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Abstract: Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) is one of the important tree species
in plantation in southern China. Rapid and accurate acquisition of individual tree above-ground
biomass (IT-AGB) information is of vital importance for precise monitoring and scientific manage-
ment of Chinese fir forest resources. Unmanned Aerial Vehicle (UAV) oblique photogrammetry
technology can simultaneously obtain high-density point cloud data and high spatial resolution
spectral information, which has been a main remote sensing source for obtaining forest fine three-
dimensional structure information and provided possibility for estimating IT-AGB. In this study, we
proposed a novel approach to estimate IT-AGB by introducing the color space intensity information
into a regression-based model that incorporates three-dimensional point cloud and two-dimensional
spectrum feature variables, and the accuracy was evaluated using a leave-one-out cross-validation
approach. The results demonstrated that the intensity variables derived from the color space were
strongly correlated with the IT-AGB and obviously improved the estimation accuracy. The model
constructed by the combination of point cloud variables, vegetation index and RGB spatial intensity
variables had high accuracy (R2 = 0.79; RMSECV = 44.77 kg; and rRMSECV = 0.25). Comparing the
performance of estimating IT-AGB models with different spatial resolution images (0.05, 0.1, 0.2, 0.5
and 1 m), the model was the best at the spatial resolution of 0.2 m, which was significantly better
than that of the other four. Moreover, we also divided the individual tree canopy into four directions
(East, West, South and North) to develop estimation models respectively. The result showed that
the IT-AGB estimation capacity varied significantly in different directions, and the West-model had
better performance, with the estimation accuracy of 67%. This study indicates the potential of using
oblique photogrammetry technology to estimate AGB at an individual tree scale, which can support
carbon stock estimation as well as precision forestry application.

Keywords: Chinese fir; individual tree above-ground biomass; UAV oblique photogrammetry;
multi-dimensional feature; intensity

1. Introduction

Chinese fir (Cunninghamia lanceolata (Lamb.) Hook), as one of the major tree species of
plantations in southern China, accounts for about 28.54% of the national plantation area.
With its strong adaptability, strong wind resistance, fast growth speed and high economic
value, it not only plays a role in maintaining the regional ecological environment, but also
makes an important contribution to the carbon balance. Above-ground biomass (AGB) is
an important index to evaluate the carbon storage capacity [1,2] and potential carbon sink
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scale of forest ecosystems [3], so it is particularly significant to timely and accurately obtain
the individual tree AGB (IT-AGB) information.

Theoretically, destructive sampling is the most accurate and reliable method [4] to
measure AGB information [5,6]. However, it is not practical to acquire large-scale forest
AGB [7], because it is not only time-consuming and labor-intensive [8] but also high-cost
and destructive to forests. Remote sensing technology has solved the problem of destructive
sampling and difficulties of in-depth forest investigation in areas with complex terrain [2,9],
and can implement efficient and accurate estimation of forest AGB in a wide range [10–12].

In recent years, researchers have carried out many studies in forest AGB estimation us-
ing remote sensing data from spaceborne optical and radar sensors combined with ground
survey data [13,14]. However, optical data are prone to saturation [15–18] and cannot
achieve AGB estimation at individual tree scale. Radar data are limited by terrain, speckle
and surface moisture [19], resulting in a low estimation accuracy at stand scale. Light
Detection and Ranging (LiDAR), an active remote sensing laser technology, can provide
forest three-dimensional structure information related to forest AGB [20–24] and has the
potential to overcome the disadvantages of optical and radar data. Airborne LiDAR and
spaceborne LiDAR are the two main LiDAR platforms currently available [25]. Spaceborne
LiDAR has low resolution and cannot realize fine-grained forest AGB estimation. Although
airborne LiDAR data can estimate forest IT-AGB, it is limited to acquisition cost [26,27] and
a lack of spectral information. Therefore, it is necessary and urgent to find a new method
for extracting forest structural parameters at individual tree scale and realize high-efficiency
and low-cost AGB estimation.

Unmanned Aerial Vehicle (UAV) oblique photogrammetry technology has been a new
method for forestry investigation [28–32] with the advantage of low cost, high flexibility
and repeatability [33,34]. This technology uses UAV equipped with multiple lenses to
obtain high-resolution and high-dense photos from different angles. Through Structure
from Motion (SfM) [35] and dense matching technology, it can generate three-dimensional
point cloud data [36], RGB image and texture information. Among them, point cloud
data can reflect the three-dimensional structure characteristics of forest, and RGB image
and texture information can reflect the forest canopy information and AGB distribution
characteristics. Nevertheless, previous researches focused on AGB estimation using point
cloud variables [37] and vegetation index [38] in forest environment with simple structural
complexity, such as small topographic relief, low canopy density and even–aged stands.
The extent to which their results are applied to forests with multi-layered arrangements and
complex forests structures are uncertain [27]. Moreover, as far as we know, the combination
of Hue-saturation-intensity (HSI) color spatial information and structural metrics has
not been used for AGB estimation, which means that the contributions of the optical
information embedded in images to AGB has not been fully explored. Additionally, the
shadows formed by the mutual occlusion between the tree crowns cause the point cloud
of this area to be unsuccessfully generated during the 3D reconstruction process, which is
unavoidable and affect inevitably the estimation of IT-AGB in complex forest environment
and flight conditions. Therefore, it is necessary to study its influences on IT-AGB estimation
and find a solution to minimize the estimation error when the data is not ideal. From the
perspective of practical application, it is still worth discussing what spatial resolution of
the images can get practical estimates of IT-AGB, which is the basis for determining flight
parameters.

The objective of this study is to quantify and assess the potentiality of IT-AGB es-
timation using multi-dimensional features data acquired from UAV oblique photos. To
make full use of the information of color space, we proposed an approach to introduce
intensity variables into quantitative IT-AGB. We then evaluated the effects of different
color spatial intensity information and different spatial resolution on the performance of
the model, and deduced an optimal model for estimating IT-AGB. Finally, we divided the
individual tree crown into the East, West, South and North directions to explore the ability
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of estimating IT-AGB in different horizontal directions, which can provide a solution to
IT-AGB estimation in case of data cavities within individual tree canopy.

2. Materials and Methods
2.1. Study Area

The study area is located in Gaofeng forest farm in Guangxi province of southern
China (108◦20′57”–108◦21′54”E, 22◦57′08”–22◦58′41”N) (Figure 1). The length in east-west
and north-south direction of the region are is 2800 m and 1600 m respectively, with a total
area of about 3.03 km2. The forest farm belongs to subtropical monsoon climate, with
sufficient sunshine and rainfall. The annual average temperature is 21.7 ◦C and the annual
average precipitation is 1300 mm. The elevation varies from 125 m to 300 m. The forest
type is mainly artificial forest with tall and dense trees, high canopy density and rich tree
species. The dominant tree species include Chinese fir (Cunninghamia lanceolata (Lamb.)
Hook.), eucalyptus (Eucalyptus robusta Smith), Castanopsis hystrix Miq. (Castanopsis hystrix
J. D. Hooker et Thomson ex A. De Candolle). Among them, Chinese fir has ecological,
economic and medicinal values. However, the complex terrain and high canopy density of
the forest farm bring challenges to the estimation of IT-AGB.
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Figure 1. Overview of the study area. (a) Location of study area; (b) Digital orthophoto model (DOM)
and distribution of sample sites; (c) Digital elevation model (DEM). (d,e) are ground photographs of
the sample plots and trees.

2.2. Data
2.2.1. Field Data

Field data collection was carried out from 5 to 14 January 2020, and the measured data
of four Chinese fir sample plots (25 m × 25 m) (Figure 1) were obtained. We measured
the diameter at breast height (DBH), tree height and crown width of individual trees in
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the sample plots, and recorded the slope, aspect, elevation, canopy density and other
information of the sample plots. At the same time, we measured the position of individual
tree in the sample plots using the Global Navigation Satellite System (GNSS) real-time
kinematic (GNSS RTK) system, following the UTM projection (zone 49 N) with WGS-1984
Datum. We obtained a fix solution under each tree. The horizontal positioning accuracy is
within ±0.2 m.

According to the measured tree height and DBH, the IT-AGB was calculated by
using the allometric growth equation referring to “Comprehensive Database of Biomass
Regressions for China’s Tree Species” [39], which was used as the true value of IT-AGB.

Y = 71.2465× (D2H)
0.9256

(1)

where, Y is IT-AGB (kg); D is DBH (m); H is the tree height (m).

2.2.2. UAV Oblique Photography Data and Auxiliary Terrain Data

The image data were obtained at noon on 7 January 2020 using the DJIM600pro multi-
rotor UAV equipped with JHPQX3MINI five-lens oblique camera (Figure 2) to acquire
multi-angle photos. The camera parameters are shown in Table 1. Prior to flying, 10 ground
control points (GCPs) were marked in the open area using 50 × 50 cm targets. The position
of the GCPs is measured by GNSS RTK, and its horizontal and vertical accuracy is controlled
within ±0.2 m for image data calibration processing.
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Figure 2. Schematic diagram of data collection for (a) UAV equipped with five-lens oblique camera
and (b) GCP.

In February 2018, we obtained LiDAR data using the RIEGL LMS-Q680i LiDAR sensor
as auxiliary terrain data. The LiDAR sensor and flight parameters are shown in Table 2.
LiDAR data processing mainly includes noise point removal and filtering. The noise point
removal mainly removes the points within the abnormal elevation range. The ground
points and non-ground points are separated by Cloth Simulation Filter (CSF) method,
and then the ground points are interpolated by Triangulated Irregular Network (TIN) to
generate Digital Terrain Model (DTM) with spatial resolution of 1 m, which is used to
normalize the oblique photography point cloud data.
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Table 1. Flight and camera parameters of UAV oblique photogrammetry.

Sensors and Flight Parameters JHP QX3MINI

Sensor size (mm ×mm) 23.5 × 15.6
Heading overlap (%) 80

Side overlap (%) 70
Horizontal speed (m·s−1) 4~8

Flight altitude (m) 100
Exposure interval (s) 0.8~4.5

Focal length (mm) 35
Scanning angle (◦) 45

Single camera pixel numbers (million) 42

Table 2. LiDAR sensor and flight parameters.

Sensors and Flight Parameters Parameter Values

Wavelength (nm) 1550
Beam divergence angle (mrad) 0.5

Spot diameter (cm) 45
Pulse repetition rate (kHz) 360

Pulse emission frequency (Hz) 112
Flight altitude (m) 900
Flight speed (m/s) 55

2.3. Data Processing

We used the CloudCompare (http://www.danielgm.net/cc/, accessed on 20 Novem-
ber 2021) [40].to generate dense point clouds through the incremental SfM [41] and Semi-
Global Matching (SGM) algorithm. Because the oblique photogrammetry technology can-
not obtain the terrain information under the forest when the canopy density is high [27,42].
The DTM data obtained from LiDAR data is used to normalize the dense point cloud to
generate the normalized three-dimensional point cloud [28,36,43]. Moreover, radiation
correction was performed on the point cloud spectrum data by dividing the DN of each
band (red, green, and blue) by the sum of the DN values of all bands corresponding to the
same 3D point [44,45]. TIN is used to generate Digital Orthophoto Model (DOM) with a
resolution of 0.05 m.

2.4. Methods

The overall workflow is shown in Figure 3. The process consists of three steps: (1) the
LiDAR data, UAV oblique photos and field data (DBH and tree height) of the sample plots
were collected and preprocessed. (2) Based on point cloud data and DOM data obtained
from UAV oblique photos, point cloud variables, vegetation index and intensity variables
were extracted respectively. (3) Evaluating the effects of different color spatial intensity
information, different spatial resolution and directions on the performance of the model.

http://www.danielgm.net/cc/
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2.4.1. Individual Tree Segmentation

The main objective of this study is to explore the potential of oblique photography in
IT-AGB estimation and the influence of spatial resolution on the estimation results. In order
to avoid the influence of individual tree segmentation error on the accuracy of IT-AGB
estimation, this study uses DOM data to draw the crown contour in the sample plots as
the individual tree segmentation result data using the software of LiDAR 360 (Version 5.0,
GreenValley International, Beijing, China) (https://www.lidar360.com/, accessed on 16
January 2022). Compared with the automatic individual tree segmentation by software, the
tree crown segmented by this method is more accurate. More importantly, the cumulative
error caused by inaccurate segmentation does not need to be considered in AGB estimation.
There are many researches on individual tree segmentation methods based on point cloud
data and CHM data [46–52], which can be used to segment trees when using our proposed
model to estimate IT-AGB. However, since this is not the main content of this study, we

https://www.lidar360.com/
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avoid the process of selecting, comparing and verifying individual tree segmentation
methods.

2.4.2. Feature Variables Extraction

The intensity variables were introduced as an important parameter and combined
with three-dimensional point cloud variables and two-dimensional vegetation index to
develop a model of IT-AGB. We explored the influence of intensity variables on modeling
accuracy. The intensity value of three-dimensional color point cloud can be calculated
based on the color channel values corresponding to R, G and B bands [42]:

Intensity = 0.2× R + 0.72× G + 0.07× B (2)

The point cloud height variables can reflect the vertical structure information of
forest canopy, and the point cloud density variables can reflect the horizontal structure
information of forest canopy. Therefore, the point cloud variables can highlight the forest
vegetation information from a three-dimensional perspective, so as to effectively estimate
the forest IT-AGB. The two-dimensional vegetation index can reflect the difference of
vegetation growth to a certain extent, so it can be used as a direct feature variable for
estimating the IT-AGB.

In addition, we also compared the intensity variables derived from HSI and RGB
color space to determine the impact of two-color space intensity variables on forest IT-AGB
estimation. Therefore, 10 intensity variables, 42 height variables, 10-point cloud density
variables and 7 vegetation index variables were extracted in this study (Table 3).

Table 3. Feature variables and descriptions.

Type Variable Formula Describe

RGB space

Maxi —— Maximum intensity
Mini —— Minimum intensity

Meani —— Mean intensity

sumi
sumi =

n
∑

i=1
(0.2× Ri + 0.72× Gi + 0.07× Bi)

Total intensity

sumsqrt_i sumsqrt_i =
√

sumi Square root of intensity value

HSI space

IMAX —— Maximum intensity
IMIN —— Minimum intensity

IMEAN —— Mean intensity
ISUM —— Total intensity

ISUM_SQRT —— Square root of intensity value

Hight
variables

Haad Haad =
∑n

i=1 (|Zi−Z|)
n

Mean absolute deviation, Zi is the
height of the ith point in each unit, Z is

the average height of all points, n
is the total number of points in each

statistical unit.

HAIQ —— Cumulative height percentile
interquartile spacing

Hkurtosis Hkurtosis =
1
n ∑n

i=1 (Zi−Z)4

( 1
n ∑n

i=1 (Zi−Z)2)
2 − 3 Height kurtosis

Hcv Hcv =
Zstd

Zmean
× 100%

Variation coefficient of Z value of all
points in a statistical unit, Zstd and

Zmean are the standard deviation of the
height values of all points and the
average height of all points in each

statistical unit.

Hredio Hredio = Zmean−Zmin
Zmax−Zmin

Canopy fluctuation rate, Zmin, Zmax,
Zmean are the minimum height,

maximum height and average height of
all points in each statistical unit

Hstddev Hstddev =

√
∑n

i=1 (Zi−Z)2

n

Standard deviation of Z values of all
points in a statistical unit

Hvariance Hvariance =
∑n

i=1 (Zi−Z)2

n

Variance of Z values of all points in a
statistical unit

Hskewness Hskewness =
1
n ∑n

i=1 (Zi−Z)3

( 1
n−1 ∑n

i=1 (Zi−Z)2)
3
2

Height skewness

H1 . . . 99th —— 1 . . . 99% cumulative height percentile

Hmax, min, mean, median ——
The maximum, minimum, average and

median of the point cloud after
normalization

P1st, . . . ,99th —— 75%, 95% high percentile
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Table 3. Cont.

Type Variable Formula Describe

density
variables D0, . . . ,9 ——

The proportion of height points greater
than 30%, 50%, 70%, and 90% to all

points

Vegetation
index

CIVE CIVE = 0.44R− 0.88G + 0.398 + 18.79 Color index of vegetation [53]
ExG ExG = 2G− R− B Excess green index [54]

ExGR ExGR = ExG− 1.4R− G Excess green minus excess red index
[55]

GLA GLA = 2×G−R
2×G+R+B Green leaf algorithm [56]

NGRDI NGRDI = G−R
G+R

Normalized green–red difference index
[56]

VEG VEG = G
Ra B(1−a) , a = 0.67 Vegetation index [57]

COM COM = 0.25ExG + 0.3ExGR
+0.33CIVE + 0.12VEG

Combination index [58]

2.4.3. Construction of Empirical Model

The Pearson correlation analysis and stepwise regression method were used to screen
the modeling features from 69 variables. In order to compare the contribution of different
color spatial variables and the effects of different spatial resolutions to IT-AGB estimation,
three kinds of feature variables combination experiments were designed based on five
different spatial resolutions (0.05 m, 0.1 m, 0.2 m, 0.5 m and 1 m): point cloud variables +
vegetation index (experiment A), point cloud variables + vegetation index + HSI intensity
variables (experiment B) and point cloud variables + vegetation index + RGB intensity
variables (experiment C). The different resolution image was obtained by nearest neighbor
interpolation resampling methods.

In order to solve the point or block-like invalid data formed in the 3D reconstruction
process that may be caused by factors such as tree canopy mutual occlusion and terrain
(Figure 4). We proposed a method for estimating IT-AGB using only data from one direction
(East, West, South, and North) of the canopy (Figure 5) when the obtained data is invalid or
abnormal, and explored the feasibility of this method without greatly reducing the accuracy.
The calculated IT-AGB from the allometric growth equation was used as the dependent
variable, and the three-dimensional point cloud and the feature variables extracted from
the point cloud data and RGB image data of the tree canopy in the corresponding direction
were used as independent variables to establish estimation model.
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2.4.4. Accuracy Verification

We used the leave-one-out cross-validation approach to evaluate the model results
and used the coefficient of determination (R2), root mean square error of leave-one-out
cross-validation (RMSECV) and relative RMSECV (rRMSECV) to verify the predictive
ability of the models.

R2 = 1−

n
∑

i=1
(Yi −Y)2

n
∑

i=1
(Y′i −Y)2

(3)

RMSECV =

√
1
n

n

∑
i=1

(Yi −Y′i )
2 (4)

rRMSECV =
RMSECV

Y
× 100% (5)

where, Yi represents the predicted IT-AGB; Y′i represents the measured IT-AGB; Y represents
the measured average value of IT-AGB; n is the number of trees.

3. Results
3.1. IT-AGB Distribution of Sample Plots

The four sample plots of measured IT-AGB are shown in Table 4. In general, IT-AGB
of the sample plots has a strong heterogeneity, ranging from 19.94 to 465.61 kg, and the
standard deviation reaches 92.73 kg. Sample plot 1 has a complex tree age structure. The
variation ranges of DBH and tree height are 10.10 cm~36.90 cm and 9.20 m~24.50 m, and
the IT-AGB has broad distribution range. Most of the trees in sample plot 2 and plot 3
are mature trees, with an average DBH and average tree height of 21.72 cm and 25.75 cm,
20.16 m and 19.84 m respectively. The situation of sample plot 4 is similar to that of sample
plot 1. The average IT-AGB is 153.89 kg and the standard deviation is 125.87 kg. The average
IT-AGB of the four sample plots is more than 170 kg, which is prone to saturation by using
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optical images [59]. Therefore, we estimate the IT-AGB by using the oblique photography
technology that can provide spectral, horizontal and vertical structural features.

Table 4. Statistical analysis of measured data of sample plots.

Sample
Number

Number
of Trees Sample Characteristics DBH (cm) Tree Height

(m) AGB (kg)

1 51

Maximum 36.90 24.50 448.85
minimum 10.10 9.20 21.85

Mean 20.90 18.53 153.23
Standard deviation 5.10 2.68 81.18

2 40

Maximum 31.50 23.60 376.41
minimum 12.50 15.80 51.88

Mean 21.72 20.16 175.35
Standard deviation 5.11 2.12 84.21

3 28

Maximum 33.90 25.80 386.73
minimum 18.00 14.10 98.07

Mean 25.75 19.84 227.85
Standard deviation 4.11 3.25 79.23

4 30

Maximum 34.80 26.10 465.611
minimum 5.90 4.50 19.94

Mean 18.55 14.19 153.89
Standard deviation 8.59 6.11 125.87

Total 149

Maximum 36.90 26.10 465.61
minimum 5.90 4.50 19.94

Mean 21.53 19.39 170.51
Standard deviation 6.04 3.97 92.73

3.2. Features Selection

The correlation coefficients between 69 variables and IT-AGB were calculated by
Pearson correlation analysis (Figure 6). The results showed that point cloud height variable
had a high correlation with IT-AGB, while the two-dimensional vegetation index had a
low correlation with IT-AGB. The top 20 variables (see Figure 6) with a high correlation
coefficient were selected for modeling. The best variables combination for estimating forest
IT-AGB was selected through stepwise regression analysis, including vegetation index
GLA, point cloud density variables D5, height variables Hmax and H30th, and intensity
variables sumsqrt_i and ISUM_SQRT. GLA is the color vegetation index, which can be used
to distinguish vegetation from non-vegetation. Point cloud height variables reflects forest
vertical structure information. Point cloud density variables is highly sensitive to forest
AGB, and reflects forest horizontal structure information. The intensity value calculated
based on RGB and HSI color space has strong correlation with IT-AGB (Figure 6).
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3.3. Contribution of Different Intensity Information and Spatial Resolution on Model

The selected variables were used to develop IT-AGB estimation model by multiple
linear regression (Table 5). It can be seen from Table 5 that the AGB estimation models
constructed with different types and spatial resolution of variables varied considerably. The
variation ranges of R2 and RMSECV were 0.34~0.79 and 44.77~82.24 kg respectively, and
rRMSECV was 0.25~0.45. The estimation accuracy of the model was the best at a spatial
resolution of 0.2 m, which was significantly improved compared with the spatial resolution
of the other four. However, when the spatial resolution was increased from 1 m to 0.5 m,
both the value of RMSECV or rRMSECV were similar or same, which meant that the model
accuracy was not significantly improved.

The estimation accuracy of IT-AGB was significantly improved by introducing inten-
sity variables combined with vegetation index and point cloud variables (Table 5). Among
them, the models of experiment C have the highest R2 (0.59, 0.72, 0.79, 0.74 and 0.58) and
the lowest RMSECV (61.41, 50.10, 44.77, 49.45 and 66.74 kg) at corresponding resolutions
(0.05, 0.1, 0.2, 0.5 and 1 m). Taking the spatial resolution of 0.2 m as an example, compared
with the intensity variable of RGB space, the contribution of HSI space variable to the
estimation model was slightly lower, with R2 of 0.75 and RMSECV of 48.52 kg. The R2

of the experiment A models was low, only 0.50. Overall, the IT-AGB estimation model of
experiment C was more stable and robust.

The scatterplots of the predicted and measured IT-AGB are shown in Figure 7. When
the spatial resolution was 0.2 m, the estimation model of experiment C was the best
(Figure 7C3), which scatter points were evenly distributed on both sides of y = x, indicating
that the introduction of RGB spatial information can improve the estimation accuracy.
When the spatial resolution was 0.05 m and 1 m, the scatter distribution was scattered,
and the performance of the model was poor. Compared with the model of experiment A
(Figure 7A3), the estimation accuracy of the experiment B (Figure 7B3) and experiment
C (Figure 7C3) models were improved by 11% and 13% respectively, when the spatial
resolution was 0.2 m.
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Figure 7. Scatterplots of measured and predicted IT-AGB. Ai, Bi and Ci are models with spatial
resolutions of 0.05 m, 0.1 m, 0.2 m, 0.5 m and 1 m, respectively; (A1–A5) are models of experiment A;
(B1–B5) are models of experiment B; (C1–C5) are models of experiment C. The red line in the figure
is the line of y = x.



Remote Sens. 2022, 14, 504 14 of 21

Table 5. Accuracy evaluation of models with different spatial resolution and variables.

Model Model Equation R2 RMSECV (kg) rRMSECV

0.05 m
A Y = −508.187 + 241.946× GLA + 2535.144× D5

−24.819× H30th + 51.368× Hmax
0.44 71.05 0.40

B Y = −561.402 + 720.154× GLA + 2335.538× D5
−24.972× H30th + 51.822× Hmax + 0.090× ISUM_SQRT

0.57 62.72 0.35

C Y = −505.267 + 404.231× GLA + 2057.729× D5
−21.371× H30th + 47.405× Hmax + 0.088× sumsqrt_i

0.59 61.41 0.34

0.1 m
A Y = −454.307 + 600.580× GLA + 2497.540× D5

−48.036× H30th + 70.815× Hmax
0.49 67.00 0.37

B Y = −592.935 + 1219.055× GLA + 2700.810× D5
−50.306× H30th + 75.790× Hmax + 0.111× ISUM_SQRT

0.70 ** 52.74 0.30

C Y = −556.908 + 819.871× GLA + 2579.594× D5
−44.905× H30th + 70.367× Hmax + 0.109× sumsqrt_i

0.72 ** 50.10 0.28

0.2 m
A Y = −350.353 + 1081.184× GLA + 1891.010× D5

−49.732× H30th + 67.582× Hmax
0.50 66.78 0.38

B Y = −529.350 + 1809.895× GLA + 1919.730× D5
−48.844× H30th + 72.289× Hmax + 0.125× ISUM_SQRT

0.75 ** 48.52 0.27

C Y = −503.178 + 1314.658× GLA + 1695.792× D5
−40.214× H30th + 65.158× Hmax + 0.125× sumsqrt_i

0.79 ** 44.77 0.25

0.5 m
A Y = −326.319 + 1048.792× GLA + 770.335× D5

−35.794× H30th + 55.757× Hmax
0.44 70.39 0.40

B Y = −512.761 + 1761.952× GLA + 755.589× D5
−33.174× H30th + 59.510× Hmax + 0.124× ISUM_SQRT

0.69 ** 53.99 0.30

C Y = −498.311 + 1279.555× GLA + 1678.740× D5
−25.901× H30th + 53.839× Hmax + 0.128× sumsqrt_i

0.74 ** 49.45 0.28

1 m
A Y = −273.155 + 553.142× GLA + 184.608× D5

−17.770× H30th + 39.409× Hmax
0.34 82.24 0.45

B Y = −441.875 + 1227.558× GLA + 211.609× D5
−13.633× H30th + 40.918× Hmax + 0.114× ISUM_SQRT

0.52 71.21 0.39

C Y = −439.854 + 829.448× GLA + 201.563× D5
−7.326× H30th + 36.344× Hmax + 0.124× sumsqrt_i

0.58 66.74 0.36

Note: ** indicates p < 0.001.

3.4. Comparisons of Models in Different Tree Canopy Directions

There are obvious accuracy differences in the IT-AGB models in different individual
canopy horizontal directions (Table 6). The R2 and rRMSECV of the estimation models in
different directions ranged from 0.29~0.60 and 0.33~0.45 respectively. The results showed
that the performance of West-model was greater than that of South-model, North-model
and East-model, and the estimation accuracy was improved by 2%, 8% and 12% respectively.
The West-model can best reflect the overall IT-AGB with R2 reaching 0.60 and RMSECV
of 60.17 kg. The second was the South-model with R2 of 0.58 and rRMSECV of 0.35. The
East-model was the worst with R2 of only 0.29 and RMSECV of 80.79 kg.

Scatterplots of predicted and measured IT-AGB in different horizontal directions are
shown in Figure 8. The estimation ability of models varies greatly in different directions,
and only the West-model met the estimation requirements; the scattered points were
uniformly distributed on both sides of y = x, the RMSECV was the lowest (60.17 kg), and
the rRMSECV was only 0.33. The East-model has the worst estimation accuracy, with
different degrees of underestimation and overestimation.
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Table 6. Accuracy evaluation of models in different directions.

Model Model Equation R2 RMSECV (kg) rRMSECV

East Y = −186.079 + 884.733× GLA + 1346.804× D5
+38.489× Hmax − 29.545× H30th + 0.116× sumsqrt_i

0.29 80.79 0.45

North Y = −373.301 + 880.425× GLA + 1898.861× D5
+47.219× Hmax − 34.777× H30th + 0.271× sumsqrt_i

0.42 73.11 0.41

South Y = −365.544 + 712.880× GLA + 1217.608× D5
+51.278× Hmax − 30.879× H30th + 0.109× sumsqrt_i

0.58 ** 61.72 0.35

West Y = −468.532 + 724.398× GLA + 1875.551× D5
+56.608× Hmax − 35.762× H30th + 0.183× sumsqrt_i

0.60 ** 60.17 0.33

Note: ** indicates p < 0.001.

4. Discussion
4.1. Extraction of Feature Variables for Modeling

Feature variables, include GLA, D5, Hmax, H30th, sumsqrt_i and ISUM_SQRT were selected
as the final modeling variables by Pearson correlation analysis and stepwise regression.
The Chinese fir has lanceolate or strip lanceolate leaves, conical crown and concentrated
crown distribution. The point cloud density can digitize the above features and better
highlight the forest horizontal structure crown information. The Hmax and H30th are point
cloud height variables that reflect the information of height related to the forest AGB and
the vertical structure of the forest crown [25,60,61]. The GLA can effectively distinguish
vegetation from other features, and is a good correlation between vegetation index and
AGB [38,41]. Furthermore, the sumsqrt_i (intensity variable of the RGB spatial) [42] and
ISUM_SQRT (intensity variable of HSI spatial) can reflect image features and the spatial
information contained in the image. The relatively compact canopy structure rarely allows
ground information to pass through, so there are fewer mutations in intensity information.
This makes the description of the forest canopy surface information more accurate, which
can explain the usefulness of the intensity information to IT-AGB. In brief, the combination
of horizontal and vertical structure information with RGB or HSI spatial intensity variables
can reflect the IT-AGB information more comprehensively.
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4.2. Effects of Different Spatial Resolution on Models

In this study, we used five different resolution images (0.05 m, 0.1 m, 0.2 m, 0.5 m and
1 m) to extract feature variables and construct IT-AGB estimation models. With the increase
of spatial resolution, the model effect showed a trend of first increasing and then decreasing.
Compared with the image resolution 0.5 m, the resolution image 0.1 m and 0.05 m did
not significantly improve the estimation accuracy, and the 0.2 m resolution estimation
model was significantly better than the other four. The image with low spatial resolution is
greatly disturbed by the mixed pixel effect, which affects the accuracy of estimation [62,63].
Theoretically, with the improvement of spatial resolution, the effects of mixed pixels on
extracted variables decreases, and the model accuracy also gets improved. However, the
result of our research was inconsistent with this law. The reason may be that we used the
DEM provided by LiDAR data to normalize the point cloud data obtained from oblique
photos. The density of LiDAR point cloud is low, and the 1 m spatial resolution DEM
generated by interpolation method is different from real terrain, especially in areas with
large slope, which will affect the processing of normalized point cloud. Here, we take a tree
as an example to explain. In the Figure 9, an individual tree canopy covered about 20 pixels
(1 m × 1 m) of DEM data. The point cloud of the individual tree subtracted the elevation
value of the corresponding pixel to complete the point cloud normalization process, and
then the height variable was extracted. With the increase of the resolution of the extracted
point cloud variables, the influence of the point cloud normalized by DEM (1 m spatial
resolution) on the height variables is more obvious. Therefore, the model effect decreases
with the increase of spatial resolution when the spatial resolution is less than 0.2 m. The
normalized point cloud will be infinitely closer to the individual tree condition in the real
environment with the increasing spatial resolution of DEM, which is an ideal state. In
addition, environmental conditions (such as slope, irradiance) and inter tree competition
may also cause the scatter diagram of experiment C to be scattered (see Figure 6C1, C2, C4
and C5). In general, the best model we established has a certain applicability and stability
(Figure 6C3). In the further study, we will deeply explore the impact of topographic and
ecological factors on IT-AGB.

Remote Sens. 2022, 13, x FOR PEER REVIEW 16 of 21 
 

 

horizontal and vertical structure information with RGB or HSI spatial intensity variables 

can reflect the IT-AGB information more comprehensively. 

4.2. Effects of Different Spatial Resolution on Models 

In this study, we used five different resolution images (0.05 m, 0.1 m, 0.2 m, 0.5 m 

and 1 m) to extract feature variables and construct IT-AGB estimation models. With the 

increase of spatial resolution, the model effect showed a trend of first increasing and then 

decreasing. Compared with the image resolution 0.5 m, the resolution image 0.1 m and 

0.05 m did not significantly improve the estimation accuracy, and the 0.2 m resolution 

estimation model was significantly better than the other four. The image with low spatial 

resolution is greatly disturbed by the mixed pixel effect, which affects the accuracy of es-

timation [62,63]. Theoretically, with the improvement of spatial resolution, the effects of 

mixed pixels on extracted variables decreases, and the model accuracy also gets improved. 

However, the result of our research was inconsistent with this law. The reason may be 

that we used the DEM provided by LiDAR data to normalize the point cloud data ob-

tained from oblique photos. The density of LiDAR point cloud is low, and the 1 m spatial 

resolution DEM generated by interpolation method is different from real terrain, espe-

cially in areas with large slope, which will affect the processing of normalized point cloud. 

Here, we take a tree as an example to explain. In the Figure 9, an individual tree canopy 

covered about 20 pixels (1 m × 1 m) of DEM data. The point cloud of the individual tree 

subtracted the elevation value of the corresponding pixel to complete the point cloud nor-

malization process, and then the height variable was extracted. With the increase of the 

resolution of the extracted point cloud variables, the influence of the point cloud normal-

ized by DEM (1 m spatial resolution) on the height variables is more obvious. Therefore, 

the model effect decreases with the increase of spatial resolution when the spatial resolu-

tion is less than 0.2 m. The normalized point cloud will be infinitely closer to the individ-

ual tree condition in the real environment with the increasing spatial resolution of DEM, 

which is an ideal state. In addition, environmental conditions (such as slope, irradiance) 

and inter tree competition may also cause the scatter diagram of experiment C to be scat-

tered (see Figure 6C1, C2, C4 and C5). In general, the best model we established has a 

certain applicability and stability (Figure 6C3). In the further study, we will deeply explore 

the impact of topographic and ecological factors on IT-AGB. 

 

Figure 9. Schematic diagram of normalization of individual tree point cloud. (The short lines of
different colors at the bottom of the left figure represent different DEM values, and the length is the
pixel size of the corresponding DEM. The right figure is the top view of the left figure, each solid line
grid is 1 m, and different colors represent different DEM values).
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4.3. Effects of Intensity Information on Model

RGB space and HSI space are different representations of the same physical quantity.
The description of intensity variables in RGB space can highlight vegetation information
and is suitable for IT-AGB estimation. The main reason is that HSI color space conforms to
human visual characteristics and is described by double cone space [64]. The intensity is
expressed by the height by the axis direction in HSI space. The axis of the cone describes
the gray level. The minimum and maximum intensity are black and white respectively.
HSI color space is not related to color information, which only can simplify the workload
of data processing. The RGB space is described by the cube space, and the description of
intensity is a linear combination of the three color directions [65], which explains why the
model containing RGB space-intensity information performs better.

4.4. Effects of Different Direction on Model

We compared the models in four horizontal directions of individual tree crowns, and
the accuracy of the models was quite different. The West-model had the best performance,
and the East-model had the worst performance (Table 6). The reason can be attributed to
the effects of canopy structure, latitude, altitude and slope direction. Firstly, the canopy
of Chinese fir is conical, and the canopy structure is relatively compact, which makes it
difficult to penetrate for solar radiation. At the same time, the south and west of the canopy
with high sunshine hours have strong vegetation photosynthesis in this study area, and
the canopy structure is significantly different from the other directions, which can better
express the information of the whole canopy. Finally, the growth status of trees in the
Figure 10 show that the T1 and T2 (or T3) compete for conditions such as space and sunlight
in the growth process. Among them, the competition between T1 and T3 was essentially a
competition between the westward canopy of T1 and the eastward canopy of T3, and the
obvious advantage of T1 was mainly manifested in the relatively high altitude. Similarly,
the relationship between T1 and T2 was the competition between the northward crown
of T1 and the southward crown of T2, which was a competition of equal status. This can
also explain that the West-model performs better than that of South-model in the canopy of
T1. This could also explain the superior performance of the West-model in the T1 canopy
compared to the South-model.

In addition, we assumed that the canopy was divided into four pieces: A, B, C and
D, where A + B, B + C, C + D and D + A were equivalent to the canopy of the west, south,
east and north respectively and Model (A + B) > Model (C + B) through the Figure 10. It
can be understood that the contribution of the direction of A was greater than that of the C,
which makes it easy to understand that the East-model performs poorly compared to the
North-model.

Therefore, we can infer the best direction for estimating the IT-AGB of the damaged
data based on environmental factors such as terrain and slope, so as to obtain accurate IT-
AGB information. Our method does not specifically limit the environment, and is suitable
for most of the IT-AGB estimation with invalid data and other problems. However, if the
quality of the obtained data was very unsatisfactory, such as more than 50% of the area in
the individual tree crown cannot be identified, we recommend looking for the problem,
resetting the conditions of flight and obtaining data.



Remote Sens. 2022, 14, 504 18 of 21

Remote Sens. 2022, 13, x FOR PEER REVIEW 18 of 21 
 

 

 

Figure 10. Schematic diagram of sample plot forest competition. 

5. Conclusions 

We proposed a novel approach to estimating IT-AGB by combining the three-dimen-

sional point cloud features, vegetation index and intensity information obtained by 

oblique photogrammetry technology, explored the impact of different color spatial inten-

sity variables and spatial resolution on estimation model, and evaluated the ability of four 

directional data in individual tree crown to estimating IT-AGB. The introduction of inten-

sity variables into the model improved the accuracy, and the contribution of RGB spatial 

information to the model was greater than that of HSI spatial information. Spatial resolu-

tion also affected estimation model, and the accuracy reached 75% when the spatial reso-

lution was 0.2 m, which provided a scientific basis for the design of flying height. The 

West-model performed best, with an estimation accuracy of 67%, which can solve the 

problem of the IT-AGB estimation when the image quality was affected by uncontrollable 

factors. In short, we explored the potential of the combination of point cloud variables, 

vegetation index and intensity variables to estimate the IT-AGB of Chinese fir forest, with 

an accuracy of 75%. That is, using multi-dimensional features derived from oblique pho-

togrammetry photos can realize the rapid and non-destructive estimation of IT-AGB in 

complex stand structure and environment, which provides support for the accurate inves-

tigation of forest resources and the accurate measurement of carbon stock. 

Author Contributions: Conceptualization, L.L. and X.Z.; methodology, L.L. and G.C.; software, 

L.L.; validation, L.L., G.C. and X.Z.; formal analysis, L.L.; investigation, L.L., G.C., T.Y., X.Z., Y.W. 

and X.J.; resources, X.Z.; data curation, L.L. and G.C.; writing—original draft preparation, L.L. and 

G.C.; writing—review and editing, L.L. and G.C.; visualization, L.L., Y.W. and X.J.; supervision, 

X.Z.; project administration, X.Z.; funding acquisition, X.Z. All authors have read and agreed to the 

published version of the manuscript. 

Funding: This research is financially supported by the National Key R&D Program of China project 

“Research of Key Technologies for Monitoring Forest Plantation Resources” (2017YFD0600900). 

Data Availability Statement: Not applicable. 

Acknowledgments: We acknowledge grants from the “National Key R&D Program of China project 

(2017YFD0600900)”. We also would like to thank the graduate students for helping in data collecting 

and summarizing. The authors gratefully acknowledge the local foresters for sharing their rich 

knowledge and working experience of the local forest ecosystems. 

Conflicts of Interest: The authors declare that they have no known competing financial interests or 

personal relationships that could have appeared to influence the work reported in this paper. 

Figure 10. Schematic diagram of sample plot forest competition.

5. Conclusions

We proposed a novel approach to estimating IT-AGB by combining the three-
dimensional point cloud features, vegetation index and intensity information obtained by
oblique photogrammetry technology, explored the impact of different color spatial intensity
variables and spatial resolution on estimation model, and evaluated the ability of four
directional data in individual tree crown to estimating IT-AGB. The introduction of intensity
variables into the model improved the accuracy, and the contribution of RGB spatial infor-
mation to the model was greater than that of HSI spatial information. Spatial resolution
also affected estimation model, and the accuracy reached 75% when the spatial resolution
was 0.2 m, which provided a scientific basis for the design of flying height. The West-model
performed best, with an estimation accuracy of 67%, which can solve the problem of the
IT-AGB estimation when the image quality was affected by uncontrollable factors. In short,
we explored the potential of the combination of point cloud variables, vegetation index and
intensity variables to estimate the IT-AGB of Chinese fir forest, with an accuracy of 75%.
That is, using multi-dimensional features derived from oblique photogrammetry photos
can realize the rapid and non-destructive estimation of IT-AGB in complex stand structure
and environment, which provides support for the accurate investigation of forest resources
and the accurate measurement of carbon stock.
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