sama-

ras and Metaxas [19], which constrains a 3D shape using

shading information. We go beyond their work to deal with

a learned shape deformation model and articulation.

The majority of work related to shading and the hu-

man body focuses on carefully calibrated laboratory envi-

ronments. Theobalt et al. [25] recover human body shape

and detailed reflectance properties but do so in a multi-

camera calibrated environment with careful lighting. Bălan

et al. [4] recover the albedo of the body using multiple

known poses and a Lambertian reflectance model but do not

use this to estimate shape. These methods are not applicable

to the monocular, uncalibrated case studied here.

In recent work, de La Gorce et al. [8] use an accurate

hand shape model and shading information for monocular

tracking. Our work goes beyond this to estimate a paramet-

ric shape model for the whole body in arbitrary poses with

piecewise smooth albedo and unknown background.

3. Body Model and Fitting

SCAPE is a deformable, triangulated mesh model of the

human body that accounts for different body shapes, dif-

ferent poses, and non-rigid deformations due to articula-

tion [2]. For vision applications, it offers realism while re-

maining relatively low dimensional. We use a mesh with

m = 12, 500 vertices [5].

Articulated pose is parametrized by a set of rigid body

part rotations �θ, while changes in body shape between in-

dividuals are captured by shape deformations gradients �d

between a reference mesh and a new mesh in the same

pose. A low-dimensional statistical model of body shape

deformations is learned using principal component analy-

sis (PCA). We learn two gender-specific models from laser

scans of over 1000 men and 1000 women, respectively.

For a given mesh, the shape deformation gradients are con-

catenated into a single column vector and approximated as
�d = U�β + �µ where �µ is the mean body shape, U are the

first n eigenvectors given by PCA and �β is a vector of lin-

ear coefficients that characterizes a given shape; n = 20 in

our experiments. In Section 4 we extend this formulation to

model deformations that preserve height.

Given a monocular image, our goal is to estimate the

shape parameters �β and pose parameters �θ that best ex-

(a) (b) (c)

Figure 2. Initialization using clicked points on the input image.

Pose estimated with orthographic (b) and perspective (c) camera

models, shown from an alternate view. Mean body shape (male) is

shown transformed into the pose of the initialized models.

(a) (b) (c)

Figure 3. Segmentation. (a) Silhouette corresponding to initial

pose and average shape projected into image. (b) Tri-map ex-

tracted from initial silhouette by erosion and dilation. (c) GrabCut

segmentation result (silhouette and its overlay in the image).

plain the image evidence. The model parameters are used

to produce a 3D mesh, Y (�β, �θ), that is projected onto the

image plane to obtain silhouettes, edges, or shaded appear-

ance images (Fig. 1). We denote the body parameters by

ΘB = [�β, �θ]. We use standard distance functions for sil-

houettes, ESi(ΘB), [5, 22] and edges, EEg(ΘB), [9] and

introduce a novel shading term in Section 5. The objective

function, which also includes an inter-penetration penalty,

EPn(ΘB), is minimized using a gradient-free direct search

simplex method.

3.1. Pose Initialization

3D body pose is initialized in the camera coordinate

system using clicked 2D points corresponding to the ma-

jor joints (Fig. 2) [15, 24]. We find that the orthographic

method of Taylor [24] (Fig. 2b) produces poses that are

inaccurate compared with the perspective method of [15]

(Fig. 2c). The perspective method requires an estimate of

focal length which we extract from EXIF metadata when

available or which we obtain from user input. We further

find that even an approximate focal length produces better

initial poses than the orthographic assumption.

Unlike the orthographic case, perspective projection re-

quires a way to position the root joint in 3D. First, the limb

most parallel to the image plane is automatically identified

as the one that minimizes the ratio between its image length



(a) (b) Result without edges (c) Result with edges

Figure 4. Internal edges. (a) Laboratory image with self occlu-

sion. (b) Pose estimation with only the silhouette term cannot esti-

mate the arm pose. Edges (red) of optimized model projected into

the edge cost image. Yellow shows the overlap of the model and

image silhouettes, blue/red represent unmatched image/model sil-

houette regions. (c) The estimated pose (green) with the edge term

matches the true pose. Note how well the model edges align with

the edge cost image.

and its actual length. If the limb is parallel to the image

plane, the depth is uniquely determined using the ratio of

similar triangles. If not we use a foreshortening factor sim-

ilar to the scale parameter in [24].

In contrast to [24], we do not explicitly require limb

lengths as input. Rather, we predict these from a database of

over 2400 subjects based on user specified height and gen-

der. We use this database to build a height constrained shape

space as described in Section 4, allowing us to deform the

mesh to match the mean person of the specified gender and

height, and then extract limb lengths from linear combina-

tions of specific vertices.

We extend the previous methods to also initialize head

pose by solving for the neck rotation that minimizes the dis-

tance between several user-clicked 2D face feature points

and the corresponding 3D vertex positions on the mesh pro-

jected into the image.

3.2. Region-based Segmentation

Given the initial mesh (Fig. 2c), we render its silhouette

into the image. This provides an initial guess for foreground

segmentation (Fig. 3a). Specifically, we construct a tri-map,

defining each pixel as foreground, background, or uncertain

by eroding and dilating the initial region by 5% of the image

width (Fig. 3b). The resulting tri-map is used to initialize

GrabCut [18] which is used to segment the foreground. This

process is similar to that of Ferrari et al. [10] but with a 3D

body model used for initialization.

3.3. Internal Edges

It is well known that silhouettes do not provide pose con-

straints in regions where one body part occludes another

(e.g. Fig. 4b). Numerous authors have dealt with this by

Figure 5. Height Constrained Optimization. Two different body

shapes and poses can explain the same image silhouette. Pose

and shape estimated without constraining height (magenta). When

turned sideways we see it is wrong. Constraining the height during

estimation produces a realistic pose (green).

combining edge information with silhouettes. We do so as

well but, with the SCAPE body model, these edges provide

a better fit to the image evidence than do previous models.

We detect image edges using a standard edge detector

and apply a thresholded distance transform to define an edge

cost map normalized to [0, 1]. Model edges correspond to

visible vertex edges for which there is sign change in the dot

product between the corresponding triangle normals and the

ray from the camera to the midpoint of the edge. We use the

trapezoid rule to evaluate the line integral of the set of all

visible model edges over the edge cost image. This defines

an edge cost, EEg(ΘB), that is included in the objective

function, improving the accuracy of the fit (Fig. 4c).

4. Attribute Preserving Shape Spaces

The ambiguities present in inferring 3D pose and shape

from a single image mean that we must constrain the search

space as much as possible. Figure 5 illustrates one such am-

biguity where the wrong body shape can be compensated

for by a change in pose. Viewed monocularly, both models

explain the image silhouette equally well. Additional infor-

mation such as the height of the person can remove some of

the ambiguity. Unfortunately, the SCAPE eigen-shape rep-

resentation does not provide any direct control parameters

corresponding to intuitive attributes like gender, height or

weight that can be specified by a user. If these can be de-

rived as functions of the linear coefficients, then they can be

included as constraints during body shape estimation. In-

stead we take a more direct approach and construct a rota-

tion of the original eigen-shape space such that height vari-

ation is removed from all but one of the bases. This allows

us to optimize over body shapes without varying height.

In previous work, Blanz and Vetter [6] compute a di-

rection in shape coefficient space such that any movement

along this axis manipulates a certain attribute the most while

keeping all the other attributes as constant as possible. This

is not equivalent to saying that any movement orthogonal to

this axis preserves the attribute, which is what we want. In

fact, their axis is not optimized for and fails to preserve an



Figure 6. Height preserving body shape space. First pair on each

row (men above, women below) shows variation (± 3 std) along

the height-variation axis. The other pairs show variation (± 3 std)

along the first three height-invariant axes. Note that shape varies

along these axes but height varies by less than 3mm for each pair.

attribute value along orthogonal directions.

Allen et al. [1] learn a linear mapping from a fixed

set of attributes to shape parameters. One could optimize

body shape using these parameters instead of PCA coeffi-

cients. Preserving an attribute can then be achieved by sim-

ply keeping it fixed, but this approach reduces the modes of

shape variation to the set of attributes considered.

In contrast, our approach explicitly searches for

attribute-preserving directions in the eigen-space and re-

orients the bases along these directions. While we focus

on constraining height, our method applies to any other geo-

metric attribute that can be measured directly from the mesh

(volume, geodesic distances, etc.). Body height H(�β) can

be measured by reconstructing a mesh Y (�β, �θH) in a prede-

fined standing pose �θH . Let G1 = In = [�e1, . . . , �en] be the

identity basis for the shape coefficients (�d = UG1
�β + µ).

We seek a new orthonormal basis G such that none of its

bases account for height except one, which becomes the

height axis. G should also preserve the representational

power of the original bases: the sub-space spanned by the

first j bases is the same after the change of bases, absent the

height axis. Our solution works in an incremental fashion

and maintains orthogonality at all times by rotating pairs of

bases so that one of the bases preserves height while the

other moves towards the height axis. First, we start by se-

lecting a candidate basis �ek for the height axis as the one

that maximizes the absolute correlations between height

and shape coefficients of the training examples. Second, we

iterate over the remaining bases �ej and rotate the current

(�ej , �ek) plane to make �ej height preserving. Third, the rota-

tion matrix is used to update, at iteration j, the orthonormal

(a) Input (b) Albedo (c) Lambertian (d) Blinn-Phong

Figure 7. Estimated reflectance. Blinn-Phong model captures

specular highlights and is more accurate than the Lambertian

model. Note robust spatial term captures discontinuous albedo.

basis Gj =

Gj−1Rjk

(

arg min
ϕ

(

H(�0n) − H(Gj−1Rjk(ϕ)�ej)
)2

)

,

where Rjk(ϕ) is a n × n rotation in the (�ej , �ek) plane:

Rjk(ϕ) =

0

B

B

B

@

j k

I 0
j cos(ϕ) − sin(ϕ)

I

k sin(ϕ) cos(ϕ)
0 I

1

C

C

C

A

.

The body shape in the new height-preserving shape

space can be expressed as �d = (UGn)�β′ + �µ, where �β′ =

(Gn)−1�β. By convention, we compute the variance along

the new bases and order them in decreasing order follow-

ing the height axis. Figure 6 shows deviations from the

mean shape in the male and female height-preserving shape

spaces.

For many subjects (e.g. celebrities), height may be

known. When unknown (e.g. in paintings) we use the mean

height for each gender (women=1.65m, men=1.82m).

5. Body Shape from Shading

We approximate the body’s reflectance using a Blinn-

Phong model with diffuse and specular components [7]. We

assume a single light source and ambient illumination. Let

X(ΘB ) = [�x1, �x2, ..., �xm] be the positions of the m ver-

tices of a body mesh, and N(ΘB) = [�n1, �n2, ..., �nm] be the

associated unit length normals. Notice that both X and N

are functions of the pose and shape parameters, allowing

us to formulate a parametric shape from shading problem.

Let �a = [a1, a2, ..., am] be the albedo of each vertex and

�s = [s1, s2, ..., sm] be the specularity of each vertex. The

shading value of each surface point i is approximated by:

r̂i = b + ai(�ℓi · �ni)l + si(�hi · �ni)
αl (1)

where �ℓi is the direction from vertex �xi toward the light

source,�hi is the halfway vector between �ℓi and the direction



from vertex i toward the camera, b is ambient illumination,

l is light intensity, and α is the specular exponent.

For a distant directional light source (outdoor scene) l

is constant for every vertex, while for a point light source

(indoor scene) we use a quadratic attenuation function for

light intensity with distance from the source (as in [4]).

Optimization. The body is placed at the origin of

a spherical coordinate system and the light position is

parametrized as ΘL = [γ, φ, z] with respect to the body

center, where γ and φ are azimuth and elevation respec-

tively and z is the distance between the light source and the

body. The parameters �ℓi, �hi and l in Eq. 1 depend on ΘL.

We denote the reflectance parameters ΘR = [�a,�s, b, α].
Suppose ri is the linearly interpolated intensity in the input

image where vertex i is projected, our goal is to minimize

the energy function ESh(ΘB , ΘR, ΘL) ∝

∑

i∈visible

{

ρη1
(r̂i(ΘB , ΘR, ΘL) − ri) (2)

+λ1

∑

j∈N(i)

ρη2
(aj − ai)

dj,i

+ λ2

∑

j∈N(i)

ρη3
(sj − si)

dj,i

}

where N (i) are the vertices connected to vertex i, dj,i is

|�xj −�xi|, and ρη(x) = x2

η2+x2 is a robust error function [11]

used to deal with outliers.

The first term in Eq. 2 penalizes the difference between

measured intensities in the observed image, ri, and the pre-

dicted brightness of corresponding model vertices, r̂i(·).
The second term ensures that neighboring vertices have

similar albedo. The robust formulation provides a piece-

wise smooth prior on albedo that allows spatial variations

due to clothing, hair, variation in skin color, etc. The third

term provides a piecewise smooth prior over specularity. λ1

and λ2 weight the relative faithfulness to the observed data

and the spatial smoothness assumptions.

The user coarsely initializes ΘL and then the energy

function is minimized in an alternating fashion. First, ΘL is

optimized given fixed ΘB and ΘR. (Note that in the first it-

eration, ΘB is the initial guess of pose and shape; the albedo

and specularity in ΘR are considered uniform.) Second, we

optimize ΘR with fixed ΘL and ΘB . Given the robust for-

mulation in Eq. 2 no closed form solution is possible so we

minimize using gradient descent. Third, we fix ΘL, ΘR

and optimize ΘB but here the optimization is more difficult

since changing ΘB affects the predicted brightness through

changes in the vertex normals. Consequently a gradient-

free simplex method is employed to solve step 3. We alter-

nate between the three steps until a convergence criterion

is met. We vary the λ values during optimization, starting

with larger values and gradually decreasing them, so that

the shape is forced to change in order to make the predicted

brightness match the image observations. We find that ini-

tial pose needs to be fairly accurate, but illumination direc-

Figure 9. Applications. Shape and pose recovered from a single

image; texture-mapped in new pose; caricature.

tion is relatively insensitive to the initialization. Figure 7

shows the estimated reflectance for one input image.

6. Results

For quantitative analysis, we captured the pose and shape

of a subject using eight synchronized and calibrated cam-

eras with a single “point light source” and a green screen

background. We fit the SCAPE model to the eight silhou-

ettes and treat the resulting shape as ground truth.

We then quantify the extent to which shading cues im-

prove monocular shape estimation by comparing the shape

estimated with two formulations. In the “Silhouettes and

Edges” (SE ) formulation, we fit the pose and shape of the

SCAPE model in the height preserving space by optimizing

the cost function E1 = ESi(ΘB) + EEg(ΘB) + EPn(ΘB).
The “Silhouettes, Edges, and Shading” (SES ) formulation

extends the first by incorporating shading cues; that is,

E2 = E1 + ESh(ΘB , ΘR, ΘL).
Figure 8 illustrates how smooth shading improves shape

recovery. Silhouettes, even with internal edges, are not suf-

ficient to capture accurate body shape from monocular im-

ages. Incorrect estimates happen in areas where surface nor-

mals are oriented towards the camera, such as the abdomen

in frontal images. In these regions shading provides a strong

cue that constrains the body shape.

Anthropometric measurements of chest size, waist size,

and weight are provided in Table 1. Waist and chest circum-

ference are computed by transforming the body to a canon-

ical pose, slicing the mesh on a fixed plane and computing

the convex hull of the contour. Weight is estimated from

the body volume by assuming it has the constant density of

water. SES shows substantial improvement over SE .

Figure 9 shows an image from the Internet with recov-

ered pose and shape. Note that reflections off the water

clearly violate our simple lighting model. Despite that the

shape is well recovered. We animate the figure by preserv-

ing shape and generating meshes in novel poses from mo-

tion capture data. The model can be texture mapped with

the image texture or some new texture. Large pose changes

may require the texture synthesis of missing data. We can

also vary the recovered shape to produce a caricature (Fig.

9 right). We do so by finding the shape coefficient with the



(a) Image (b) Init. (c) Silhouette and Edges (d) Silhouette, Edges and Shading (e) Ground Truth

Figure 8. Comparison between SE (red) and SES (green). Comparisons are performed on three different poses taken from different

viewing angles. The initialization (b) is shown in the camera view. Results and ground truth are shown in both the camera view and in

profile. For each result we also show an error map in a canonical pose, indicating per vertex displacement from ground truth; blue indicates

low error, while purple indicates high error. Note the lower error for the SES model.

Chest Size (cm) Waist Size (cm) Body Weight (kg)

SE SES GT SE SES GT SE SES GT

Pose 1 95.7 (+3.1) 92.7 (+0.1) 92.6 86.4 (+6.2) 79.6 (-0.6) 80.2 72.0 (+8.2) 65.4 (+1.6) 63.8

Pose 2 84.3 (-7.3) 87.1 (-4.5) 91.6 83.7 (+4.3) 78.5 (-0.9) 79.4 62.5 (-0.7) 62.4 (-0.8) 63.2

Pose 3 95.4 (+4.0) 91.9 (+0.5) 91.4 88.0 (+7.7) 76.9 (-3.4) 80.3 70.8 (+8.2) 63.5 (+0.9) 62.6

Table 1. Anthropometric Measurements. GT stands for ground truth size. The value in the parenthesis is the deviation from GT size.

(Note that the ground truth sizes for each frame vary a little bit, since non-rigid deformations caused by articulations of body will result in

variations of shape details.)

most significant deviation from the mean and exaggerate it,

moving the shape further from the mean in that direction.

Here it produces a more muscular physique.

Although paintings rarely conform to a physical light-

ing model, we find that shading cues are often significant.

Using the same robust formulation as for photographs we

recover body pose and shape from two paintings in Fig. 10.

7. Conclusions and Future Work

We have described a complete solution for reconstruct-

ing a model of the human body from a single image with

only minimal user intervention. The main insight is that

even a single image contains a range of cues that can con-

strain the interpretation of 3D body shape. While the

bounding contour of the body alone is not sufficient, smooth

shading can provide a powerful additional cue. Conse-

quently we developed a new robust method for computing

parametric body shape from shading. We also developed

a new linear model of body shape deformation in which

height variation is removed. The ability to extract body

shape from a single image makes several new applications

possible. For example, a character from a painting or pho-

tograph can be “brought to life” and animated in new poses.

The method as described has several limitations. We as-

sume a single point light source and a simplified model of

surface reflectance. None of our experiments actually con-

form to this model, and yet it still provides a useful ap-

proximation. Future work should consider expanding this

to more general lighting conditions. We also plan to study

more qualitative models of shading. Even in art which is

not physically realistic, there are still strong local cues that

we should be able to exploit to constrain body shape.

Our experiments have focused on naked or minimally



Figure 10. Body shape and pose from paintings. (left) Venus Anadyomene, Théodore Chasseriau, 1838. (right) Adam and Eve (detail),

Hans Baldung Grien,1507. Images (left to right): painting, model overlay, recovered shape and pose, shape in new pose.

clothed people. Previous work has shown that body shape

can be recovered even when people are wearing clothing

if multiple poses and camera views are available [3]. Ex-

tending this to the monocular case is challenging as shading

cues would need to be extended to model the complex shad-

ing variation caused by clothing.

Other future work will consider automating the initial-

ization stage using a bottom-up 2D person detector and in-

tegrating body segmentation with the 3D model fitting pro-

cess. Since our body shape representation is independent of

pose we can also combine constraints from multiple snap-

shots of the same person. Each image may contain only

weak cues but together they could constrain body shape.
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