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Reproduction numbers, defined as averages of the number of people infected by a typical case, play a central role in tracking
infectious disease outbreaks. The aim of this paper is to develop methods for estimating reproduction numbers which are
simple enough that they could be applied with limited data or in real time during an outbreak. I present a new estimator for
the individual reproduction number, which describes the state of the epidemic at a point in time rather than tracking
individuals over time, and discuss some potential benefits. Then, to capture more of the detail that micro-simulations have
shown is important in outbreak dynamics, I analyse a model of transmission within and between households, and develop
a method to estimate the household reproduction number, defined as the number of households infected by each infected
household. This method is validated by numerical simulations of the spread of influenza and measles using historical data, and
estimates are obtained for would-be emerging epidemics of these viruses. I argue that the household reproduction number is
useful in assessing the impact of measures that target the household for isolation, quarantine, vaccination or prophylactic
treatment, and measures such as social distancing and school or workplace closures which limit between-household
transmission, all of which play a key role in current thinking on future infectious disease mitigation.
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INTRODUCTION
The household is a fundamental unit of transmission for many

directly transmitted infections. In addition, the household provides

a ‘‘laboratory’’ within which key measures of transmission such as

infectiousness, generation time and the effect of immunity or

vaccination can be studied [1]. In recent years considerable effort

has gone into understanding the dynamics of transmission within

populations organised into households using mathematical models

[2,3,4,5,6]. Most effort has gone into analysing the asymptotic

behaviour of these models, elucidating the threshold levels of

transmission required for infection to be self-sustaining, calculating

final epidemic sizes, or predicting the impact of generalised or

targeted interventions designed to reduce or eliminate trans-

mission. In parallel, methods have been derived to estimate the

parameters which govern transmission within the household from

detailed case reports [7,8,9,10]. However, scant effort appears to

have been paid to how to apply household structured models to

the analysis of epidemics, either retrospectively or in real time.

Concurrently, mathematical models have played an ever greater

role in interpreting and responding to emerging pathogens. These

models have typically been either of the ‘‘simple but tractable’’

variety which ignore or average over demographic structure and

social mixing patterns [11,12] or the ‘‘complex computer

simulation’’ variety that capture many details of demographic

structure and dynamics, but of whom the behaviour can only be

determined by intensive numerical analysis [13,14,15]. The aim of

this study is to develop methods of a perhaps ‘‘slightly less simple

but still tractable’’ variety that capture some of the detail that

micro-simulations have shown is important, but which can be

rapidly applied (say on a daily basis) in an emerging outbreak

situation, to inform policy. More specifically, the aim is to arrive at

a method to estimate the key transmission and control parameters

for a model of transmission within and between households from

as few detailed observations as are likely to be gathered in the heat

of a major outbreak.

The resulting analysis will still be based on major simplifications

in respect to all the spatial and other social constructs that govern

disease transmission, but less so than those based on the very

simplest assumption of free, homogeneous mixing. In this context,

it should be stated that even in the best, most robustly

parameterised microsimulations, gross approximations are made

in describing the fabulously complex web of human behaviour,

and even they are only attempts to characterise the statistical

properties of the system as a whole. Extensive effort is, and should

continue to be, spent on identifying the conditions where different

types of simplification (household models, static network models,

spatial metapopulation models…) can and can’t be justified, and in

developing analytical approximations to describe disease trans-

mission within such simplified structures.

Individual based simulations of influenza and smallpox

pandemic spread and control, incorporating detailed information

on population density, age structure, commuting patterns,

workplace sizes and long-distance travel have highlighted the

particular importance of the household as a fundamental unit of

transmission [13,14,16,17,18] (and reviewed in [19]). Pure

household models have been used fruitfully to explore detailed

policy options in a city-wide response to an influenza pandemic

[20]. It thus seems a priori that household models are a natural

starting point in terms of extending theory previously developed

for the simplest assumption of homogeneous mixing.
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The analysis presented here will focus on deriving new

estimators for individual and household reproduction numbers,

denoted R (t ) and R* (t ) respectively. The individual reproduction

number R (t ) is defined roughly as the average number of people

someone infected at time t can infect over their entire infectious

lifespan; as I will show below, there are several ways of defining

this more precisely. The household reproduction number R* (t ) is

defined here as the average number of households a household

infected at time t can infect [3,6]. The individual reproduction

number R (t ) rightly plays a privileged role in epidemiology, as it is

a meaningful measure within any contact network. However, of

the possible summary measures of epidemic progress, it is not

necessarily the most useful. For example, for an emerging directly

transmitted pathogen, such as pandemic influenza virus, public

health interventions may target the household rather than the

individual, enforcing household quarantine as well as offering

antivirals to the household to limit transmission within the

household. In such a situation, the household reproduction

number R * (t ) is more directly related to the parameters which

characterize the intervention, and is thus a better measure of the

effect of these interventions. These quantities (R (t ) and R * (t ))

share the two essential properties of reproduction numbers,

namely that they increase when infectiousness increases and

decrease when infectiousness decreases (monotonicity), and that

they mark a threshold that separates exponentially growing

epidemics (when R (t ).1 or equivalently R * (t ).1) from

exponentially declining epidemics (when R (t ),1 or equivalently

R * (t ),1) [3,6].

The structure of the paper focuses first on deriving estimators

for individual reproduction numbers, then on household re-

production numbers and finally on examples of pandemic

influenza dynamics and measles.

METHODS

Estimating reproduction numbers using a Kermack

McKendrick transmission model
Though less well known than their compartmental counterparts

(SIR, SIS, etc…), time-since-infection models offer a more

intuitive starting point for modelling infectious disease trans-

mission, and importantly for this application, they provide two

other major advantages. First, it is typically easier to identify their

key parameters, and second they more readily adapt to describe

multi-level transmission (by multi-level, I mean here within-

household and between household). A disadvantage is that it can

be harder to include heterogeneities. Nomenclature is confusing,

since both types of model have their origin in the same classic

paper of Kermack and McKendrick [21], and both the SIR model

and the simplest time-since-infection model are known as ‘‘the

Kermack-McKendrick model’’.

The model, in the formalism chosen here, predicts the changing

incidence rate I (t) as a function of calendar time t in terms of the

transmissibility, denoted b (t, t ), an arbitrary function of calendar

time t and time since infection t. b (t, t) typically reflects pathogen

load, or perhaps more precisely pathogen shedding. It is

commonly a single peaked function reflecting pathogen growth

followed by immune suppression, or host death, but can be more

exotic such as the double peaked profile associated with early and

late transmission of HIV [22], or the repeated peaks of malaria

[23]. b (t, t) also reflects the effective contact rate between

infectious and susceptible individuals, which can change during

the course of a single infection, increasing for example if a person

coughs or sneezes due to respiratory disease, or decreasing if

a person takes to bed with illness, and during the course of the

epidemic as public health measures are implemented. More

discussions of the components (infectiousness and contact) of

b (t, t) can be found in [24]. Because I am interested in outbreaks

of emerging infections, I will not describe explicitly reductions in

the susceptible population caused by the epidemic. Formally this

corresponds to working in the infinite population limit. This

assumption is not essential for this section however, since b (t, t)

could also be thought of as incorporating the proportion of cases

that are susceptible; the assumption becomes more important in

the later sections on household models.

Mathematically, transmission is defined by a Poisson infection

process such that the probability that, between time t and t+d,

someone infected a time t ago successfully infects someone else is

b (t, t)d, where d is a very small time interval.

This assumption then results in a prediction that the mean

incidence I (t ) at time t follows the so-called renewal equation

I tð Þ~
ð?

0

b t,tð ÞI t{tð Þdt ð1Þ

This equation states that the number of newly infected

individuals is proportional to the number of prevalent cases

multiplied by their infectiousness. It may often be convenient

(and realistic) to truncate the function b (t, t) at a time tm such that

b (t, t) = 0 for all t.tm.

The asymptotic behaviour of incidence I (t ) is determined by

reproduction numbers [21,25]. Two intuitively defined reproduc-

tion numbers are the case reproduction number, which I denote

Rc (t ), and the instantaneous reproduction number, which I denote

R (t ). The case reproduction number Rc (t ) is a property of

individuals infected at time t, and is the average number of people

someone infected at time t can expect to infect. For a person infected

at time t it is the total infection hazard from time t onwards, i.e.

Rc tð Þ~
ð?

0

b tzt,tð Þdt ð2Þ

While the case reproduction number has been widely used, it

may also be worth considering a quantity which I call the

instantaneous reproduction number R (t ), a property of the

epidemic at time t. It is the average number of people someone

infected at time t could expect to infect should conditions remain

unchanged. It is given by

R tð Þ~
ð?

0

b t,tð Þdt ð3Þ

To illustrate the distinction between Rc (t ) and R (t ), consider

a situation where the transmission rate is abruptly reduced at

a time t = tI. The instantaneous reproduction number R (t ), which

estimates how many people one case would infect if circumstances

were to remain fixed, would abruptly switch from a high to a low

value at time tI. The case reproduction number Rc (t ), on the other

hand, estimates how many people each case actually infects. It will

thus account for the fact that someone infected at time t,tI may

spend part of their infectious period before and after the reduction

in transmission which occurs at time tI and thus Rc (t ) will

smoothly transition from higher to lower values.

To derive simple estimating equations for R (t ), I consider the

case where this function is separable, which corresponds to saying

Epidemic Reproduction Numbers
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that the relative progression of infectiousness as a function of

time since infection is independent of calendar time. In this

case b (t, t) can be written as the product of two functions w1 (t )

and w2 (t), i.e.

b t,tð Þ~w1 tð Þw2 tð Þ ð4Þ

A counter-example might be when reactive patient isolation is

introduced and acts to reduce infectiousness in late stage

infection, in which case b (t, t) can’t be decomposed in this way.

For this type of situation, it may be reasonable to assume the

b (t, t) can be decomposed separately in different stages of the

epidemic, pre- and post- implementation of isolation measures,

for example.

Since b (t, t) is a product, I can arbitrary normalise one or other

of the functions w1 (t) and w2 (t), so without loss of generality,

I choose w2 (t) to have total integral 1, i.e.
Ð?

0
w2 tð Þdt:1.

Substituting equation (4) into equation (3) I find that

R tð Þ~
ð?

0

w1 tð Þw2 tð Þdt

~w1 tð Þ
ð5Þ

The function w1 (t) is equal to the instantaneous reproduction

number R (t). The function w2 (t) is then the distribution of how

these infection events are distributed as a function of time since

infection t. This is an idealised definition of the generation time

distribution, which I denote w (t). Thus, infectiousness can be

decomposed as the product of the instantaneous reproduction

number and the generation time distribution, i.e.

b t,tð Þ~R tð Þw tð Þ ð6Þ

The relationship between the idealised generation time

distribution w (t) and the distribution of observed generation

times can be rather complex for a number of reasons. First,

infections are rarely observed, and thus must be either back-

calculated or the generation times must be based on a surrogate

such as the appearance of symptoms [1,12]. Second, right

censoring can cause the observed generation times to be shorter

or longer than expected for a growing or declining epidemic,

respectively [26]. Third, as apparent here, if the reproduction

number R (t) changes due to depletion of susceptibles, changes in

contact rates or public health measures, then this will also change

the observed generation times for infectious individuals during that

period of change. Thus the distribution w (t) is really intended as

a measure of infectiousness which will correspond to generation

times for an index case in an ideal large closed setting where

contact rates are constant. It can be inferred from data on the

timing of cases, as in [10,13].

Inserting (6) into (1) yields a novel estimator for instantaneous

reproduction number

R tð Þ~ I tð ÞÐ?
0

I t{tð Þw tð Þdt
ð7Þ

By substituting the decomposition (6) into equation (2), a relation

between the instantaneous and case reproduction number is

obtained:

Rc tð Þ~
ð?

0

R tztð Þw tð Þdt ð8Þ

i.e. the case reproduction number is a smoothed function of the

instantaneous reproduction number.

Usually, incidence is reported as a discrete time series of the

form Ii incident cases reported between time ti and time ti+1, in

which case the generation time distribution should be appropri-

ately discretised into a form wi such that
Pn

i~0 wi~1. The

estimators for the reproduction numbers become

R tið Þ~
IiPn

j~0 wjIi{j

ð9Þ

and

Rc tið Þ~
Xn

j~0

IizjwjPn
k~0 Iizj{kwk

ð10Þ

Equation (10) was proposed by [12,27] as a real time estimator

of the reproduction number, while equation (9) was first used for

analysing polio transmission in India [28] (based on the work

presented in this manuscript).

While the case reproduction number is an intuitively appealing

quantity, the instantaneous reproduction number estimated by

equation (9) should also be considered for practical applications as

it may suffer fewer problems of right censoring in an incompletely

observed epidemic. Right censoring is a real problem in using the

case reproduction number to track an epidemic in real time, since

the estimator for Rc (t) at time t is seen in equation (10) to rely on

knowing the incidence at future time-points. An algorithm to deal

with this issue was proposed by [29], but switching instead to the

instantaneous reproduction number estimated by equation (9) may

be a simpler solution. Right censoring is not however the only

complication associated with estimating reproduction numbers in

practice, and is not completely absent from (7) due to the delay in

detecting infections. Left censoring may also arise due to not

knowing the baseline number infected if an epidemic has been

unfolding for some time before observations are recorded. Finally,

estimating the generation time distribution may not be straightfor-

ward.

Several strategies are possible to deal with the fact that one

never observes infections, but rather as a time series of cases of the

form Ci, where case definitions could be based on symptoms,

hospitalisation or seroconversion. One strategy, used in [12], is

simply to ignore this and use cases as surrogates of infection for

estimation of both the generation time and the reproduction

numbers. Often though, it may be possible to characterise

a distribution of the time from infection to becoming a case, say

ji where
Pn

i~0 ji~1. If a case is defined by symptoms then this

would be the incubation period distribution. One can then back-

calculate incidence as follows

bIIi~
Xn

i~0
jjCizj ð11Þ

A drawback of this approach is that the estimated incidence

time series Îi will tend to be over-smoothed relative to the original

time series Ii. It also makes clear that there is still a problem of
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right censoring in an incompletely observed epidemic in the

estimator of equation (9), though less than in equation (10).

Statistical properties of these estimators are straightforward

[12,28]. One previously noted point [12,28] is that because these

estimators are essentially ratios of incidences, they can be used in

cases where only a fraction of cases are observed, such as for polio

where only a tiny fraction of infections lead to disease (of the order

of 1 in 200), though the confidence intervals will change.

A special case applicable to many cases where surveillance is

poor is when only the epidemic growth/decline rate r is known. In

this case the incidence takes the form I (t) = I (0)exp (rt) and both

estimators (7) and (8) for the reproduction number become

R rð Þ~Rc rð Þ~ 1Ð?
0

w sð Þ exp {rsð Þds
ð12Þ

where the reproduction numbers are now expressed as a function

of the exponential rate of change r. This is likely a useful formula,

presented and studied in detail in [30], where the links to earlier

ecological and demographic modelling were also highlighted.

Much of the subsequent analysis will concern itself with deriving

an equation equivalent to (12) for the household reproduction

number R*(r).

Extending the model to heterogeneous natural

histories of infection
The model defined above assumes that the function b (t, t)

describes the ‘‘natural history’’ of infection in each infected

individual. Before specialising to the model of household trans-

mission, it is first worth considering the case where different

individuals experience different ‘‘natural histories’’, defined here

by the susceptibility to infection, and infectiousness after infection.

I denote a vector of random variables X = {X1, X2, …} to

describe factors which influence susceptibility or infectiousness.

For example for the standard SEIR model of infection the random

variables would be the durations of the latent period (L) and the

infectious period (D), i.e. X = {L,D}. Let f (X ) denote the

probability distribution of these random variables amongst new

infections (taking into account differences in susceptibility), defined

such that

ð
dXf Xð Þ~1 ð13Þ

where the integral is taken over the domain of the random

variables. In other words, f (X ) is the proportion of new infections

that have state X.

Let b (X, t, t) denote the infectiousness profile of an individual

with state X.

Assuming that all individuals mix homogeneously, then the

transmission model defined earlier by equation (1) is generalised to

I X ,tð Þ~f Xð Þ
ð?

0

dt

ð
dY b Y,t,tð ÞI Y ,t{tð Þ ð14Þ

where I (X , t) is the incidence of infections with state X. I define

the function K(t) to denote the integral

K tð Þ~
ð?

0

dt

ð
dY b Y,t,tð ÞI Y ,t{tð Þ ð15Þ

which clearly depends only on time t and not state X. The total

incidence at time t is defined by the integral

Itot tð Þ~
ð

dX I X ,tð Þ ð16Þ

By substituting equation (14), which can be rewritten as I (X, t

) = f (X ) K (t ), into equation (16), I obtain that K (t ) = Itot (t ) and

thus that

I X ,tð Þ~f Xð ÞItot tð Þ ð17Þ

I can now substitute (17) into (14) to obtain

f Xð ÞItot tð Þ~f Xð Þ
ð?

0

dt

ð
dYb Y ,t,tð Þf Yð ÞItot t{tð Þ ð18Þ

Dividing both sides of this equation by f(X)yields an equation

for the total incidence

Itot tð Þ~
ðT

0

dt

ð
dYb Y,t,tð Þf Yð ÞItot t{tð Þ ð19Þ

If I define the average infectiousness as follows

~bb t,tð Þ~
ð

dXf Xð Þb X ,t,tð Þ ð20Þ

then equation (19) can now be seen to be the standard Kermack-

McKendrick model of equation (1), i.e.

Itot tð Þ~
ð?

0

~bb t,tð ÞItot t{tð Þdt ð21Þ

In other words, in this model of an emerging infectious disease

epidemic with heterogeneities in susceptibility and infectiousness,

the dynamics of mean total incidence of infection is exactly

equivalent to the basic model where the infectiousness is

appropriately averaged using equation (20). Once an expression

is derived for the average infectiousness b̃(t, t), the results such as

equations (9) or (12) can be used without further consideration of

the heterogeneities in infectiousness or susceptibility.

Heterogeneities which are transmitted or preserved from one

infection to the next, for example due to non-random mixing

between different risk groups, a situation not considered here, lead

to a more complex result. Some public health interventions such as

isolation and contact tracing can induce such heritability even if it

is not a basic property of the transmission process [31,32].

A useful exercise in applying this formalism (not elaborated

here) is the derivation of standard formulae for the basic

reproduction number as a function of the exponential growth

rate r for the SEIR model [30].

Estimating reproduction numbers for a model of

transmission within and between households
One approach to estimating household reproduction numbers is

simply to switch perspective from individual to household, directly

estimate the generation time distribution (times taken for one
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household to infect another) and incidence of infection of

households, and apply the results of equations (9) or (12) to

estimate reproduction number as a function of time, R*(t), or

exponential growth rate, R*(r). Because, as I have shown, the

linearised Kermack-McKendrick model is applicable even when

susceptibility and infectiousness are heterogeneous, this method is

acceptable despite the fact that households may be quite

heterogeneous in size and in the number of people infected.

One analogous situation where this approach has been used is in

estimating farm-to-farm reproduction numbers in the 2001 UK

foot-and-mouth virus epidemic [27]. However, unless specifically

tailored to this task, it is unlikely the data will be collected in the

requisite form for this approach to be used in the human

household situation. Thus, in this section I explore the alternative

approach of explicitly modelling transmission within and between

households.

Homogeneous transmission models can be interpreted as two-

level hierarchical models, where the processes which guide the

natural history of infection within the host are considered separate

from those which drive transmission between hosts. The link

between the two can be thought of as the function b (t, t) which

translates the impact of changing processes within the host into

changing infectiousness as a function of time since infection. The

approach taken here to modelling household transmission is to

study a three-level hierarchical model of transmission. The three

levels are within-host, within-household, and between households.

The natural history of infection is described by the individual

infectiousness function b (t, t). I assume in this section that

individuals are homogenous in infectiousness and susceptibility. I

then use this to predict the course of epidemics within households,

and derive a function b * (t, t *) which describes the average

infectiousness of a household towards other households as

a function of the time since the household was infected, t * (from

here-on, I use the starred symbols to denote properties of

households, and un-starred symbols to denote properties of

individuals). The basic idea behind this analysis is illustrated in

Fig 1.

To simplify the notation, and because the main aim of this

section is to study the case of an epidemic growing exponentially, I

consider the situation where infectiousness is independent of

calendar time t. This could be relaxed, though only if variation in

time is somewhat slower than the typical duration of infection

within a household.

More specifically, the model assumptions are that:

N individuals are distributed into households, and mix randomly

and homogeneously outside of their household;

N within a small time interval d, an individual who has been

infected a time t ago infects a person at random in the

population with probability bG (t )d;

N within this same time interval he or she infects each susceptible

individual in his or her household with probability bL (t, n)d
(this is allowed to depend on the household size n, since

empirical evidence suggests such variation may occur [10]);

N the population is large, and the disease has low prevalence, so

that the probability of a household being repeatedly infected is

negligible;

N the functions bG (t ) and bL (t, n ) are proportional to each other

as functions of the time since infection t.

As a result of the last assumption and of the discussion around

equation (6), the infectiousness functions can be decomposed as bG

(t) = RG w (t) and bn (n, t) = rn w (t), where RG is the average

number of people each infected individual infects through random

(non-household) contacts, w (t) is the generation time distribution

for between household transmission, and rn is a parameter

describing infection within the household whose interpretation

will be clarified below.

I start by analysing the process of transmission within a single

infected household of size n in terms of the functions rn and w (t).

Consider first a household of size 2, where one individual is

infected at time t * = 0. Given the Poisson process described by the

assumptions listed above, the probability that the second individual

remains uninfected at time t * is q2 t�ð Þ~ exp {r2

ðt�

0

w sð Þds

� �
.

The probability that the second person is never infected is

Q2:q2 ?ð Þ~ exp {r2ð Þ. The distribution of times of infection of

the second individual, conditional on infection, is then

w2 t�ð Þ~{
1

1{Q2

Lq2 t�ð Þ
Lt�

~
r2w t�ð Þ exp {r2

Ð t�
0

w sð Þds
� �
1{Q2

ð22Þ

where 2L q2 (t *)/Lt * is the rate of change of the cumulative

probability of not being infected, i.e. the probability density of being

infected at time t *, and the normalising factor 1-Q2 is the total

probability of being infected. The difference between w2 (t *) and

the standard generation time distribution w (t) is a saturation effect,

so that the second case tends to get infected earlier as the

infectiousness of the index case (r2) is increased.

The infectiousness of the second individual towards other non-

household members of the population, conditional on his or her

infection, and described as a function of the time t * since the

infection of the household is thus the convolution of w2 (t * ) and

bG (t), so that the total infectiousness of the household is

b�2 t�ð Þ~RG w t�ð Þz 1{Q2ð Þ
ðt�

0

w2 sð Þw t�{sð Þds

� �
ð23Þ

Generalising this exact result to larger households involves some

complications. Consider for example a household of size 3, where

one individual is infected at time t * = 0. The probability that

neither of the other two individuals is infected by the first

individual at time t * is q3 t�ð Þ~ exp {r3

Ð t�
0

w sð Þds
� �

directly

analogous to the situation for households of size 2. However this is

somewhat greater than the actual probability that they are not

infected at all, since once one of these two is infected, they can also

infect the other, and thus the probability that they each escape

infection is somewhat less than Q3:q3 ?ð Þ~ exp {r3ð Þ.
To progress further with analysing this system, I propose to

approximate the process by assuming that infections within

a household can be approximately described by a discrete

generation Reed-Frost model, i.e. where the probability of not

being infected in each generation is (Qn )m where m individuals are

infected in the previous generation and Qn u exp (2rn ). Qn is the

escape probability of each infectious-susceptible pair of individuals

considered in isolation. In the formalism proposed by Ludwig, this

corresponds to using infectious rank as a surrogate for infectious

generation [33]. Dynamics are recovered by assuming the times

between generations are described by the standard generation

time distribution w (t).

The ordering of infection events has no influence on the final

number of individuals infected [33], and therefore this approxi-

mation will produce exact results for the final number of people

infected in each household. Because of the possibility of ‘‘later’’
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generations preceding ‘‘earlier’’ ones, as noted in the case of

households of size 3 above, and because of ignoring the saturation

effect present in equation (22) in terms of the actual generation

times within households, this approximation will overestimate the

time taken for individuals to become infected in the household.

Because of the general form of the relation between generation

time and reproduction number seen in equation (12), this will

result in over-estimates of the household reproduction number R*

(r). To provide a counter-balancing under-estimate of R* (r), I also

consider an alternative approximation obtained by assuming the

same total number of cases as predicted by this Reed-Frost model,

but where all cases are assumed to be infected by the first index

case. This is not a formal lower bound, since in the limit of infinite

infectiousness within the household, all members of the household

will be infected simultaneously upon introduction of the infection

into the household. I find however that even for the example of

highly infectious measles virus (below), the under-approximation is

sufficient to provide a practical lower bound.

The probability of different chains of infection within house-

holds can easily be computed from the assumed Reed-Frost model

[2]. I denote pr( {m1, m2, …, mn }|n) the probability of a chain of

infection occurring in a household of size n where m1 index cases

infects m2, who in turn infect m3 tertiary cases and so on, up to

a maximum of n generations of infection. It is an assumption of the

Figure 1. Concept of approach. As a starting point, consider a household of size 4. A, illustrates an infection being transmitted in this household,
with the index case (i) being infected outside the house at time t0. They then infect exactly one person (ii) at time t1, and (ii) in turn infects person (iii)
at time t2. Person (iv) escapes infection altogether. The infectiousness of each individual over time is also shown, with infection events highlighted. B,
illustrates how these events can be reinterpreted by taking the unit of infection as the household, infected at time t0 and with total infectiousness of
the household defined as the sum of the four individual curves shown in A. The aim of the method is then to average this process over all possible
chains of infection in the household, and all household sizes, to obtain the characteristic infectiousness profile of a household, as shown in C, where
the household is no longer decomposed into its constituent units at all.
doi:10.1371/journal.pone.0000758.g001
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model that the number of index cases is 1, so m1 = 1. The full

probabilities can be obtained as products of binomials linking each

generation to the previous ones as follows

pr m1,m2, . . . ,mnf gjnð Þ~P
n{1

i~1
pr miz1j m1, . . . mif g,nð Þ ð24Þ

where

pr miz1j m1, . . . ,mif g,nð Þ~Binomial n{
Pi

j~1

mj , Qnð Þmi

 !
ð25Þ

The second approximation is that the time taken for one

infected to infect the next is distributed according to the standard

generation time distribution w (t). The time at which someone in

the (i+1)th generation of infection is infected is as a result drawn

from the ith auto-convolution of this distribution, denoted here

w[i](t
*) and defined by the recursive convolution equation

w 1½ � t�ð Þ~w t�ð Þ

w i½ � t�ð Þ:
ðt�
0

ds w t�{sð Þw i{1½ � sð Þ
ð26Þ

which satisfies
Ð?

0
w i½ � t�ð Þdt�~1.

Consider now an individual in the ith generation of infection in the

household, and consider this household at a time t * after the first

index case was infected. This individual must have been infected at

some earlier time s ( t * distributed according to the distribution

w[i-1](s). His or her infectiousness to others outside of the household

will be given by bG (t*-s). Thus, by averaging over all possible values

of s, the average infectiousness of such an individual in the ith

generation is

bi t�ð Þ~
ðt�

0

bG t�{sð Þw i{1½ � sð Þds

~RGw i½ � t�ð Þ
ð27Þ

Thus having averaged over all possible times of infection in the

chain of transmission events in the household, infectious households

are stratified by their size and by the number of cases in each

generation. Using the notation defined earlier, I define the state

vector X = {n, m1, …, mn} of variables which define the infectiousness

and susceptibility of the infected household, where n is the household size

and mi is the number of infected individuals in the ith generation of

infection in the household. The infectiousness of a household with

this state X towards other households, mediated by random mixing

of individuals between households, is the sum of the infectiousness of

all the individuals each given by equation (27), i.e.

b� X,t�ð Þ~RG

Xn

i~1

miw i½ � t�ð Þ ð28Þ

Given that this infection process involves random mixing of

individuals outside their household, the distribution of sizes of

households which get infected is the so-called size-biased household

distribution. This is the distribution of sizes one obtains by sampling

individuals at random in the population and recording the size of

their household, as opposed to the more commonly recorded

household size distribution which is obtained by sampling house-

holds at random. If kn denotes the household size distribution, then

kn~
nknP?

u~1 uku

ð29Þ

is the size-biased household size distribution. Given a household of

size n gets infected, the probability of a chain of infections is given by

the Reed-Frost probabilities pr ({m1, …, mn}|n). The distribution of

the random variables X = {n, m1, …, mn} at infection is thus

f Xð Þ~kn
:pr m1, . . . ,mnf gjnð Þ ð30Þ

The mean infectiousness of a household is

~bb� t�ð Þ:
ð

dX f Xð Þb� X ,t�ð Þ

~RG

X?
i~1

miw i½ � t�ð Þ
ð31Þ

where mi is the expectation of mi under the distribution f (X), i.e.

the expected number of cases in the ith generation of infection in

a typical infected household given by

mi~
X?
n~1

X
m1,...,mnf g

mi kn
:pr m1, . . . ,mnf gjnð Þ ð32Þ

Let m=Simi be the average total number of cases in an infected

household. The household reproduction number takes an intuitive

and well known form derived in [3,6], expressed in terms of the

parameter RG as follows:

R�:
ð?

0

~bb� t�ð Þdt�

~RGm

ð33Þ

i.e. the household reproduction number is the product of the

expected number of infections in a household multiplied by the

number of people each individual infects out of their household.

The mean household generation time distribution (time for one

household infecting the next) is

w� t�ð Þ~
X?
i~1

miw i½ � t�ð Þ=m ð34Þ

The mean generation time for households, Tg
*, can be expressed

in terms of the individual generation time Tg as

T�g:
ð?

0

t�w� t�ð Þdt�

~
X?
i~1

imiTg=m

ð35Þ

The generation time distribution w * (t * ) can be used for the

previously defined estimators of reproduction numbers (7)–(12)

Epidemic Reproduction Numbers

PLoS ONE | www.plosone.org 7 August 2007 | Issue 8 | e758



using household incidence data or just exponential growth rates.

The exponential growth rate r for an exponentially growing

epidemic is the same whether measured for individual or

household incidence. For an exponentially growing or declining

epidemic, one obtains the estimator

R� rð Þ~ mP?
i~1

mi

Ð?
0

w i½ � t�ð Þ exp {rt�ð Þdt�
ð36Þ

Now consider the integration

ð?
0

w i½ � t�ð Þ exp {rt�ð Þdt�~

ð?
0

dt�
ðt�

0

ds w t�{sð Þw i{1½ � sð Þ exp {rt�ð Þ

~

ð?
0

ds

ð?
s

dt� w t�{sð Þw i{1½ � sð Þ exp {rt�ð Þ

~

ð?
0

ds

ð?
0

du w uð Þw i{1½ � sð Þ exp {r uzsð Þð Þ

~

ð?
0

ds w sð Þ exp {rsð Þ
� � ð?

0

du w i{1½ � uð Þ exp {ruð Þ
� �

~

ð?
0

ds w sð Þ exp {rsð Þ
� �i

~1= R rð Þ½ �i

ð37Þ

where the first equality uses the definition of the auto-convolution,

the second is a re-ordering of integrals, the third involves changing

variables to u = t *-s, the fourth is a factorisation and the fifth arises by

induction. The sixth uses the definition of the individual re-

production number R (r ) one obtains ignoring household structure

from equation (12). The household reproduction number can be

expressed in terms of the individual reproduction number R (r ) as

R� rð Þ~m

,X
i

mi

R rð Þ½ �i
ð38Þ

Examination of equation (33) immediately reveals that the

estimate for the number of people each person infects out of the

household is

RG rð Þ~1

,X
i

mi

R rð Þ½ �i
ð39Þ

I have thus derived a simple analytic relation between the

individual and household reproduction numbers. Both are

approximations, ignoring the effects of local saturation on the

generation time, which will tend to produce overestimates of the

reproduction number. An alternative approximating to the

household reproduction number, which provides an underestimate,

is found when all secondary household cases are assumed to arise in

the second generation, i.e. using equation (38) but substituting

m1Rm91 = m1;1, m2Rm92 = S‘
i = 2mi and miRm9i = 0 for i.2.

RESULTS

Application to influenza transmission
There are two reasons for considering household structure in

analysing the pandemic influenza situation. First, influenza

transmission is known to be concentrated within the household,

and thus parameter estimates which ignore this heterogeneity are

likely to be frail. Second, many public health policies for future

pandemics are likely to be organised around the household. The

net effect of social distance measures such as school and

workplace closures and cancellation of social gatherings is

effectively to reduce transmission out of households (and perhaps

inadvertently to increase transmission within them). Further-

more, antiviral treatment and prophylaxis and quarantine

measures are likely to be targeted at whole households rather

than individuals (though restricting families with one suspect case

to stay together without any other support is possibly undesirable)

[16,17,20].

A number of studies have identified the parameters needed to

estimate the household reproduction number for influenza

[8,10,11,17]. It is important to bear in mind that these parameters

could be quite different in future pandemics, and thus that robust

methodology may be more useful in responding to new outbreaks

than numerical estimates obtained for past outbreaks. While it

would be straightforward to use demographic data and exponen-

tial growth rates from earlier pandemics combined with inter-

pandemic data on the transmissibility of influenza within house-

holds to obtain estimates of R * for historical pandemics, it has not

been shown that the within household transmission parameters for

inter-pandemic influenza adequately describe the pandemic

situation, so I focus instead on providing illustrative examples

using current demographic data (on the household size distribution

from the UK) [34], and recent data on the transmissibility of

influenza in modern households [10].

The household size data from 2001is truncated to size 6, and I

assume that all households of size 6 or greater have size exactly 6.

The data are k1 = 29% (i.e. 29% of households are single person

households), k2 = 35%, k3 = 16%, k4 = 14%, k5 = 5% and k6 = 2%.

The size of the mean household is thus 2.38 (average size of

households where households are sampled at random), while the

household of the mean individual has size 3.06 (average size of

household to which individuals belong, where individuals are

sampled at random).

From the French influenza study [10], I obtain maximum

likelihood estimates of the within household transmission param-

eter of rn = 1.35/n1.0 (which is consistent with the best fit to the

Tecumseh data [8] of rn = 1.27/n0.97). The former study followed

seronegative households for a two week winter outbreak of

seasonal influenza. The corresponding escape probabilities are

Q2 = 50.9% (i.e. the probability of not being infected by the other

household member in a household of size two is 50.9%),

Q3 = 63.8%, Q4 = 71.4%, Q5 = 76.4% and Q6 = 79.9%. On the

scale of other infections, this places influenza as being approxi-

mately as infectious as mumps, but a lot less infectious than either

varicella-zoster or measles [1]. By applying the Reed-Frost model

to these data with this distribution of households, I obtain

estimates of the average number of infections in each generation of

infection of m1 u 1, m2 = 0.64 (i.e. the first index case directly infects

an average of 0.64 people in his or her household), m3 = 0.19,

m4 = 0.036, m5 = 0.0037 and m6 = 0.00021, and thus the estimate

for the total expected number of cases in an infected household is

m= S6
i = 1mi = 1.87, to be compared to the mean size of 3.06.

These calculations are performed in Microsoft Excel 2007 using

equation (25).

There is not yet a consensus on the generation time of influenza

[13,14,16,30,35], with estimates ranging from 2.6 days in [13] to

5.3 days in [14]. I use a Gamma distribution with mean

Tg = 2.85 days and standard deviation 0.93 days, as reported in

[30].
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Based on these data, I compare the predicted and simulated

infectiousness of households in Fig. 2, which shows the average

over all households sizes and compares this to the final analytical

approximation given by equation (31) for b* (t *), and also the

alternate approximation which considers all secondary infections

to arise in the second generation of infection ; the simulations and

the first approximation are clearly in good agreement. Individual

based stochastic simulations were programmed using Berkeley

Madonna, and are described in Appendix S1.

For the case of an exponentially growing epidemic, the estimates

of the individual and household reproduction numbers, R and R *

respectively, are shown in Figure 3, along with the estimate of the

number of people one person infects outside their household, RG.

For R *, both the under- and over-estimating approximations are

shown, along with estimates obtained from the simulated

generation time distribution. As expected for this low-infectious-

ness scenario, the simulated values are closer to the over-

estimating approximation. The range between these approxima-

tions which bracket the true value is rather narrow, indicating that

the method is predictive.

For the 1918 ‘‘Spanish Flu’’ H1N1 pandemic, the median growth

rate in large US cities was r = 0.20 per day [30,35], with comparable

estimates in the UK [17]. This value also serves as an upper estimate

for the spread of the H2N2 pandemic virus in 1957 [17]. Based on

this growth rate, the estimated individual reproduction number is

R = 1.74, while the estimated household reproduction number is R
* = 2.26, and thus the out-of-household reproduction number is

RG = 1.21. Of course, households were bigger in 1918 than now, so

that the actual value of R* was likely higher than this. These estimates

would imply that a proportion 121/R * = 56% of between

household transmission would need to be blocked to prevent

epidemic spread. Figure 3 could provide a rough guide to the likely

values of R* and RG for a new influenza pandemic where the rate of

exponential growth can reliably be determined.

Consider someone who the index case in their household; they

would be expected to infect RG = 1.21 people out of their

household and m2 = 0.64 within their household. This validates

assumed proportions of transmission within and between house-

holds from earlier simulation studies [17,20]. The sum of these is

greater than R since the reproduction number R is an average over

different generations of infection within the household. For this

value, the estimate of R which takes into account local saturation

effects was determined numerically to be R = 1.79. Fig 3 shows

that for all values of r, numerically estimated values for R (r ) are

close to the curve estimated from application of equation (12)

which ignores local saturation effects.

As a final check of the method, epidemics within a community

of 2,000 households were simulated using an individual based

stochastic model (see Appendix S1). I choose RG = 1.21 as inferred

from an epidemic growth rate of r = 0.20 per day, and the other

parameters as described above. The exponential rate of growth

was then re-estimated directly from the simulated incidence time-

series to be r = 0.19 (Figure 4), close to the predicted value of

r = 0.20. This provides further support for the validity of this

method, especially since no restrictions were placed on re-infection

of households within this small simulated community.

Application to measles transmission
As noted above, influenza is relatively uninfectious compared to

other common viruses. For a contrasting application of the method, I

now focus on measles which was the most infectious of the pathogens

studied in [1]. Measles also has a more peaked generation time

distribution, so that generations of infection are more distinct, and to

make the contrast with the influenza estimates yet greater, I also use

demographic data on household size chosen from the national

census in 1961, when household sizes were greater than they are

now. This analysis is perhaps a little artificial when applied to

measles, since a large proportion of the population will have

immunity either due to past infection or vaccination with the live

MMR vaccine. The principal motivation is to further test and

illustrate the methods in a case where good data on the transmission

dynamics within households are available. Stratification by house-

hold of the recent outbreaks of measles caused by decreasing uptake

of the MMR vaccine could reveal whether household heterogeneities

should have be accounted for in estimating the changing re-

production number of measles [36].

The household size data from 1961 is truncated to size 6, and I

assume that all households of size 6 or greater have size exactly 6.

The data are k1 = 14% (i.e. 14% of households are single person

households), k2 = 30%, k3 = 23%, k4 = 18%, k5 = 9% and k6 = 7%.

The size of the mean household is thus 2.99 (average size of

households where households are sampled at random), while the

household of the mean individual has size 3.66 (average size of

household to which individuals belong, where individuals are

sampled at random).

Hope-Simpson reported susceptible-infectious escape probabil-

ities of Q = 69.9% for mumps, Q = 39% for varicella, and

Q = 24.4% for measles in under 15s [1]. The results were reported

independent of household size, and were regarded as unreliable in

over-15s. Based on applying the Reed-Frost model to the measles

Figure 2. The infectiousness of households. The average infectious-
ness of a fully susceptible household infected with influenza (A) or
measles (B). The infectiousness of individuals (denoted b (t)) is shown,
as is the infectiousness of the typical infected household (denoted
b* (t*)). This latter curve is obtained by simulating over 10,000
epidemics of transmission within households starting from one infected
case. The two analytical approximations described in the text are
also shown. ‘‘Approx 1’’ is the main approximation described, while
‘‘Approx 2’’ is the one obtained by assuming that all infections occur in
the second generation of infection within the household. Parameters
are as described in the main text, and the curves are arbitrarily scaled
such that each individual infects on average one person outside of the
household (i.e. RG = 1).
doi:10.1371/journal.pone.0000758.g002

Epidemic Reproduction Numbers

PLoS ONE | www.plosone.org 9 August 2007 | Issue 8 | e758



estimate with this distribution of households, I obtain estimates of

the average number of infections in each generation of infection of

m1 u 1, m2 = 2.01 (i.e. the first index case directly infects an average

of 2.01 people in his or her household), m3 = 0.50, m4 = 0.020,

m5 = 0.00036 and m6 = 0.0000031, and thus the estimate for the

total expected number of cases in an infected household is

m= S6
i = 1mi = 3.54, to be compared to the mean size of 3.66.

Hope-Simpson also reported the intervals between linked cases

in households using different case definitions [1]; the intervals for

what he regarded as the most reliable case definition, ‘‘maximum

rash’’. These data is well described by a Gamma distribution (not

shown). The maximum likelihood estimate of the generation time

is Tg = 10.5 days with standard deviation 2.4 days.

Based on these data, I repeat the simulations of the previous

section on influenza but with parameters for measles in Figs 2, 3

and 4. Figure 2B shows that, as expected, the average

infectiousness of a household is less well approximated by either

approximation than for the much less infectious case of influenza.

In this case, multiple peaks of infectiousness corresponding to

generations of infection within the household can be clearly

distinguished, and there are more cases in the second generation of

infection than in the first.

In terms of the predicting of the household reproduction number

R*, the method is still found to be strongly predictive (as evidence by

the small gap between upper and lower estimate) and reliable

(compared to numerical estimates). While in influenza, the simula-

tions were close to the upper approximation, here they are closer to

the lower approximation, as expected for the more infectious

situation of measles transmission. Simulations of transmission within

a community of households were again found in Figure 4B to

validate the approach. The difference in the shape of the epidemic

curve with influenza reflects the different shape of the generation

time distribution, though the exponential growth rate is the same.

DISCUSSION
New methods were presented to estimate both the individual and

household reproduction number during an epidemic. The new

method presented for estimating the individual reproduction

number relates closely to earlier work [12,27,30], but provides an

alternative and possibly simpler solution to the problem of

incomplete observations during an unfolding epidemic [29]. It

also provides an alternative and perhaps more satisfying solution

than the incidence-to-prevalence ratio method [37,38] to the

problem of long generation time distribution infections such as

HIV, where epidemiological circumstances can change sub-

stantially within the course of a single infection, and thus the case

reproduction number represents too much of an average to convey

secular changes in behaviour and transmission.

Nothing in this study challenges the central role of the

individual reproduction number as an epidemiological measure;

because the empirical measures of reproduction number proposed

here and in [12,27,29] use incident observed cases as the base, all

of the complication in defining the ‘typical’ or ‘eigen’ case for

structured models discussed most clearly in [24] are neatly

sidestepped. What this study does highlight is that much

complexity is hidden in effectively defining and estimating the

generation time distribution for a structured population. In the

case studied here, generation times between individuals are shorter

for within household transmission than between household

transmission, particularly for more infectious pathogens, and this

resulted in systematic biases associated with estimating the

reproduction number while ignoring this effect, which were quite

substantial in the case of highly infectious measles virus.

The methods presented for the estimation of household

reproduction numbers were not affected by this problem in the

same way. Analytical approximation were derived which brack-

eted estimates between a lower and upper bound, and numerical

simulations showed the range within these brackets to be narrow.

These approximations were shown to be robust, but it is worth

noting that assumptions are made about the population mixing

randomly out of their households and results are only valid in the

scenario of an emerging pathogen where overall prevalence is low.

The usefulness of these methods is likely to be found in predicting

and understanding the impact of household targeted infection

control measures in an emerging epidemic. This actually covers

a wide class of interventions since the household is a central living

and administrative unit in most populations. Decisions regarding

isolation, quarantine, vaccination and prophylaxis may often be

made for entire households. Similarly school and workplace closures

as well as restrictions on leisure activity can be thought of as trying to

reduce between household transmission. Analytical approaches are

also invaluable in calibrating and providing independent checks on

more detailed individual based micro-simulations, such as

[13,17,20]. Some control interventions require more subtle analyses;

for example it has been shown that vaccinating whole households is

not the most effective strategy for a given vaccine coverage rate, and

Figure 3. Reproduction numbers for an exponentially growing
epidemic. Estimates of the individual reproduction number R (r ) (the
average number of people infected by each individual) and the
household reproduction number R* (r ) (the average number of people
infected by each household) are shown as a function of the epidemic
growth rate r for influenza (A) and measles (B). The two analytical
approximations which bracket the household reproduction number R*

(denoted upper and lower) are shown along with numerically estimated
values (‘+’ symbols). The approximation to the individual reproduction
number given by equation (12) is shown (dashed line) along with
numerical estimates (‘D’ symbols). The estimate for the quantity RG, the
average number of people each person infects outside his or her home,
is also shown.
doi:10.1371/journal.pone.0000758.g003
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that alternative strategies such as preferentially vaccinating larger

households could be considered [39].

Further avenues of research include studying the statistical

properties of these estimators for different situations. The assumption

made here, that individuals mix nearly homogeneously out of their

household may be an appropriate approximation for describing

transmission within a neighbourhood or even a city [20], but

ultimately one should also consider developing the estimators for

more complex demographic situations such as a hierarchy of

organisations (household, to village, to region, to country, etc…) or

a more complex overlap of households, workplaces and regular

social spaces. Also of interest is the study of intervention measures,

particularly those that respond to the presence of a symptomatic

cases; the measures of pre-symptomatic transmission presented in

[25] clearly generalise to a household, but analytical results on the

efficacy of isolation and quarantine are not evidently obtainable.

The estimators of the household reproduction number have

been shown here to be robust on their own terms, but I have not

addressed the issue of model misspecification, for example to

inaccurate determination of the generation time distribution or to

individual heterogeneity in infectiousness or susceptibility within

households. Further scenarios could be explored both to test the

method with different infections and to address the issue of model

misspecification.

There are many cases where it may be desirable to quantify

household transmission, but where a degree of natural or vaccine-

induced immunity may be present in the population, a problem

not addressed here. In considering these more complex situations,

while it may not be possible to obtain analytic forms for the

infectiousness of a household, numerical forms can usually be

obtained quickly and still offer benefits over full individual based

micro-simulations in easily exploring a wide range of parameters.

Finally, the likely practical benefits of estimating household

transmission parameters in an emerging epidemic need to be

clearly established and communicated, and the most effective ways

to enhance data collection protocols to allow their rapid estimation

need to be identified.

SUPPORTING INFORMATION

Appendix S1 Description of the simulations

Found at: doi:10.1371/journal.pone.0000758.s001 (0.08 MB

PDF)
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Figure 4. Simulated epidemics. To check the method for consistency, I simulate ten epidemics of influenza (A) and measles (B) within a fully
susceptible community of 2,000 households. I use parameters estimated for an epidemic growth rate r = 0.20 per day, and condition on non-
extinction of the epidemic. In C and D, the natural logarithm of the incidence is compared to the fixed slope curve r = 0.20 predicted by the model
(thick line). Linear regression through these data yields the estimate r̂ = 0.19 in both cases.
doi:10.1371/journal.pone.0000758.g004
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