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Abstract— We study the problem of estimating the illuminant’s
direction from images of textured surfaces. Given an isotropic,
Gaussian random surface with constant albedo, Koenderink
and Pont [JOSA 03] developed a theory for recovering the
illuminant’s azimuthal angle from a single image of the texture
formed under a Lambertian model. In this paper, we extend the
theory to deal with cases of spatially varying albedo.

First, we generalise the theory to explain why their method
should work even for certain types of spatially varying albedo.
Our generalisation also predicts that the coherence of the
structure tensor should lie below 0.8 in such non-constant albedo
cases and accurately predicts the “deviation” from the true value
observed by Koenderink and Pont on the Columbia-Utrecht
(CUReT) texture database. Next, we extend the theory to account
for arbitrarily varying albedo. We also investigate local, rather
than global, estimates of the direction, and demonstrate our
theory on the CUReT and the Heriot-Watt TextureLab databases
where estimated directions are compared to ground truth.

I. INTRODUCTION

In this paper we address the problem of determining the

illuminant’s azimuthal angle from textured images. Tradition-

ally, techniques from Shape from Shading have been used

to estimate the direction of the light source [3], [15], [18]–

[20], [22], [24]. Assuming a Lambertian [8] image formation

model, most of these techniques try to simultaneously recover

both shape, i.e. the surface height map or the surface normals,

and the direction of the light source. However, this is an ill

posed problem and so many constraints have to be imposed in

order to find a reasonable solution. Some of the most common

constraints are that the albedo is constant and that the surface is

smooth or the normals integrable. Alternatively, other methods

focus on local estimates or the occluding contour but, once

again, have to impose very similar constraints to determine

the illuminant’s direction.

Recently, methods have been developed which specifically

exploit the statistical nature of rough textures. Chantler et

al. [4], [5] have shown that the variance of filter responses

obtained from a textured image lie on Lissajous’ ellipses as

a function of the illuminant’s azimuthal angle. Given three

reference images of the texture, taken under fixed viewpoint

and illuminant elevation, it is possible to determine the ellipse.

This ellipse can then be used to read off the illuminant’s az-

imuthal angle for any novel image of that texture. Koenderink

and Pont [12] assume that the texture has constant albedo

and that its surface has shallow relief, is isotropic and has a

Gaussian random distribution. They develop a theory based on

second order statistics to recover the illuminant’s azimuth from

a single image viewed orthographically under the Lambertian

model.

Such statistical methods which recover the illuminant’s

direction from textured images are useful and have many

applications. For instance, they can be used in Texture Anal-

ysis to provide information about the imaging conditions

and thereby improve classification. Knowledge of the light

source’s direction can also help in Computer Graphics when

introducing characters and objects with realistic shadows into

an image. However, the applicability of most illumination

estimation algorithms is restricted by the fact that they require

the surface to have constant albedo. In this paper, we take

a first step towards tackling this problem. In particular, we

extend the method of Koenderink and Pont [12] to cases where

the albedo is spatially varying.

The organisation of the rest of the paper is as follows:

In section II we generalise the theory of Koenderink and

Pont for the case where the albedo is isotropic and can be

modelled as a random variable drawn from a log-normal

distribution. In this case, the eigenvectors of the structure

tensor S =< (∇ log I)(∇ log I)T > turn out to be identical

to those found by [12]. However, the coherence has a very

different form and now, rather than being just a constant,

becomes a function of the illuminant’s elevation as well as the

texture’s albedo. We also examine how the coherence behaves

in the presence of shadows and in section III verify our

theory experimentally on the Columbia-Utrecht (CUReT) [6]

database. Next, in section IV we explore how the theory

can be further generalised to take into account arbitrarily

varying albedo if extra information is present in the form of

an additional reference image. The theory is then tested in

section V on the Heriot-Watt TextureLab database, where ad-

ditional reference images are available, and it is demonstrated

that superior results are achieved with the new formulation.

In section VI we investigate the advantages of using local

regions, rather than the entire image, to form estimates of the

azimuthal angle. Finally, we conclude in section VII with a

discussion on the implications of our theory for resolving the

Generalised Bas-Relief ambiguity.

II. ESTIMATING THE LIGHT SOURCE AZIMUTH

This section develops the basic theory for recovering the

illuminant’s azimuth from a single texture image. We consider

the case where the underlying texture surface can be modelled

as a Gaussian, random, rough surface. None of the parameters

of the surface, the mean, variance or even the auto-correlation
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function, need actually be known. Thus no knowledge of the

geometry is required. Instead by making general assumptions

about the surface height distribution, the second order statistics

of the surface derivatives can be used to robustly recover the

light source azimuth. The derivation will follow principally

along the lines of [12].

Under the basic assumptions that the underlying model

which produced the textured image has (a) an isotropic,

Gaussian random rough surface with shallow relief viewed

orthographically, (b) an albedo which is also isotropic but

distributed log-normally, (c) an illuminant whose elevation

ν is high as compared to the surface tangent plane, and

(d) a perfect Lambertian image formation model without

shadowing, specularities or inter-reflections, it will be shown

that the illuminant’s azimuthal angle ψ can be recovered from

the largest eigenvector of the structure tensor S.

As these assumptions might appear to be overly restrictive, it

will be demonstrated that the theory holds even for cases when

the textures deviate strongly from this model. For example, the

results are empirically valid for elevations as small as ν = 5◦

and when there are significant shadows. We will explain why

this might be the case by considering the situation where the

effects of shadowing, specularities, inter-reflections etc. can be

incorporated into the albedo map.

If a textured surface is imaged under the Lambertian

model [8], then the image intensities are independent of the

viewing direction and depend on only the angle between the

surface normal at each point and the light source direction.

When there is a single, collimated, parallel light source,

relatively high enough from the surface tangent plane so that

shadows can be neglected, the image intensities are given by

I(x, y) =
ρ(x, y)Lλ sin ν
√

1 + h2
x + h2

y

[1−cot ν(hx cosψ+hy sinψ)] (1)

where L = Lλ[cos ν cosψ, cos ν sinψ, sin ν] is the light

source vector with elevation ν and azimuthal angle ψ, h(x, y)
is the Monge patch parameterisation of the surface height with

partial derivatives hx(x, y) and hy(x, y), and ρ(x, y) is the

spatially varying surface albedo. Thus we are only considering

a very simple image formation model and neglecting effects

due to specularities, inter-reflections and shadows. Yet, as will

be demonstrated, even this simple analysis can give very good

results on real world datasets.

If the surface has shallow relief then the factor in the

denominator can be ignored as hx, hy ≪ 1. Following [12],

[14], we work with the log intensity distribution given by

log I(x, y) = log(ρLλ sin ν)−cot ν(hx cosψ+hy sinψ) (2)

where we have used the fact that cot ν is small to form the

truncated Taylor series expansion log(1− x) = −x. Denoting

LI = log I, s = sinψ, c = cosψ and taking partial derivatives

gives

LIx(x, y) =
ρx

ρ
− cot ν(chxx + shxy) (3)

LIy(x, y) =
ρy

ρ
− cot ν(chxy + shyy) (4)
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Fig. 1. Gaussian random rough surfaces and a corresponding 1D horizontal
slice as generated by (5): (a) isotropic and (b) anisotropic.

Generic information about the surface height and albedo

distributions is now needed in order to proceed further with

the analysis. Many Lambertian rough surfaces in the real world

can be described by a Gaussian height distribution with a

given auto-correlation function. In [2], [17], it is shown that

a Gaussian random rough surface can be generated by the

interaction of a number of waves at different frequencies and

orientations. Thus,

h(x, y) =
∑

n

∑

m

hnm cos(nx+my) (5)

where n,m ∈ Z and hnm are random variables which

determine the auto-correlation function. Figure 1 shows some

sample Gaussian random rough surfaces which can be ex-

pressed as (5). Since a Gaussian rough surface must have an

equal number of protrusions and indentations, the first order

statistics will not reveal any information about the illuminant’s

azimuth (as the bright image regions will cancel out the dark

image regions). Mathematically, < LIx > and < LIy >
should vanish as the expected values of all partial derivatives

of h must equal zero. Hence we turn to the square terms

< LI2

x >, < LI2

y > and < LIxLIy > which become

< LI2

x > = < (ρx/ρ)
2 >

+cot2 ν < (chxx + shxy)2 > (6)

−2 cot ν(c < ρxhxx/ρ > +s < ρxhxy/ρ >)

To account for the albedo, a similar kind of assumption

is made about its distribution. If the albedo can be modelled

as a random variable with a log-normal distribution [7], then

log ρ should also be of the form (5) and therefore the third

term in (6) must vanish as the product of any odd and

even numbered derivatives has zero expected value. Denoting,

Ax =< (ρx/ρ)
2 > we then have,

< LI2

x > = Ax + cot2 ν < (chxx + shxy)2 > (7)

< LI2

y > = Ay + cot2 ν < (chxy + shyy)2 > (8)
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where < LI2

y > has been obtained by a similar treatment. The

expression for < LIxLIy > is also very similar

<LIxLIy>= Axy + cot2 ν < (chxx + shxy)(chxy + shyy)>

where Axy =< ρxρy/ρ
2 >.

We now need to evaluate the expectations of the height

derivatives. Some straight forward trigonometry and integra-

tion yields

< h2

xx > = (1/2)
∑

n

∑

m

n4h2

nm

< h2

yy > = (1/2)
∑

n

∑

m

m4h2

nm

< h2

xy > = (1/2)
∑

n

∑

m

n2m2h2

nm =< hxxhyy >

< hxxhxy > = (1/2)
∑

n

∑

m

n3mh2

nm

< hyyhxy > = (1/2)
∑

n

∑

m

nm3h2

nm (9)

At this point, there are more unknowns than equations and

therefore the system must be constrained further for the light

source azimuth to be recovered. One way of reducing the

number of free variables is by constraining the underlying

surface and albedo. In the case that both are isotropic, the

expectations in (9) can be greatly simplified [2] to
(

< h2

xx
> < hxxhyy > < hxxhxy >

< hyyhxx > < h2

yy
> < hyyhxy >

< hxyhxx > < hxyhyy > < h2

xy
>

)

= H

(

3 1 0

1 3 0

0 0 1

)

while the albedo expectations simplify to
(

Ax Axy

Ayx Ay

)

= A

(

1 0
0 1

)

(10)

where H and A are constants which depend on the surface

height and albedo of the textured material (for instance, A = 0
for constant albedo textures). Substituting these values back

into the expressions for < LI2

x >, < LI2

x > and < LIxLIy >
gives

< LI2

x > = A+H cot2 ν(3 cos2 ψ + sin2 ψ)

< LI2

y > = A+H cot2 ν(cos2 ψ + 3 sin2 ψ)

< LIxLIy > = H cot2 ν(1 + 1) sinψ cosψ

There are now exactly three equations in three unknowns and

therefore it is possible to recover the illuminant azimuth ψ
from the eigenvectors of the structure tensor [12] defined as

S =

(

< LI2

x > < LIxLIy >
< LIxLIy > < LI2

y >

)

(11)

In the present case, the structure tensor turns out to have a

very simple form

S = AI +H cot2 ν

(

2 + cot 2ψ sin 2ψ
sin 2ψ 2 − cot 2ψ

)

(12)

where I is the 2×2 identity matrix. The larger eigenvalue and

corresponding eigenvector of the structure tensor are given by

λ1 = A+ 3H cot2 ν ⇒ v1 =

[

cosψ
sinψ

]

(13)

while the smaller eigenvalue and eigenvector are given by

λ2 = A+H cot2 ν ⇒ v2 =

[

cos(ψ + π/2)
sin(ψ + π/2)

]

(14)

Thus, v1 points in the direction of the illuminant’s azimuthal

component and represents the desired solution. However, note

that there is an ambiguity of 180 degrees in the recovered

angle as S depends on 2ψ rather than ψ.

The coherence of the structure tensor S is defined to be

coh =
λ2

1
− λ2

2

λ2

1
+ λ2

2

(15)

=
H cot2 ν(2A+ 4H cot2 ν)

A2 +H cot2 ν(4A+ 5H cot2 ν)
(16)

which must be less than or equal to 0.8. Thus, the coherence

depends upon both ν and A. For example, when A2 is

negligible as compared to the second term in the denominator,

the expression for the coherence simplifies to

coh =
2A+ 4H cot2 ν

4A+ 5H cot2 ν
(17)

which varies between 0.5 and 0.8 depending on the elevation

ν. Of course, if A2 is not negligible then the coherence can

be lower still.

Deviations from the perfect Lambertian model: The

model up till now has been derived under the assumption

of perfect Lambertian reflectance without any shadowing

(see figure 2), specularities, inter-reflections etc. However, in

general, it is not possible to distinguish these effects from

albedo variations given just a single image (unless there is

prior information available) [10], [13]. For example, it is not

possible to tell apart dark regions due to shadows (either cast

or attached) from dark regions due to low albedo from only

one image. Therefore, it might be possible to model these

effects as albedo variations, as long as the distribution remains

roughly log-normal (which can accommodate a large number

of low intensity shadow regions in the bulk of the distribution

with the specularities fitting into the long tail). In such a

situation, (13), (14) and (16) will still hold and the largest

eigenvector will point in the direction of the azimuth. However,

A will now become a function of both ν and ψ (as well as the

camera position) and therefore, for a given textured material,

A C CA

illumination direction

Fig. 2. A indicates an attached (self) shadow boundary, and C a cast
shadow boundary. Significant cast shadows can suddenly appear below a
certain elevation for rough surfaces.
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the coherence can no longer be expected to be a monotonic

function of the elevation. If we were to focus on shadowing

as the major source of deviation from the the model, then

depending on how quickly A increases with decreasing ν (i.e.

the rate of shadowing), as compared to H cot2 ν, the coherence

curve can either increase or decrease. It can also do both if the

shadowing pattern changes after a certain elevation and one

can expect kinks in the graph. Figure 3 plots some sample

scenarios.
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Fig. 3. The variation in coherence with elevation in the presence of shadows.
The curve can change dramatically if the shadowing pattern changes after a
certain elevation. This can also cause a jump in the curve, for example, when
significant cast shadows suddenly appear below a certain elevation. It should
be noted that these are just a few sample curves from the set of all such
possible. Each can vary considerably depending on how shadowing influences
the albedo parameter A.

III. SINGLE IMAGE EXPERIMENTS AND COMPARISONS

It is interesting to note that the eigenvectors recovered in

(13) and (14) are identical to those found by Koenderink and

Pont [12]. Thus, even though their theory was derived for a

constant albedo map, their method should hold for a much

wider range of textures. However, since a constant albedo

map implies A = 0, their model expects that the measured

coherence should always equal 0.8 and should not change

with varying elevation, azimuth or texture sample. The theory

derived here predicts otherwise. For almost constant albedos

(i.e. small A), (17) expects the coherence to lie between

0.5 and 0.8 with lower values being expected for larger

variations in albedo. These predictions match very well with

the “deviations” from the ideal as measured in [12].

In the case of a true Gaussian random rough surface with

painted white albedo, [12] report that the azimuth is estimated

correctly within a few degrees but “the coherences are signif-

icantly lower” and vary between 0.4 and 0.7 with changing

elevation. Similarly, on a sample texture from the Columbia-

Utrecht (CUReT) database [6], the illuminants azimuth is

detected to within a degree of the ground truth (ψ = 0) but

the coherences are again found to be slightly lower with the

25 to 75 percentiles being 0.53 to 0.78.

It should be noted that while the current model has been

derived by assuming Gaussian and log-normal distributions, it

may also hold to some degree for other distributions for which

the appropriate expected values cancel out. To determine how

well the model copes with various materials with differing

albedo and height distributions, we apply it to all the textures

in the CUReT database. There are a total of 61 materials

present in this database and each texture has been imaged

under 205 different viewing and illumination conditions. Out

of all the images available, we selected 92 images per material

for which a big enough texture region could be extracted from

the image. While the most extreme viewpoints are excluded,

there are still many images for which the viewing direction is

far from head on. Again, in order to verify the robustness of the

model, we do not photometrically or geometrically calibrate

the images but instead use the raw pixel intensities after they

have been converted to grey scale.

Figure 4 shows the results of the algorithm on some CUReT

textures. Only a few samples are shown for lack of space. For

each texture, 7 images are chosen for which the viewing angle

is almost in the direction of the surface plane normal (within

15◦). The value of the illuminant’s azimuth is estimated using

(13) and the estimation error in degrees is plotted as a function

of ν in the middle row. The error is less than a few degrees

even though the view is not perfectly normal, the albedo not

constant and the surface not necessarily isotropic Gaussian.

The results are valid even in the presence of shadows for the

smaller values of elevation. In the bottom row, the associated

coherences have also been plotted as a function of ν. As can

be seen, they are not always equal to the constant value 0.8
but vary with ν and albedo as predicted by the theory.

Next, we apply the method to all 92 × 61 = 5612 images

selected from the CUReT database and estimate the light

source azimuth. As can be expected some results will not

be very good due to the oblique viewpoint and the strong

deviation of the textures from our assumptions. Nevertheless,

in a majority of the cases, the azimuth is recovered to within

a few degrees. Figure 5 is a plot of the estimation error versus

the number of images having that error. Thus, for 1475 images

the azimuth is estimated to within an accuracy of 1◦ while

3255 images (roughly 58% of those selected) have an error

less than 5◦.

However, the algorithm does have a source of error which

could be biasing these results. When a texture is strongly

anisotropic, the perpendicular partial derivative dominates the

structure tensor and forces the estimated illuminant to lie in its

direction irrespective of the true azimuthal angle. For example,

for a texture with translational symmetry, the iso-illumination

contours are straight lines parallel to the translation direction

and hence the derivatives in this direction will be negligible

as compared to the perpendicular derivatives. So, for images

which are vertically oriented (see figure 6), the x derivative

becomes very large and forces the structure tensor to assume

the form

S = H

(

1 ǫ
ǫ ǫ

)

⇒ λ1 = 1, λ2 = 0,v1 =

[

1
0

]
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Fig. 4. The top row shows some sample CUReT textures from a fronto-parallel view (only a few samples are shown because of space limitations). The
middle row plots, for each material, the error in estimating ψ (in degrees) as the illuminant’s elevation varies from 11.25◦ to 78.75◦ (the viewing angle
also varies but is always within 15

◦ of the surface plane normal). Clearly, ψ is estimated to an accuracy of within a few degrees even when the albedo is
not constant, the texture not necessarily isotropic Gaussian and even in the presence of strong shadows for smaller values of the elevation. The associated
coherence values are plotted in the bottom row. As can be seen, the measured coherence varies with elevation and texture sample as predicted by the theory.
It is not a constant equal to 0.8 in all cases as predicted by [12]. The jumps in the curves are most probably due to shadowing effects primarily with change
in elevation but could also be due to the other effects with change in viewpoint (as the camera’s azimuthal angle fluctuates between 0

◦ and 180
◦ from image

to image). The samples are: Polyester (texture number 02), Terrycloth (03), Rough Plastic (04), Sandpaper (06), Plaster A (10), Plaster B (11), Quarry Tile
(25), and White Bread (52). Note that for each sample, derivatives are computed at various scales and the best result reported. No photometric or geometric
calibration has been done and all images are converted to grey scale.

and thus the estimated azimuth is 0◦ irrespective of the

actual direction of the illuminant. A similar problem exists for

horizontal textures and ψ = 90◦. And since most illuminant

directions in the CUReT database are either ψ = 0◦, ψ = 90◦

or ψ = 180◦ it is difficult to tell whether the algorithm is

working properly or giving erroneous results because of the

dominance of oriented edges. However, in these cases the

coherence will be greater than 0.8 and in fact will approach

1 and can therefore be used to flag errors. Figure 6 illustrates
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Fig. 5. A count of the azimuth estimation errors (in degrees) for all 5612
images in the CUReT database. Results are given for the best scale for
computing derivatives.

this effect. The algorithm seems to be working well as the

estimated azimuth appears to lie very close to ground truth

for ψ = 0◦. However, in reality, it is the orientation effects
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Fig. 6. The model can appear to be working well even though it is being
fooled by orientation effects. As long as the illuminant’s true azimuth is around
0
◦ the algorithm returns good results (solid red curve in the graphs in the

middle row) for Corduroy (42), Linen (44) and Corn Husk (51). However,
the estimates for all other illuminant directions are very poor as can be seen
by the dashed curve in the same graphs. The fact that the coherence is near
1 for the ψ = 0

◦ curves can be used to flag this.
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which are causing this and once the true illuminant direction

moves away from 0◦ the errors become very large. The fact

that the coherences are greater than 0.8 can be used to flag

this occurrence.
Nevertheless, the model appears to be quite robust when its

basic conditions are met. For example, for Plaster A (texture

number 10) which appears to be isotropic, the azimuth was

estimated to within 5◦ nearly 90% of the times, irrespective

of viewpoint and shadowing. Thus, even though there is room

for improvement, the simple model derived without taking into

account many physical phenomenon still appears to work quite

well.

IV. ESTIMATION FROM TWO IMAGES

There are often cases when multiple images are available

of a texture taken from the same viewpoint but with varying

illumination. Photometric Stereo techniques rely on such data

for example. In these cases, it is possible to use the extra

information available to lift some of the restrictions imposed

on the model in section II. In particular, it is possible to

have freely varying albedo and, in this section, we develop

a theory for estimating the illuminant’s azimuth under such

circumstances.
Suppose we have available two registered images I1 and I2

imaged by varying the illuminant’s azimuth. Then, under the

Lambertian model, the image intensities are given by

Ii(x, y) =
ρ(x, y)Lλ sin ν
√

1 + h2
x + h2

y

[1 − cot ν(hx cosψi + hy sinψi)]

Note that by taking the ratio of the two images, it is possible

to immediately get rid of both the albedo variation as well

as the normalising constant in the denominator. Thus, we no

longer have to make explicit the assumption that the surface

has shallow relief in order to remove the
√

1 + h2
x + h2

y factor.

Furthermore, the albedo can be allowed to vary arbitrarily as

it has no influence on the ratio. Taking logarithms and again

making use of the truncated Taylor series expansion gives

LR = log(
I1
I2

)

= cot ν[hx(cosψ2 − cosψ1) + hy(sinψ2 − sinψ1)]

Denote C = cosψ2 − cosψ1 and S = sinψ2 − sinψ1. Then

LR = cot ν(Chx + Shy)

⇒ LRx = cot ν(Chxx + Shxy)

⇒ LRy = cot ν(Chxy + Shyy) (18)

Again, < LRx > and < LRy > are not expected to contain

any information, so one must look at the second order statistics

contained in < LR2

x >, < LR2

y > and < LRxLRy >. If the

surface is isotropic and Gaussian, then < h2

xx >=< h2

yy >=
3H,< h2

xy >=< hxxhyy >= H while all other expectations

are zero. Therefore,

< LR2

x > = H cot2 ν(3C2 + S2)

< LR2

y > = H cot2 ν(C2 + 3S2)

< LRxLIy > = H cot2 ν2CS (19)

and the structure tensor is given by

S = H cot2 ν

(

3C2 + S2 2CS
2CS C2 + 3S2

)

(20)

Making use of the trigonometric identities cos (ψ2 ± ψ1) =
cosψ2 cosψ1∓ sinψ2 sinψ1, sin (ψ2 ± ψ1) = sinψ2 cosψ1±

cosψ2 sinψ1 and performing some careful, but straight for-

ward, algebra yields

S = α

(

2 − cos(ψ1 + ψ2) − sin(ψ1 + ψ2)
− sin(ψ1 + ψ2) 2 + cos(ψ1 + ψ2)

)

(21)

where

α = 4H cot2 ν sin2

(

ψ2 − ψ1

2

)

(22)

The eigenvalues of the structure tensor are now λ1 = 3α and

λ2 = α while the larger eigenvector is

v1 =

[

− sin(ψ1 + ψ2)
1 + cos(ψ1 + ψ2)

]

(23)

from which it is possible to recover the joint angle ψ1 + ψ2.

The coherence of the structure tensor now becomes

coh =
λ2

1
− λ2

2

λ2

1
+ λ2

2

= 0.8 (24)

V. EXPERIMENTAL RESULTS FOR TWO IMAGES

We now assess the validity of the theory developed in

section IV on the Heriot-Watt TextureLab database [21].

The database has 30 textures representing various kinds of

materials: isotropic, oriented (in both surface and albedo),

rough, etc. Figure 7 shows one image of each sample present

in the database. Each material has been imaged under a fixed

viewpoint. The illuminant’s elevation is also fixed at ν = 45◦

but the azimuth varies between ψ = 0◦ and ψ = 315◦.

Fig. 7. Materials present in the Heriot-Watt TextureLab database. There are
30 textures and each has been imaged from a fixed viewpoint. The illuminant
elevation is also fixed at ν = 45

◦ but the azimuth varies between ψ = 0
◦

and ψ = 315
◦.
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To test the theory, we take samples from the database whose

surface might be modelled as isotropic and Gaussian but for

which the albedo varies considerably. For each sample, the

image taken at ψ = 0◦ is retained as the reference image while

(23) is then used to recover the azimuthal angle for all the rest.

Figure 8 is a plot of the estimation error for four samples,

AN4, TL2, TL3 and TL6, each of which has signification

variation in its albedo. The middle row shows plots of the

estimation error versus ψ for the remaining images. The solid

blue curves represent the errors in the angle estimated using

(23) and generally tend to be much lower than the dashed

red curve representing the error in estimation due to (13). The

bottom row is a plot of the associated coherences. Even though

(24) predicts that the coherences should now equal 0.8 this is

clearly not the case. The variation is most probably due to

deviations from the model in terms of shadowing.
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Fig. 8. Estimating the illuminant’s azimuth for samples in the Heriot-Watt
TextureLab database. For each material, the image at ψ = 0

◦ is chosen as
the reference image. The solid blue curves (middle row) then represent the
error in estimating ψ in degrees for all the remaining images using (23). The
dashed red curves represent the estimation error as measured using (13). The
bottom row is a plot of the associated coherences. Note that for both methods,
derivatives are computed at various scales and the best results reported.

VI. LOCAL ESTIMATION

Even though the methods developed in sections II and IV

appear to cope fairly well with deviations in the model, there

are often cases where a few bad measurements can adversely

affect the recovery of the azimuthal angle. Therefore, it is

desirable to estimate the illuminant’s direction using local

regions rather than the entire image.

As has been noted in section III, the presence of strong

edges can bias the structure tensor and therefore these regions

should be excluded while computing the expectations. Simi-

larly, regions of constant intensity where the signal variation

is very low should also be excluded.

There exist many such operators [9], [11], [16] to discard

exactly such regions. Most of them are based around comput-

ing the second moment matrix which is extremely similar to

the structure tensor S. We use the Harris corner detector op-

erator [11] to reject edge and constant intensity regions which

might deviate from the assumed model and therefore give bad

estimates. To estimate the statistics locally, we compute the

most interesting Harris points and then for each point, use

the region around it to calculate the expectations < LI2

x >,

< LI2

y > and < LIxy > and thereby the structure tensor. Thus

at each chosen Harris point we compute the structure tensor

and evaluate the local estimate of the illuminant direction. This

can then be used to return the probability distribution of the

azimuthal angle from which the mode can be chosen as the

most likely estimate.

Preliminary experiments indicate favourable results. As dis-

cussed in section III the azimuth can be estimated to within an

accuracy of a few degrees for most images of Plaster A in the

CUReT database. This indicates that the texture satisfies the

basic model. However, for a few images the estimation error is

as high as 15◦ indicating that viewpoint and shadowing effects

are causing deviations from the model and thereby contributing

bad measurements. It is hoped that if these measurements can

be excluded from the estimation process then we should be

able to recover the azimuthal angle much more accurately. This

is found to be exactly the case when the top 300 Harris points

are used to choose the regions for computation. Figure 9 plots

the probability distribution of the angles estimated using the

Harris regions. The mode of the distribution is at 65◦ which is

within 0.15◦ of the ground truth while using the entire image

the recovered angle was ψ = 49.61◦ with an error of 15.49◦.
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Fig. 9. Recovering the illuminant’s azimuth using local estimates for an
image of Plaster A from the CUReT database. The ground truth is ψ =

65.10◦ but the angle recovered using (13), which computes statistics over
the entire image, is ψ = 49.61◦ due to shadowing and viewpoint deviations.
By estimating the angle locally using Harris regions and rejecting others it is
possible to improve the accuracy of the estimate as the mode of the distribution
is 65

◦.

7



VII. CONCLUSIONS

In this paper, we have developed a theory for estimating

the illuminant’s azimuth for isotropic, Gaussian random tex-

tures with spatially variable albedo. When the albedo itself

is isotropic and randomly distributed log-normally, then the

solution for the illuminant’s azimuth is identical to the one

found by Koenderink and Pont [12]. However, the coherence

of the structure tensor is no longer a constant but varies with

both the elevation and the azimuth and is dependent on the

texture’s albedo and shadowing pattern. In the case that extra

information is available in the form of a registered image with

the same elevation, then it is possible to extend the theory

to arbitrarily varying albedo as long as the surface itself is

roughly isotropic Gaussian.

Being able to recover the illuminant’s azimuth raises the

interesting possibility of resolving parts of the Generalised

Bas-Relief ambiguity (GBR) [1], [23]. Unfortunately, it turns

out that once integrability has been enforced, the GBR does

not affect the azimuthal angle of the light source but only its

elevation and strength. However, the fact that we have imposed

a Gaussian distribution on the height function does restrict the

ambiguity. If the transformed surface is given by

h̄(x, y) = λh(x, y) + µx+ νy + d (25)

then, in theory, both µ and ν must be zero and the ambiguity

reduces to λ which affects the variance of the Gaussian, and

the constant of integration in the surface reconstruction d
which affects the mean. However, in practise, due to numer-

ical reasons and because the Gaussian distribution is being

approximated by a finite number of surface height points, it

may well be the case that the ambiguity is not resolved to just

λ and d but may also involve spurious values of µ and ν.
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